EN40: Dynamics and Vibrations

Homework 4: Conservation Laws for Particles Due Friday March 112022

School of Engineering Brown University

1. This publication (Kulakova et al, 2017) compares two interatomic potentials for liquid Argon:
(i) The classic 'Lennard-Jones' potential $U_{L J}=4 E_{L J}\left\{\left(\frac{a_{L J}}{r}\right)^{12}-\left(\frac{a_{L J}}{r}\right)^{6}\right\}$
(ii) The (6-p) potential $U_{(6, p)}=4 E_{(6, p)}\left\{\left(\frac{a_{(6, p)}}{r}\right)^{p}-\left(\frac{a_{(6, p)}}{r}\right)^{6}\right\}$

Values for the constants in the two potentials were estimated by fitting to experimentally measured 'radial distribution functions' (the probability distribution of distances between neighboring atoms in the fluid). The table shows values determined from a dataset taken at temperature of 84.4 K and pressure of 0.8 atm .

$E_{L J}$	0.0123 eV
$a_{L J}$	3.305 Angstroms
$E_{(6, p)}$	0.0983 eV
$a_{(6, p)}$	3.431 Angstroms
p	6.644

1.1 Plot the energy as a function of r for both potentials, on the same graph (use units of eV for the energy, and Angstroms (1 Angstrom is $10^{-10} \mathrm{~m}$) for the distance r . $3<r<8$ Angstroms gives a clear plot).

1.2 Plot a graph showing the force as a function of separation r, for both potentials, on the same graph. (use units of eV/Ansgstrom ${ }^{1}$ for the force, and angstroms for the distance $\mathrm{r} .3 .5<r<8$ Angstroms gives a clear plot) (Just hand in your plot; there is no need to submit MATLAB code)

[3 POINTS]
1.3 Find the equilibrium separation between atoms for the two potentials (in Angstroms). You can use the MATLAB 'vpasolve' function to solve the equation for the separation - see 2021 HW4 solutions for an example. MATLAB will give you several solutions for the Lennard-Jones potential but only one of them is physically meaningful.

MATLAB live script gives 3.71 Angstroms for LJ, and 4.02 Angstroms for (6-p)
1.4 Find the stiffness of the bond for the two potentials (at the equilibrium separation) in N / m

MATLAB live script gives $1.03 \mathrm{~N} / \mathrm{m}$ for LJ, and $0.58 \mathrm{~N} / \mathrm{m}$ for (6-p)
[2 POINTS]
1.5 Find the (static) force required to break the bond, in eV / A. If you are using a MATLAB live script to do the calculation you will need to use the 'vpasolve' function to find the value of r that maximizes the force of attachment. See Sect 6.1 of the MATLAB tutorial for an example.

MATLAB live script gives $0.0089 \mathrm{eV} / \mathrm{A}$ for LJ , and $0.0073 \mathrm{eV} / \mathrm{A}$ for ($6-\mathrm{p}$)
[2 POINTS]

[^0]2. A rider on an upright bicycle is subjected to a drag force with magnitude $F_{D}=\left(\rho C_{D} A V^{2}\right) / 2$, where $\rho=1.22 \mathrm{~kg} / \mathrm{m}^{3}$ is the air density, $C_{D}=0.9$ is the drag coefficient, $A=0.5 \mathrm{~m}^{2}$ is the projected frontal area of the rider and bicycle together, and V is the bicycles speed.
2.1 Calculate the power expenditure of a rider traveling at constant speed of $7 \mathrm{~m} / \mathrm{s}$ (about 16 mph) in still air on level ground.

The power-energy formula for the rider+bicycle treated as a particle gives $\frac{d T}{d t}=P_{\text {rider }}+P_{d r a g}$, where $P_{\text {rider }}$ is the power developed by the rider, T is the kinetic energy and $P_{\text {drag }}$ is the power of the drag force acting on the bike.

The drag power is $\mathbf{F}_{D} \cdot \mathbf{v}=-F_{D} V=-\frac{1}{2} \rho C_{D} A V^{3}=-94.15 \mathrm{Watts}$ and hence the rider must produce 94.15 Watts of useful power.
[2 POINTS]
2.2 Suppose that the rider makes a round trip along a straight road with length $23 \mathrm{~km}(46 \mathrm{~km}$ for the round trip. This is about the length of the Providence - Bristol East Bay bike path, excluding the distance you have to travel from campus to reach the start of the path....). If the rider travels with constant power expenditure with the value you found in 2.1 , how long does the trip take (a) in still air; and (b) with a 4 m / s (about 9 mph) wind blowing parallel to the road (a headwind in one direction, and a tailwind in the other). You will need to solve a cubic equation for the bike's speed with a head/tailwind - you can use the MATLAB 'vpasolve' function to solve the equation numerically.

