
Course Outline 
1. MATLAB tutorial 
2. Motion of systems that can be idealized as particles 

• Description of motion; Newton’s laws;  
• Calculating forces required to induce prescribed motion;  
• Deriving and solving equations of motion 

3. Conservation laws for systems of particles 
• Work, power and energy; 
•  Linear impulse and momentum 
• Angular momentum 

4. Vibrations 
• Characteristics of vibrations; vibration of free 1 DOF systems 
• Vibration of damped 1 DOF systems 
• Forced Vibrations 

5. Motion of systems that can be idealized as rigid bodies 
• Description of rotational motion; kinematics formulas  
• Dynamics formulas for rigid bodies; calculating moments of inertia 
• Motion of systems of rigid bodies 
• Energy and momentum for rigid bodies 

 
 

Exam topics 



Particle Dynamics: Concept Checklist 
• Understand the concept of an ‘inertial frame’ 
• Be able to idealize an engineering design as a set of particles, and know when this 

idealization will give accurate results 
• Describe the motion of a system of particles (eg components in a fixed coordinate system; 

components in a polar coordinate system, etc) 
• Be able to differentiate position vectors (with proper use of the chain rule!) to determine 

velocity and acceleration; and be able to integrate acceleration or velocity to determine 
position vector. 

• Be able to describe motion in normal-tangential and polar coordinates (eg be able to write 
down vector components of velocity and acceleration in terms of speed, radius of curvature 
of path, or coordinates in the cylindrical-polar system). 

• Be able to convert between Cartesian to normal-tangential or polar coordinate descriptions 
of motion 

• Be able to draw a correct free body diagram showing forces acting on system idealized as 
particles 

• Be able to write down Newton’s laws of motion in rectangular, normal-tangential, and polar 
coordinate systems 

• Be able to obtain an additional moment balance equation for a rigid body moving without 
rotation or rotating about a fixed axis at constant rate. 

• Be able to use Newton’s laws of motion to solve for unknown accelerations or forces in a 
system of particles 

• Use Newton’s laws of motion to derive differential equations governing the motion of a 
system of particles 

• Be able to re-write second order differential equations as a pair of first-order differential 
equations in a form that MATLAB can solve 



Particle Kinematics 
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• Direction of velocity vector is parallel to path 
• Magnitude of velocity vector is distance traveled / time 

Inertial frame – non accelerating, non rotating reference frame 
Particle – point mass at some position in space 
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Velocity Vector 

Acceleration Vector 

( )
2 2 2

2 2 2

( ) ( ) ( ) ( )

( ) ( ) ( )

yx z
x y z x y z

yx z
x y z

dvdv dvdt a t a t a t v v v
dt dt dt dt

dvdv dvd x d y d za t a t a t
dt dt dtdt dt dt

= + + = + + = + +

⇒ = = = = = =

a i j k i j k i j k



Particle Kinematics 

• Straight line motion with constant acceleration 
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Particle Kinematics 

• General circular motion 
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Particle Kinematics 

• Polar Coordinates 
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Newton’s laws 

• For a particle 
 

 
• For a rigid body in motion without rotation, or 

a particle on a massless frame 
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Calculating forces required to cause 
prescribed motion of a particle 

• Idealize system 
• Free body diagram 
• Kinematics 
• F=ma for each particle. 
•                    (for rigid bodies or frames only) 
• Solve for unknown forces or accelerations 

 

c =M 0



Deriving Equations of Motion for particles 

1. Idealize system 
2. Introduce variables to describe motion 

(often x,y coords, but we will see other 
examples) 

3. Write down r, differentiate to get a 
4. Draw FBD 
5.  
6. If necessary, eliminate reaction forces 
7. Result will be differential equations for coords 

defined in (2), e.g. 
 
