Course Qutline
MATLAB tutorial

Motion of systems that can be idealized as particles

« Description of motion; Newton'’s laws;

« Calculating forces required to induce prescribed motion;
« Deriving and solving equations of motion

Conservation laws for systems of particles
 Work, power and energy;

 Linear impulse and momentum

e Angular momentum

Vibrations

« Characteristics of vibrations; vibration of free 1 DOF systems

* Vibration of damped 1 DOF systems

 Forced Vibrations

Motion of systems that can be idealized as rigid bodies

« Description of rotational motion; kinematics formulas

« Dynamics formulas for rigid bodies; calculating moments of inertia
* Motion of systems of rigid bodies

 Energy and momentum for rigid bodies

Exam topics




Particle Dynamics: Concept Checklist

Understand the concept of an ‘inertial frame’

Be able to idealize an engineering design as a set of particles, and know when this
idealization will give accurate results

Describe the motion of a system of particles (eg components in a fixed coordinate system;
components in a polar coordinate system, etc)

Be able to differentiate position vectors (with proper use of the chain rule!) to determine
velocity and acceleration; and be able to integrate acceleration or velocity to determine
position vector.

Be able to describe motion in normal-tangential and polar coordinates (eg be able to write
down vector components of velocity and acceleration in terms of speed, radius of curvature
of path, or coordinates in the cylindrical-polar system).

Be able to convert between Cartesian to normal-tangential or polar coordinate descriptions
of motion

Be able to draw a correct free body diagram showing forces acting on system idealized as
particles

Be able to write down Newton’s laws of motion in rectangular, normal-tangential, and polar
coordinate systems

Be able to obtain an additional moment balance equation for a rigid body moving without
rotation or rotating about a fixed axis at constant rate.

Be able to use Newton’s laws of motion to solve for unknown accelerations or forces in a
system of particles

Use Newton’s laws of motion to derive differential equations governing the motion of a
system of particles

Be able to re-write second order differential equations as a pair of first-order differential
equations in a form that MATLAB can solve



Particle Kinematics

Inertial frame — non accelerating, non rotating reference frame
Particle — point mass at some position in space

j A
Position Vector r(t) = x(t)i + y(t)j + z(t)k

. ] path of particle
Velocity Vector V(1) = vy ()i +vy (1) ]+, (DK

d . . dx. dy. dz O &
=—(Xi+yj+zK)=—1i+ +—Kk 7
dt( i+ k) at dt? * '
dx dy dz
v (t)=—  vyt)=— v, (t)=—
x (t) m y (1) it 2 (1) m

* Direction of velocity vector is parallel to path
« Magnitude of velocity vector is distance traveled / time

Acceleration Vector

B . : dy Cdvy . dvy o dy,
a(t)_ax(t)l+ay(t)J+aZ(t)k_E(vX|+vyj+vzk)_ m |+ m J+ " Kk
d2y

2
Rt e
y dt  gt? dt  gt?

dv d2x
:aX(t): dtx = dt2




Particle Kinematics

e Straight line motion with constant acceleration

r:[xo +V0t+%at2 }i v=(Vp+at)i a=ai

* Timel/velocity/position dependent acceleration — use
calculus

t t
r= (Xo + Iv(t)dt}i V= [VO +J.a(t)dt}
0 0

v(t) X(t)
jvdv= j a(x)dx
V, 0
000 T v
A== f(")jv{ f(v)dv—_([g(t)dt
X(t) t
yo 90 f (0dv = [v(t)dt
dt ) 4 :



Particle Kinematics

* Circular Motion at const speed
O=wt s=RO V =wR

r =R (cosdi +sin 0j)
Vv =wR (—sin 6i + cos 0j)=Vt

2
az—a)zR(cosei +sin@j) = ®’Rn :\%n

* (General circular motion
w=d0/dt a=dw/dt=d?0/dt?
s=RO V =ds/dt=Rw

r =R(cosdi +sin6j)

Vv =wR(-sindi +cosdj)=Vt

a=Ra(-sindi +cosdj) — Rw? (cos i +sindj)

2
=aRt+a)2Rn:th+V n
dt R




Particle Kinematics
* Arbitrary path

ta.”"
i i R
r=x(A)i+y(1)j
V:Vt \ n
2 2 \
dv V2 dx d7y dy d“x t\\
a=—-+t+—n 1 |dAda? dAda?
dt R R