Through still air the rider travels at $7 \mathrm{~m} / \mathrm{s}$ in both directions. The total time for the trip is therefore $46 \times 10^{3} / 7=6571 \mathrm{~s} \approx 1 \mathrm{hr} 50 \mathrm{~min}$

The drag force with a headwind U has magnitude $F_{D}=\left(\rho C_{D} A(V+U)^{2}\right) / 2$. The power is therefore
$F_{D} V=\frac{1}{2} \rho C_{D} A(V+U)^{2} V . \quad$ We can find the speed by solving $\frac{1}{2} \rho C_{D} A(V+U)^{2} V=P$ for V.

With a headwind, $V=4.6 \mathrm{~m} / \mathrm{s}$
With a tailwind $V=9.9 \mathrm{~m} / \mathrm{s}$
The total time is therefore $23000 / 4.6+23000 / 9.9=7306 s \approx 2 \mathrm{hr} 2 \mathrm{mins}$
2.3 Suppose that while accelerating from rest to cruise speed the rider (temporarily) expends power at a rate 2

$$
P_{\text {rider }}=2 V(14-V) \quad \text { Watts }
$$

where V is the bike speed. Find a formula for the acceleration of the bike during this time, and hence calculate (a) how long it takes to reach cruise speed of $7 \mathrm{~m} / \mathrm{s}$ and (b) the distance travelled during this time (the energy equation will give you a differential equation for the speed, which you can solve by separating variables. You will need to use MATLAB to do the integrals for you. Use the MATLAB 'double()' function to convert the incomprehensible answer to a floating point number) Use your mass +10 kg for the mass of rider + bicycle.

On the East Bay bike path the rider would probably need to come to a stop at about 10 cross-streets and will also probably come to a stop at the end, so they stop a total of 21 times on the round trip. Calculate how long it would take the rider to make the round trip with no wind.

The KE-power relation for an accelerating bike gives

$$
\begin{aligned}
& \frac{d}{d t}\left(\frac{1}{2} m V^{2}\right)=P_{\text {rider }}-\frac{1}{2} \rho C_{D} A V^{3} \\
& \Rightarrow m V \frac{d V}{d t}=P_{\text {rider }}-\frac{1}{2} \rho C_{D} A V^{3}
\end{aligned}
$$

Separate variables and integrate

$$
\begin{aligned}
& \int_{0}^{V_{\text {cuise }}} \frac{m V d V}{2 V(14-V)-\left(\rho C_{D} A V^{3} / 2\right)}=\int_{0}^{t} d t \\
& \Rightarrow 0.8015 m=t
\end{aligned}
$$

With my mass $m \approx 80 \mathrm{~kg}$ so $t=64.1 \mathrm{sec}$.

To find the distance travelled

$$
\begin{aligned}
& \frac{d V}{d t}=V \frac{d V}{d s} \Rightarrow m V^{2} \frac{d V}{d s}=P_{\text {rider }}-\left(\rho C_{D} A V^{3} / 2\right) \\
& \Rightarrow \int_{0}^{V_{\text {cruse }}} \frac{m V^{2} d V}{2 V(14-V)-\left(\rho C_{D} A V^{3} / 2\right)}=\int_{0}^{s} d s \\
& \Rightarrow 4.24 m=s
\end{aligned}
$$

For $m=80 \mathrm{~kg}$ we find $s=339.2 m$
The time to travel 46 km with 21 starts (one at the beginning, and then 1 after each of 20 stops) follows as $t=(46000-21 \times 339.2) / 7+21 \times 64.1=6900 \mathrm{~s} \approx 1 \mathrm{hr} 55 \mathrm{~min}$

Of course the numbers will be slightly different with a different mass. If people use 20 instead of 21 starts that's OK - the difference is less than the uncertainty in the values of the constants.
[5 POINTS]

[^1]3. The figure (from this publication) shows force-vstretch factor curves for latex rubber tubes used in a slingshot. The different curves show force curves for various different maximum values of stretch factor. The red curve shows the force during loading; the black one shows the force during (quasi-static) unloading.

The 'stretch factor' is defined as

$$
\lambda=L / L_{0}
$$

where L is the stretched length and L_{0} is the unstretched length of the tube.