8. Identify initial conditions, and solve ODE 
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Motion of a projectile 
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Rearranging differential equations for MATLAB 
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Conservation laws for particles: Concept Checklist 
• Know the definitions of power (or rate of work) of a force, and work done by a force 
• Know the definition of kinetic energy of a particle 
• Understand power-work-kinetic energy relations for a particle 
• Be able to use work/power/kinetic energy to solve problems involving particle motion 
• Be able to distinguish between conservative and non-conservative forces 
• Be able to calculate the potential energy of a conservative force 
• Be able to calculate the force associated with a potential energy function 
• Know the work-energy relation for a system of particles; (energy conservation for a closed 

system) 
• Use energy conservation to analyze motion of conservative systems of particles 
 
• Know the definition of the linear impulse of a force 
• Know the definition of linear momentum of a particle 
• Understand the impulse-momentum (and force-momentum) relations for a particle 
• Understand impulse-momentum relations for a system of particles (momentum 

conservation for a closed system) 
• Be able to use impulse-momentum to analyze motion of particles and systems of particles 
• Know the definition of restitution coefficient for a collision 
• Predict changes in velocity of two colliding particles in 2D and 3D using momentum and the 

restitution formula 
 

• Know the definition of angular impulse of a force 
• Know the definition of angular momentum of a particle 
• Understand the angular impulse-momentum relation 
• Be able to use angular momentum to solve central force problems 



Work and Energy relations for particles 

Rate of work done by a force 
(power developed by force) 
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Potential energy 
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Gravitational force 
exerted on mass m by 
mass M at the origin 
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Force exerted by a 
spring with stiffness k 
and unstretched length 

0L  
( )20

1
2

V k r L= −  F

i

j r

 

Force acting between 
two charged particles 
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Force exerted by one 
molecule of a noble gas 
(e.g. He, Ar, etc) on 
another (Lennard Jones 
potential). a is the 
equilibrium spacing 
between molecules, and 
E is the energy of the 
bond. 
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Energy relations for 
conservative systems subjected to external forces 
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Linear Impulse of a force 
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Impulse-momentum for a system of particles 
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Collisions 
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Angular Impulse-Momentum Equations for a Particle 
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Free Vibrations – concept checklist 
You should be able to: 
1. Understand simple harmonic motion (amplitude, period, frequency, 

phase) 
2. Identify # DOF (and hence # vibration modes) for a system 
3. Understand (qualitatively) meaning of ‘natural frequency’ and 

‘Vibration mode’ of a system 
4. Calculate natural frequency of a 1DOF system (linear and nonlinear) 

 
5. Write the EOM for simple spring-mass-damper systems by inspection 

 
6. Understand natural frequency, damped natural frequency, and 

‘Damping factor’ for a dissipative 1DOF vibrating system 
7. Know formulas for nat freq, damped nat freq and ‘damping factor’ for 

spring-mass system in terms of k,m,c 
8. Understand underdamped, critically damped, and overdamped motion 

of a dissipative 1DOF vibrating system 
9. Be able to determine damping factor and natural frequency from a 

measured free vibration response 
10. Be able to predict motion of a freely vibrating 1DOF system given its 

initial velocity and position, and apply this to design-type problems 
 
   



Vibrations and simple harmonic motion 
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Typical vibration response 
• Period, frequency, angular frequency 

amplitude 
 

Simple Harmonic Motion 
 ( )0( ) sin

( ) cos( )
( ) sin )

x t X X t
v t V t
a t A t

V X A V

ω φ
ω φ
ω φ

ω ω

= + ∆ +

= ∆ +
= −∆ ( +

∆ = ∆ ∆ = ∆



Vibration of 1DOF conservative systems 

Harmonic Oscillator 
2
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Vibration modes and natural frequencies 

•Vibration modes: special initial deflections that cause entire 
system to vibrate harmonically 
•Natural Frequencies are the corresponding vibration frequencies 



Number of DOF (and vibration modes) 
 
 
 

In 2D:   # DOF = 2*# particles + 3*# rigid bodies - # constraints 
In 3D:  # DOF = 3*# particles + 6*# rigid bodies - # constraints 

 
Expected # vibration modes = # DOF - # rigid body modes  
 
A ‘rigid body mode’ is steady rotation or translation of the entire 
system at constant speed.   The maximum number of ‘rigid body’ 
modes (in 3D) is 6; in 2D it is 3.   Usually only things like a vehicle 
or a molecule, which can move around freely, have rigid body 
modes. 
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Calculating nat freqs for 1DOF systems – the basics 
 
 
 

EOM for small vibration of any 1DOF 
undamped system has form 
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1. Get EOM (F=ma or energy) 
2. Linearize (sometimes) 
3. Arrange in standard form 
4. Read off nat freq. 

nω is the natural frequency 
 
 
 