(&)@

e Polar Coordinates




Newton’'s laws

° For a particle F =ma

* For arigid body in motion without rotation, or
a particle on a massless frame

M. =0

You MUST take moments
about center of mass




Calculating forces required to cause
prescribed motion of a particle

dealize system

~ree body diagram

Kinematics

~=ma for each particle.

|\/|C — (0 (for rigid bodies or frames only)
Solve for unknown forces or accelerations




Deriving Equations of Motion for particles

1. Idealize system

2. Introduce variables to describe motion
(often X,y coords, but we will see other
examples)

3. Write down r, differentiate to get a

4. Draw FBD

5.F=ma

6. If necessary, eliminate reaction forces

7. Result will be differential equations for coords

defined in (2), e.g. d X+19§+kx kYq sin ot

dt2 dt

8. ldentify initial conditions, and solve ODE



Motion of a projectile

I = XOl —|—Yoj + Zok

r=(Xo +Vxot)i+(Yo +Vyot)] +(zO +V, ot _%thJk

V Z(on)i -I-(Vyo)j-i-(vzo — gt)k
a=-gk



Rearranging differential equations for MATLAB

2

dy dy
—+2 + 0
* Example 2 SO oFy =

° Introduce v=dy/dt

o aivi_p Y
Then dtM {—2§a)nv—a)§y}

e This has form ‘Z—"t": f(t, w) W:H

v



Conservation laws for particles: Concept Checklist

Know the definitions of power (or rate of work) of a force, and work done by a force

Know the definition of kinetic energy of a particle

Understand power-work-kinetic energy relations for a particle

Be able to use work/power/kinetic energy to solve problems involving particle motion

Be able to distinguish between conservative and non-conservative forces

Be able to calculate the potential energy of a conservative force

Be able to calculate the force associated with a potential energy function

Know the work-energy relation for a system of particles; (energy conservation for a closed
system)

Use energy conservation to analyze motion of conservative systems of particles

Know the definition of the linear impulse of a force

Know the definition of linear momentum of a particle

Understand the impulse-momentum (and force-momentum) relations for a particle
Understand impulse-momentum relations for a system of particles (momentum
conservation for a closed system)

Be able to use impulse-momentum to analyze motion of particles and systems of particles
Know the definition of restitution coefficient for a collision

Predict changes in velocity of two colliding particles in 2D and 3D using momentum and the
restitution formula

Know the definition of angular impulse of a force

Know the definition of angular momentum of a particle
Understand the angular impulse-momentum relation

Be able to use angular momentum to solve central force problems



Work and Energy relations for particles
p
Rate of work done by a force P_F S A
(power developed by force) =F-V 0 i
| \
Total work done by a force

Kinetic energy T -

Power-kinetic energy relation P = ar

dt
rl
Work-kinetic energy relation W = _[ F-dr=T-T,
r

0



Potential energy

Potential energy of a
conservative force (pair)

.
V(r)= —I F - dr + constant

Type of force

Potential energy

Gravity acting on a

particle near earths V =mgy
surface
F
" r m
Gravitational force GMm
exerted on mass m by V=-
mass M at the origin r
r
Force exerted by a i /7 O
spring with stiffness k 2 J r
and unstretched length V=2k(r-Lo) T o’w F
Lo :
0Lsi
2 F
Force acting between V = Q1Q2 +Q, J ‘,_."®sz
two charged particles " Arzer g

Force exerted by one
molecule of a noble gas
(e.g. He, Ar, etc) on
another (Lennard Jones
potential). a is the
equilibrium spacing
between molecules, and
E is the energy of the
bond.




Energy relations for
conservative systems subjected to external forces

F ext

Internal Forces: (forces exerted by Foc
one part of the system on another) R;j \G’R R
13 31
External Forces: (any other forces) FieXt
System is conservative if all internal forces are RZI%Y 2 :
conservative forces (or constraint forces) o

Energy relation for a conservative system

External Power P®(t)

External work AW = .[ P(t)dt
TOT TOT TOT TOT
T . T s AWyt =Ty~ +V (T +Vo )

ex m Bt T . m‘
F .4_—__ \e‘Xt\ ------- F ®
mx ......... E?z ________ ;.—-‘._; ext
1 ./r == m, F3 \
JLL e LF“& ------ ®,. | Special case — zero external work:
t-m.z""'“----.i:- I‘_\.---Z-" m ,"‘
ST \ 2 K TOT
" Em TTOT +VTOT TOT V] 0
t = 0 e t f— 1 S
Total KE T,°" Total KE T,”°" KE+PE = constant
0 1