The curves for a maximum stretch factor of 6 can be
 approximated by

Stretch Factor (2040 tubes)
$F_{L}=0.1277 \lambda^{3}-1.3123 \lambda^{2}+5.4929 \lambda-4.3084$
$F_{U}=0.003834 \lambda^{5}-0.01917 \lambda^{4}+0.0383 \lambda^{3}-0.6348 \lambda^{2}+3.5979 \lambda-2.9861$
where F_{L} is the (red) loading curve and F_{U} is the unloading curve is the unloading curve, and the forces are in lb .
3.1 Suppose that a slingshot is made with two parallel tubes with 20 cm unstretched length. Plot the force-draw curves (both loading and unloading) for the slingshot, for a draw distance $0<x<1 \mathrm{~m}$

The stretch is $\left(L_{0}+x\right) / L_{0}$ where x is the draw distance and L_{0} is the unstretched length. The forces in the two tubes add, so plot $2 F_{L}-v-x \quad 2 F_{U}-v-x$

The units can be in Newtons as well....
[3 POINTS]
3.2 Calculate the work done to draw the slingshot to 1 m (calculate the work in Joules)

The work done is $W_{L}=\int_{0}^{1} 2 F_{L}\left(1+x / L_{0}\right) d x$
The forces need to be converted to N to get work in Joules.
MATLAB gives $W_{L}=38.9 J$
[2 POINTS]
3.3 Calculate the work done by slingshot during unloading from 1 m

The work done is $W_{U}=-\int_{1}^{0} 2 F_{U}\left(1+x / L_{0}\right) d x$

MATLAB gives $W_{U}=26.6 J$
[2 POINTS]
3.4 Suppose that the projectile has a mass of 3.6 grams, and the bands and pouch have a combined effective mass of 5.6 grams (i.e. the kinetic energy of the bands and pouch at the instant of launch is $m_{\text {eff }} V_{p}^{2} / 2$, where V_{p} is the projectile speed and $m_{\text {eff }}$ is the effective mass of 5.6 g). Estimate the launch speed of the projectile.

Use the work-energy relation: $W_{U}=\frac{1}{2}\left(m_{p}+m_{e f f}\right) V_{p}^{2} \Rightarrow V_{p}=\sqrt{\frac{2 W_{U}}{\left(m_{p}+m_{e f f}\right)}}=76 \mathrm{~m} / \mathrm{s}$

- a bit higher than usually measured, but in practice a stretch ratio less than 6 is used, partly
because such large stretches reduce the life of the bands, and partly because holding the 181b draw force would be quite challenging...)
[2 POINTS]
3.5 Hence, estimate the energy efficiency of the device.

The efficiency is the KE of the projectile divided by the energy expended to draw the slingshot, i.e. $\frac{1}{2} m_{p} V_{p}^{2} / W_{L}=0.27$ (27\%)

4. This publication reports measurements of the forces exerted by a frog on a force plate during a jump
4.1 Download the image file frog_jump.jpg from the homework page of the course website, along with the MATLAB file called digitize.m Save both files to the same directory on your PC. Run the digitize.m file (just follow the instructions in the message boxes) to generate two files called, eg, frog_force_vertical.csv and frog_force.horizontal.csv, which store columns of time and force during the jump (the portion of the curve between $0<t<0.2 \mathrm{~s}$). There is no need to submit a solution to this problem.
[0 POINTS]
4.2 Read the .csv files generated in part 4.1 into MATLAB and (a) plot the data, to check it; and (b) calculate the horizontal and vertical impulses exerted on the frog during its jump. Include the plot and your values for the impulse in your uploaded pdf.

The impulse vector (with \mathbf{i}, \mathbf{j} horizontal and vertical) is $\mathbf{I}=(0.0906 \mathbf{i}+0.1364 \mathbf{j}) \mathrm{Ns}$
4.3 Use the results of 4.2 to calculate the horizontal and vertical components of the frog's velocity just after it leaves the ground. You can find the frog's mass from the force reading at time $t=0$.

Let $N(t), T(t)$ denote the normal and tangential forces acting on the frog, and $T_{\text {jump }}$ denote the time while the frog is in contact with the ground before take-off.