Tricks for calculating natural frequencies of 1DOF undamped systems 
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Linearizing EOM 
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Writing down EOM for spring-mass-damper systems 
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x(t) is the ‘dynamic variable’ (deflection from static equilibrium) 
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Calculating natural frequency and damping factor 
from a measured vibration response 
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Forced Vibrations – concept checklist 

You should be able to: 
1. Be able to derive equations of motion for spring-mass systems subjected 

to external forcing (several types) and solve EOM using complex vars, 
or by comparing to solution tables 

2. Understand (qualitatively) meaning of ‘transient’ and ‘steady-state’ 
response of a forced vibration system (see Java simulation on web) 

3. Understand the meaning of ‘Amplitude’ and ‘phase’ of steady-state 
response of a forced vibration system 

4. Understand amplitude-v-frequency formulas (or graphs), resonance, high 
and low frequency response for 3 systems  

5. Determine the amplitude of steady-state vibration of forced spring-mass 
systems. 

6. Deduce damping coefficient and natural frequency from measured forced 
response of a vibrating system  

7. Use forced vibration concepts to design engineering systems 
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21d nω ω ς= −

Steady-state and Transient solution to EOM 
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Dynamics of Rigid Bodies– concept checklist 
1. Understand angular velocity and acceleration vectors; be able to integrate / 

differentiate angular velocities / accelerations for planar motion. 
2. Understand formulas relating velocity/acceleration of two points on a rigid body 
3. Understand constraints at joints and contacts between rigid bodies 
4. Be able to relate velocities, accelerations, or angular velocities/accelerations of two 

members in a system of links  or rigid bodies 
5. Be able to analyze motion in systems of gears 
6. Understand formulas relating velocity/angular velocity and acceleration/angular 

acceleration of a rolling wheel  
 

7. Be able to calculate mass moments of inertia of simple shapes; use parallel axis 
theorem to shift axis of inertia or calculate mass moments of inertia for a set of rigid 
bodies connected together 

8. Understand                for planar motion of a rigid body 
9. Understand and know when you can use 
10.  Be able to calculate accelerations / forces in a system of planar rigid bodies 

subjected to forces using dynamics equations and kinematics equations 
 

11. Understand power/work/potential energy of a rigid body; use energy methods to 
analyze motion in a system of rigid bodies 

12. Understand angular momentum of a rigid body; use angular momentum to analyze 
motion of rigid bodies  

G GI=∑M α

0 0I=∑M α



Describing rotational motion of a rigid body 
Angular velocity vector: 
1. Direction – parallel to rotation axis (RH screw rule) 
2. Magnitude – angle (radians) turned per sec 
 
 
   
Angular acceleration vector: 
 
 
For planar motion: 
 
 
 
 
 

 

n Axis of
rotation

d
dt
θ ω= =ω n n

d
dt
ω

=α n

2

2

d d
dt dt
θ θ

= =ω k α k

2

2

d d d
dt dt dt
θ ω θω α= = =

θ

Pure Moments (torques): 
A pure moment is a generalized force that induces 
rotational motion without translation of center of mass 
 

M=M n

A motor shaft is an example of an object that exerts a moment – 
the shaft is parallel to the direction of the moment n 



Rigid body kinematics 

Velocities of two points on a 
rigid body are related by 

Accelerations of two points on a 
rigid body are related by 

/A B A B= + ×v v ω r

/ /( )A B A B A B= + × + × ×a a α r ω ω r

Continuity conditions 

A B
nA

B

nA B

A B=v v A B⋅ = ⋅v n v n

A B=v vNo slip 

Slip A B⋅ = ⋅v n v nA B=a a
A B⋅ = ⋅a n a n

Tangential 
accels equal 

Accels arbitrary 



Kinematics of a Rolling Wheel 

A
CB

D

E i

j

*A

Wheel has angular velocity  ω=ω k
Wheel has angular acceleration   α=α k

Wheel rolls without slip 
This means that velocity of A is zero 
(wheel has same velocity as the ground, see animation) 
 
Point A also has zero acceleration in the i direction  
(tangential accelerations are equal at the contact 
A has a nonzero upwards acceleration, however) 
 
The rigid body formula tells us that  

/C A C A

C

R
R

ω
ω

= + ×
= + ×

= −

v v ω r
0 k j

v i
Then differentiate wrt time to see C Rα= −a i
To find velocity or accel at A, B, D, E use the standard rigid body formulas…. 