Total PE V, " Total PE V"



Impulse-momentum for a single particle

Definitions " F()

]
Linear Impulse of a force | :_[F(t)dt
ty
Linear momentum of a particle p=mv i

Impulse-Momentum relations

- _dp
dt

I =p1 —Pg




Impulse-momentum for a system of particles

F ext
ext
R; j Force exerted on particle i by particle \ F Fs
xt R13 R31
Fie External force on particle i
R21 mR23
Vi Velocity of particle i 2
erxt
Total External Force F™7(t) Impulse-momentum for the system:
r dp™©"
Total External Impulse 107 = _[ FTOT (t)at FTOT _ P
..................... dt
. ::-a-\ ---------- . I’:ﬁ\
SO S =
oxt S _F ) TOT TOT TOT
/! Lo E3-_\ __/.—-‘.4 ext 4 I = p - p
/ ml T T m F [} 1 0
~' o / 1 3
' 11 Mt SN e eee o |
\ : \ FeX'f& m;
\ x-m'z ~~~~~~~~~~ -l.l _________ l_---z'" m / . .
o 2 Special case — zero external impulse:
\\\\\ 2 AN /',
---------------------- TOT _ TOT
t=t, t=¢ pl = pO
Total momentum p;°' Total momentum p;°"

(Linear momentum conserved)



Collisions

VO VO
-> —> Momentum mAv)'(A‘1 + mBV)?l — mAVxAO n mBVEO
A@ (B
Restitution formula  y°®! —y™ = g (VBO _ Ao )
@< VBlszO_L(l_i_e)(VBO_VAO)
VAl VB]_ m, + Mg
X X m
A@ (B e e (v )
A. Bl Al BO AO
o B @ Momentum m, v +mv:-=m; Vv-© +m,V

Restitution formula (vBl - vAl) = (vBO —VAO)— 1+ e)[(vBO - VAO)-n]n
% in

m
vt =y B (1+e)[(vB°—vA°)-n]n
m, +m

A B o
vA ’ Q VBl B1 BO My (1_|_ e)[(VBO _VAO).n]n

V=V  —
Mg +My,




Angular Impulse-Momentum Equations for a Particle

tl
Angular Impulse A= jr(t) x F(t)dt
b

Angular Momentum N =rxp=rxmv

dh

Impulse-Momentum relations IF X F = — A — hl — hO

dt

SpecialCase A =() = hl — hO Angular momentum conserved

Useful for central force problems (when forces on a particle always act through a
single point, eg planetary gravity)



Free Vibrations — concept checklist

You should be able to:

1.

2.
3.

10.

Understand simple harmonic motion (amplitude, period, frequency,
phase)

|dentify # DOF (and hence # vibration modes) for a system
Understand (qualitatively) meaning of ‘natural frequency’ and
‘Vibration mode’ of a system

Calculate natural frequency of a 1DOF system (linear and nonlinear)

Write the EOM for simple spring-mass-damper systems by inspection

Understand natural frequency, damped natural frequency, and
‘Damping factor’ for a dissipative 1DOF vibrating system

Know formulas for nat freq, damped nat freq and ‘damping factor’ for
spring-mass system in terms of k,m,c

Understand underdamped, critically damped, and overdamped motion
of a dissipative 1DOF vibrating system

Be able to determine damping factor and natural frequency from a
measured free vibration response

Be able to predict motion of a freely vibrating 1DOF system given its
Initial velocity and position, and apply this to design-type problems



Vibrations and simple harmonic motion

Displacement

I I i or
Typical vibration response Acceleration
o Period, frequency, angular frequency Period, T N\ 7
amplitude o A F’if“
y Amplitude A
\/\/\/ \/\/\/ timg

Simple Harmonic Motion

X(t) = Xg + AX sin(awt + ¢) ! /l\

Amplitude AX J
v(t) = AV cos(wt + @) ]