Using impulse-momentum, and assuming that the frog is stationary before launching:

$$
\int_{0}^{T_{\text {jump }}}(T(t) \mathbf{i}+N(t) \mathbf{j}-m g \mathbf{j}) d t=m \mathbf{v}
$$

The frog mass is 0.0642 kg , and $T_{\text {jump }}=0.1443 \mathrm{~s}$
Matlab Live script gives velocity vector as $\mathbf{v}=(1.4 \mathbf{l} \mathbf{i}+0.708 \mathbf{j}) \mathrm{m} / \mathrm{s}$
[2 POINTS]
4.4 Check your answer to 4.3 by using Newton's law to calculate the frog's acceleration while it is touching the ground, and using MATLAB to integrate the acceleration to find its velocity. Also, integrate the velocity to calculate the displacement of the frog's COM during the period that it is in contact with the ground

Integrating the accelerations should give exactly the same take-off velocities as in 4.3
MATLAB gives horizontal displacement at takeoff of 0.0855 m ; vertical displacement 0.0453 m
[3 POINTS]
4.5 Use the results of 4.4 and 4.3 to find the time that the frog is airborne, as well as the height $h_{\text {max }}$ and length L of its jump (include the displacement while it is touching the ground)

The jump height can be calculated with energy (or with the trajectory equations). To use energy, use as the system the frog + earth $\Rightarrow>$ total energy is conserved; take as initial state the frog just after it leaves the ground and as final state the instant of max height. At this instant the vertical velocity is zero, and the horizontal velocity is constant since no force acts on the frog in the horizontal direction while it is airborne, so

$$
\begin{aligned}
& T_{1}+U_{1}=T_{2}+U_{2} \Rightarrow \frac{1}{2} m\left(v_{x}^{2}+v_{y}^{2}\right)+0=\frac{1}{2} m v_{x}^{2}+m g h \\
& \Rightarrow h=v_{y}^{2} /(2 g)=0.025 m
\end{aligned}
$$

We need to add this to the vertical displacement at takeoff, giving a total jump height of 0.0708 m

The time airborne can be calculated using the trajectory equations. The height as a function of time is

$$
h=h_{\text {takeoff }}+v_{\text {ytakeoff }} t-g t^{2} / 2
$$

The time airborne follows as the value of t when $h=0$. The solution to the quadratic gives $t_{\text {airborne }}=0.192 s$

The horizontal distance traveled while in flight follows as $\Delta x=v_{\text {xtakeoff }} t_{\text {airborne }}=0.27 \mathrm{~m}$

The total length of the jump is therefore $L=0.357 \mathrm{~m}$
[5 POINTS]
4.6 What is the energy cost (i.e. the work done by the frog) of the jump?

We can use work-energy relation for a particle to calculate the work done by the frog. The frog does work while its feet are in contact with the ground. Take the initial state to be the stationary frog before jumping; the final state to be the instant just after it leaves the ground. We have

$$
\begin{aligned}
\Delta W^{\text {ext }} & =T_{1}+U_{1}-\left(T_{0}+U_{0}\right) \\
& =\frac{1}{2} m\left(v_{\text {xtakeoff }}^{2}+v_{\text {ytakeoff }}^{2}\right)+m g h_{\text {takeoff }}-0 \\
& =0.109 \mathrm{~J}
\end{aligned}
$$

5. This publication describes an experimental method for measuring the restitution coefficient using a double-pendulum apparatus. In a representative experiment pendulum A is released from rest from a known height $h_{A 1}$. At the lowest point of its swing it strikes a second pendulum B that hangs vertically. The height $h_{B 2}$ of pendulum B at the instant that it comes to rest is measured.

5.1 Find a formula for the restitution coefficient of the collision, in terms of $h_{A 1}$ and $h_{B 2}$ and the particle masses m_{A}, m_{B}. (use energy conservation, linear momentum conservation, and the definition of the restitution coefficient)

The velocities of particle A just before the collision can be calculated using energy conservation. Take the earth and pendulum A as the system; the initial state is the stationary pendulum; the final state is the instant just before the collision. The system is conservative; there are no external forces, so
$T_{1}+U_{1}=T_{0}+U_{0} \Rightarrow \frac{1}{2} m v_{A 1}^{2}=m g h_{A 1} \Rightarrow v_{A 1}=\sqrt{2 g h_{A 1}}$

Similarly, $v_{B 2}=\sqrt{2 g h_{B 2}}$
Linear momentum conservation gives

$$
\begin{aligned}
& m_{B} v_{B 2}+m_{A} v_{A 2}=m_{A} v_{A 1} \Rightarrow m_{B} \sqrt{2 g h_{B 2}}+m_{A} v_{A 2}=m_{A} \sqrt{2 g h_{A 1}} \\
& \Rightarrow v_{A 2}=\sqrt{2 g h_{A 1}}-\frac{m_{B}}{m_{A}} \sqrt{2 g h_{B 2}}
\end{aligned}
$$