,ω α



Dynamics of rigid bodies 

/G F G G
Forces Pure Moments

I= × + =∑ ∑ ∑M r F M α
G

F Μ

a αTranslational motion  Gm=F a (must use acceleration of COM) 

Rotational motion  

This rotational motion equation is valid ONLY for planar motion – 3D motion has another term  

 

O

G ωFor rotation about a fixed axis only /OO F O
Forces Pure Moments

I= × + =∑ ∑ ∑M r F M α

Preliminary definitions: mass moments of inertia used in planar motion (general 3D more complex) 

2

2

1: :

:

:

G
V V

V

O G

Mass density

Total Mass M dV COM position dV
M

Inertia about an axis through origin I r dV

Parallel Axis Theorem I I md

ρ

ρ ρ

ρ

= =

=

= +

∫ ∫

∫

r r

 

O
G d

 

dVG ρr

Equations of Motion 



Free body diagrams with friction 

A
CB

D

E i

j

*A

Rolling without slip 

C Rω= −v i
C Rα= −a i

T Nµ< TT

NN

Rolling with sliding:  Friction force must oppose sliding 

Both FBDs below are correct 

*0 A moves to right wrt ACxv Rω+ > ⇒

,ω α

T

N
*0 A moves to left wrt ACxv Rω+ < ⇒

T

N
T Nµ=



Analyzing motion of systems of rigid bodies   
 
1. Identify each particle/rigid body in the system 

 
2. Draw a FBD for each particle / rigid body separately 

 
3. Write down             for each rigid body and particle 

 
4. Write down                    for each rigid body  (for rotation about a fixed 

point can also use 
 

5. Look for points in system where acceleration is known or related (eg 
contacts, joints, etc) 
 

6. Use                                                              to relate accelerations and 
angular accelerations of rigid bodies 
 

7. Solve system of equations from 3, 4, 6 to calculate unknown reactions 
and accelerations / angular accelerations 

 
 

G GI=∑M α

/ /( )G A G A G A= + × + × ×a a α r ω ω r

m=F a

O OI=∑M α



2 21 1
2 2G GT m I= +v ω

Energy methods for rigid bodies 

Kinetic energy of a rigid body 

General – can always use this 

21
2 OT I= ω Rotation about a fixed axis only 

(use parallel axis theorem to find Io) 
 

G
vGω

 

O

G ω

Gravitational potential energy of a rigid body – use position of COM 

 

G

h

Power (rate of work done) by forces and moments acting on a rigid body 

 

G
F Μ

vF
ω

F
Forces Pure Moments

P = ⋅ + ⋅∑ ∑F v M ω

Total work done 
1 1

0 0

( )
t t

F
Forces Pure Momentst t

W P t dt dt
 

= = ⋅ + ⋅ 
 
∑ ∑∫ ∫ F v M ω

Potential energy of a constant moment (planar motion only)  

V mgh=

V Mθ= −

 

G
θ

M=MkPotential energy of a torsional spring 21
2

V κθ=

Power-KE relation 
dTP
dt

= Work-KE relation 1 0W T T= −

Work- energy relation for a conservative system 1 1 0 0( )extW T V T V= + − +

If no external work is done on a conservative system 1 1 0 0( )T V T V+ = +



G GI=h ω

Angular momentum for rigid bodies 

1

0

0

t

Forces Pure Momentst

dt
 

= × + 
 
∑ ∑∫Α r F M

G
F

Μ

ω

r
rG

i

j

O

Angular impulse about COM 
1

0

( )
t

G G
Forces Pure Momentst

dt
 

= − × + 
 
∑ ∑∫Α r r F M

Angular impulse about a fixed point 

(note that COM need not be fixed) 

Angular momentum about COM 

Angular momentum about a fixed point O G G Gm I= × +h r v ω

Impulse-momentum relations (COM) ( ) G
G

Forces Pure Moments

d
dt

− × + =∑ ∑ hr r F M 1 0G G G= −A h h

Momentum is conserved if  G =A 0

Impulse-momentum relations (Fixed point) O

Forces Pure Moments

d
dt

× + =∑ ∑ hr F M 1 0O O O= −A h h

Momentum is conserved if  O =A 0

Special case: rotation about a fixed point O OI=h ω

 

O

G ω
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