Displacement

a(t) =—AAsin(at + ) T T ean 3,

AV = wAX  AA= @AV . - \ :
05 Phase ¢ 727 : :
Period T

- i L
-E.S 1] 05 1 15 2



Vibration of 1DOF conservative systems

Canonical Vibration Problem: The spring mass system is

Harmonic Oscillator released with velocity vy from position sg at time t=0 .
Find s(t) .
Derive EOM (F= md®s ——
erive (F=ma) ?dt—2+ s=1Lp kL
— M
Compare with ‘standard’ differential equation
: 1 d*; . .
Equation — dz: +x=C Initial Conditions  x=x, % =vy =0
@ ! x=s C=Ly X =9
Solution x=C+ Xpsin(w,t +¢) \I 1 - m
Xy =J(XQ —C]2 -H;‘g ﬁ:)?% @ =tan " [(“[} _x:)‘:)n) a)r% - k
Or () =C+(xg —C)cosmnr—k;isinﬂqqf
Solution
S(t) = Lo ++/(So — Lo)? +V2 / o sin(yt + 9) s =50 |
ds =0 | — /Pnpm_mx ________________________________________ /
dr 70 E 111 AN | S S T s ﬂ .........................................
s i // ___________ \\I A
k k, Ly 8 A \ :
Natu I'a| Freq uen Cy a)n — —_— 4\/\/\/\— m 05\ ......i.. Phase ¢ A SRR | WY S
m T 4] i i
bs b 05 1 15 2

Dimensionless time o t



Vibration modes and natural frequencies

*Vibration modes: special initial deflections that cause entire

system to vibrate harmonically
*Natural Frequencies are the corresponding vibration frequencies




Number of DOF (and vibration modes)

In 2D: # DOF = 2*# particles + 3*# rigid bodies - # constraints
In 3D: # DOF = 3*# particles + 6*# rigid bodies - # constraints

Expected # vibration modes = # DOF - # rigid body modes

A ‘rigid body mode’ is steady rotation or translation of the entire
system at constant speed. The maximum number of ‘rigid body’
modes (in 3D) is 6; in 2D itis 3. Usually only things like a vehicle
or a molecule, which can move around freely, have rigid body
modes.




Calculating nat freqs for 1IDOF systems — the basics

m
y K,Lg

EOM for small vibration of any 1DOF
undamped system has form

@, is the natural frequency

1. Get EOM (F=ma or energy)
2. Linearize (sometimes)

3. Arrange in standard form

4. Read off nat freq.




Tricks for calculating natural frequencies of 1DOF undamped systems

* Using energy conservation to find EOM

1 (ds) 1 ) > N
KE+PE=—m| — | +—k(s—L,)" =const K, d
2 \dt) 2 — M m
d ds ) d*s ds :
—(KE+PE)=m| — |—+k(s—-L,)—=0
:dt( ) (dtjolt2 ( O)dt

d?s

— mF—F ks = kLO

* Nat freq is related to static deflection o, = g %;L()lw




Linearizing EOM

2
Sometimes EOM has form d 3/ +f(y)=C
dt
We cant solve this in general...
Instead, assume y is small
d’y df
m + f(0)+— +..=C
e T O% g Y
y=0
2
mndY 9y et
dt dy|
y=0

There are short-cuts to doing the Taylor expansion



Writing down EOM for spring-mass-damper systems

. Commit this to memory! (or be able to derive it...)
s=L,+x

kKL, 2
A\N\O/\ F:ma:ﬂ+£%+£x:0
T m dt2 mdt m
e —
d°x dx K
— 4+ 2lwy —+ wpx=0 \/7 ¢ =
dt? Tdt 2\/km
X(t) is the ‘dynamic variable’ (deflection from static equilibrium)
kl
W ok
— W W
- . 1 1 1
Parallel: stiffness kK =kj +k Series: stiffness —=— + —
' k ki ko
T"c | =1 =1
- I | Cy C.
--IJC2
1 1 1
Parallel: coefficient C=¢; +Cp Parallel: coefficient ¢~ ¢ + c



Canonical damped vibration problem

S:
d%s ds _ k, L g
EOM mdt—2+ca+ks=k'-o with  s=s %ﬂo t=0 AW
m
Al
pu N |
1 d’x  2¢d c
Standard Form X X v x=xy Ty, -0
a)r2, dtz W dt ~dt
S=X Wy = K c= ¢ C=1l, X0 = So LO: LF20
i m 2+/km 825 ‘!(ft 1]
O
1-¢2 Mi%\’:‘ﬁ ANNTEVHAAR;
a)d :a)n ‘ — ‘ O.ZE—— N Y, 4
f_{:(]_{]; B, \E:’:“*M: 1({(_&\‘1 Sl
NN TN
Overdamped ¢>1 ORI TV
- =4 P i,
o ‘045 \ az:cz\ ‘j ¥
Critically Damped ¢ =1 TN Ton T
- 8F \
g AeEbas
Underdamped ¢ <1 -L.0g 5 10 5 20
Time o t
Overdam ped c > 1 x@t)=C+ exp(—ga)nt){vo + (go,, ;rcod )(Xp—C) explagt) - Vo + (s — g )(Xg —C) exp(—a)dt)}
@y 204