The restitution coefficient formula gives

$$
\begin{aligned}
& e=-\frac{v_{B 2}-v_{A 2}}{v_{B 1}-v_{A 1}}=-\frac{\sqrt{2 g h_{B 2}}-\left(\sqrt{2 g h_{A 1}}-\left(m_{B} / m_{A}\right) \sqrt{2 g h_{B 2}}\right)}{0-\sqrt{2 g h_{A 1}}} \\
& =\left(1+\frac{m_{B}}{m_{A}}\right) \sqrt{\frac{h_{B 2}}{h_{A 1}}-1}
\end{aligned}
$$

5.2 The figure below shows experimental measurements for the collision between two corn kernels with identical mass. Find the restitution coefficient for one of the experiments (be sure to state which one you choose)

Fig. 7 - Evaluation of ten measurements of coefficient of restitution e_{h} for pair of corn grains using $h_{A 1}$ and $h_{B 2}$, the left part of the diagram shows motion trajectories of motion and the height of the release of particle $\mathbf{A}\left(\mathrm{h}_{\mathrm{A} 1}\right)$, whereas the right part depicts motion trajectory and rebound height of particle $B\left(h_{B 2}\right)$.

For experiment X , eg, we have

$$
e=2 \sqrt{\frac{39.2}{49.6}}-1=0.778
$$

[2 POINTS]

6. The figure shows an oblique impact between two frictionless spheres with identical mass. Before the impact sphere A has a velocity $\mathbf{v}^{A 0}=V_{0} \mathbf{i}$ and sphere B moves in the \mathbf{j} direction with a speed to be determined. The collision direction \mathbf{n} is parallel to \mathbf{i}. After impact, sphere B moves with a speed (to be determined) along a line parallel to $2 \mathbf{i}+\mathbf{j}$
6.1 Explain briefly why sphere A must continue to move parallel to the \mathbf{i} direction after the collision.

The collision is frictionless, so no force acts on sphere in the \mathbf{j} direction during the collision. Its \mathbf{j} component of velocity therefore cannot change.
[1 POINT]
6.2 Explain briefly why the \mathbf{j} component of sphere B's velocity cannot change during the collision.

The collision is frictionless, so no force acts on sphere in the \mathbf{j} direction during the collision. Its \mathbf{j} component of velocity therefore cannot change.
[1 POINT]
6.3 Hence, or otherwise, find formulas (in terms of V_{0} and the restitution coefficient e) for the velocity vectors of spheres A and B after the collision, and the speed of sphere B before the collision.

Momentum conservation requires $m V_{0} \mathbf{i}+m V_{B} \mathbf{j}=m V_{A 1} \mathbf{i}+m V_{B 1}(2 \mathbf{i}+\mathbf{j}) / \sqrt{5}$
For 3D collisions we can use the 1-D restitution formula to relate the normal components of velocity, so that

$$
e=-\frac{2 V_{B 1} / \sqrt{5}-V_{A 1}}{0-V_{0}}
$$

The \mathbf{i}, \mathbf{j} components of the momentum equation and the restitution formula give three equations for the three unknowns $V_{A 1}, V_{B 1}, V_{B}$.

$$
\begin{aligned}
& \left.\begin{array}{l}
V_{0}=V_{A 1}+2 V_{B 1} / \sqrt{5} \\
e V_{0}=2 V_{B 1} / \sqrt{5}-V_{A 1}
\end{array}\right\} \Rightarrow \begin{array}{l}
V_{B 1}=\sqrt{5}(1+e) V_{0} / 4 \\
V_{A 1}=(1-e) V_{0} / 2
\end{array} \\
& V_{B}=V_{B 1} / \sqrt{5}=(1+e) V_{0} / 4
\end{aligned}
$$

The velocity vectors follow by multiplying the speeds by unit vectors parallel to the directions.

[^0]: ${ }^{1}$ This seems a weird force unit to those of us who don't usually think about individual atoms, but it is quite common in the nanoscience field.

[^1]: ${ }^{2}$ The formula is an estimate for the rider's power curve, which is assumed to be quadratic in V with a peak of about 98 W at $V=7 \mathrm{~m} / \mathrm{s}$. It assumes that the rider does not change gears...