Critically Damped §=1  x(t)=C+{(xg~C)+[vo + @ (% —C)]t}exp(-eyt)

VO +§a)n (XO _C) Slna)dt
@y

Underdamped ¢<1 x(t)=C+ exp(—ga)nt){(xo —C)cosayt +



Calculating natural frequency and damping factor
from a measured vibration response

Displacement

X(to)
(tZ) X(ts)
I\ X

t\/tVV

(—)

T

Measure log decrement: 5:£Iog(x(t0)j
n X(ty)

Measure period: T

Then c= o _\/472'2+52
\/4722 + 52




Forced Vibrations — concept checklist

You should be able to:

1.

Be able to derive equations of motion for spring-mass systems subjected
to external forcing (several types) and solve EOM using complex vars,

or by comparing to solution tables

Understand (qualitatively) meaning of ‘transient’ and ‘steady-state’
response of a forced vibration system (see Java simulation on web)
Understand the meaning of ‘Amplitude’ and ‘phase’ of steady-state
response of a forced vibration system

Understand amplitude-v-frequency formulas (or graphs), resonance, high
and low frequency response for 3 systems

Determine the amplitude of steady-state vibration of forced spring-mass
systems.

Deduce damping coefficient and natural frequency from measured forced
response of a vibrating system

Use forced vibration concepts to design engineering systems



EOM for forced vibrating systems

(_LO ,,_X(t,) ) 1 d2x Zg% B ]
kVIW F(t)=F, sin ot e o +x = KFysin ot
3 '.E.rl_> | forci B K-1
External forcing =y > e’ ”
L, X
2
—l(VW— 1zdzx+2g%+><=K(y+2—gﬂ)
T m Base Excitation wy dt ka)n dt A o, dt
y(1)=Y, sinomt on = | _ | K 1
O " m g 2~/km

L, X(t) y()=Y,sinomt
k, L, «—> 1 d°x  2¢ dx K d%y . Yoo
M,\ © L + i X=— - K2 sinwt
Al m Rotor Excitation ol dt2 @, dt o dt? of

=




Steady-state and Transient solution to EOM

. 1 d%x  2¢ dx . . . dx
Equation +—=—+X=C + KFgsin(at) Initial Conditions x=x9 —=V, t=0
g o2 4t o dt 0 0o Vo
Full Solution  X(t) =C + Xy (t) + X, (t)
Steady state part (particular integral) Xp () = Xgsin(at+¢)
s 2)\2 2 1-0° | o
{(1—(0 /a)n) +(2¢0 ! ap) }
Transient part (complementary integral) ) ) ) )
Overdamped ¢>1 x@®)=C +9Xp(—§wnt){vo s (gc;)r;): ©4)% exp(agt) - %0 +(gc;),;); 24)% exp(—a)dt)}

h h h
Critically Damped ¢ =1 *h H=C+ {XO + [VO +onXg }t}exp(—a)nt)

h h
Vg + Xp .
Xp, (t) = C + exp(—gapt) Xg coswyt +—2—=2"1"0 59070 gjn a)dt}

Underdamped ¢<l1 oy
Wy = oy 1—g2‘ 2
1.5
B = Xg—C —X,(0) =Xy —C — Xgsi AR I 1
Xp = Xp Xp(0)=Xg osSing Vo =Yg ot =V — Xg@CoS¢ < /\ Vs
t=0 g 05 ff \
S 0 Jll f/
> ost / \ /
/ \/}x
-1
1% 20 40 80 80 100

Time

120



Canonical externally forced system (steady state solution)

: 1 d%x  2¢ dx :
Steady state solution to =+ =L x=C+KRpsin(@t)  0=27/T

st F(t) = Fysinot

K C 1 _ - )
on = |— £ = K=" Xp(t)—Xosm(a)t+¢) >
" m 4 2~/ km K k,; LAOA
1 ~2¢0/ T m |—
Xo=KRM(@/0p.0) M- : et 2o —
{(1—@2/605) +(2ga)/a)n)2} @ Tn

—
(=

Displacement

—

Magnification M(m/mn,c;)

sbof N Period T\ f I — . B S

G 0 05 e 1 15 2 0.1 05 1 15 2 25 3
Frequency Ratio m/mn



Canonical base excited system (steady state solution)

. 1 d%x  2¢ dx 2¢ d kL
Steady state solution to > T g—+X=C+K(y+—g—y} ‘NV‘
wf dt© @, dt wy, dt T m
k C . "‘:1- 4 | I
Wy = |— &= K =1 Xp (t) = Xgsin(wt +¢) (1) =Y Sne
" \/; 2\/% { P 2}1/2 '}(/} v
1+(2s0/ o 5.3, 3
Xo=KYoM (@,0,8) M = ") o ¢=tan’’ 250 [ oy
2, 2\? 2 2 1—(1—4g2)co2/a)§
{(1—(0 /a)n) +(2500 1 ) }
1
max ~ A -
20 ==
.= 0.01
\a V. UL
) [ ¢ = 0.05
= 10 AN =
-
O
-
S
= 10
C
()
0
E 1
10
0 0.5 1 1.5 2 2.5 3

Frequency Ratio co/(on



Canonical rotor excited system (steady state solution)
C v, Yy :YO sin wt

2 2 |>n—|:|—ﬁ .
1 d%%  2¢dx K d°y .

_ ¥
Steady state solution to + Tx=L- 4\
y a)r% dt?2 o, dt a)r% dt?
mﬂ

kL

K C Mo _ - -

— - K = Xy (t) = Xgsin(wt+¢ t;»—\M-f
“n = mrmg ¢ 2. Jk(m+mg) m+mg P ( )

a)zla)r%

—
S:
_1 2600 o,

Xo=KYoM(@,00,8) M = 0

¢ =tan

/a)r%

2 ) 1/2
{(1—(02/(0&) +(2ga)/a)n) ¥

w

w »
+ o
T T

Magnification M
(5 N 3 W

—

—

0.5

Frequency Ratio m/mn



W

o o

11.

12.

Dynamics of Rigid Bodies— concept checklist

Understand angular velocity and acceleration vectors; be able to integrate /
differentiate angular velocities / accelerations for planar motion.

Understand formulas relating velocity/acceleration of two points on a rigid body
Understand constraints at joints and contacts between rigid bodies

Be able to relate velocities, accelerations, or angular velocities/accelerations of two
members in a system of links or rigid bodies

Be able to analyze motion in systems of gears

Understand formulas relating velocity/angular velocity and acceleration/angular
acceleration of a rolling wheel

Be able to calculate mass moments of inertia of simple shapes; use parallel axis
theorem to shift axis of inertia or calculate mass moments of inertia for a set of rigid
bodies connected together

Understand > M, =1;a for planar motion of a rigid body

Understand and know when you can use ) M, =1l

Be able to calculate accelerations / forces in a system of planar rigid bodies
subjected to forces using dynamics equations and kinematics equations

Understand power/work/potential energy of a rigid body; use energy methods to
analyze motion in a system of rigid bodies
Understand angular momentum of a rigid body; use angular momentum to analyze

motion of rigid bodies



Describing rotational motion of arigid body

Angular velocity vector:

1. Direction — parallel to rotation axis (RH screw rule)
2. Magnitude — angle (radians) turned per sec

do
®=—n=own
dt do
Angular acceleration vector: 0!=En
For planar motion: a)—% o= do _ d*6
P ' dt dt 2dt2
do d<é
o=—Kk a=—7>K
dt dt

Pure Moments (torques): M =Mn

A pure moment is a generalized force that induces
rotational motion without translation of center of mass

A motor shaft is an example of an object that exerts a moment —
the shatft is parallel to the direction of the moment n



Rigid body kinematics

Velocities of two points on a P
. . / \\
rigid body are related by ( N
Vo =Vg T O XTIy NN \,\
. ref \\\x Farm v \\\\
Accelerations of two points on a . )
rigid body are related by -
N
a, =ag +0XTI,; +OX(®Xr,;) O X
Continuity conditions n
A B l Af' n ] .

/1:' . No slip Vi =V;g
Tangential
accels equal

V, = Vg V,-N=vg-Nn
a, =ag a,-n=ag-n S||p V,-N=Vg-N

Accels arbitrary



Kinematics of a Rolling Wheel

a, X D i
Wheel has angular velocity @ = awk ’ ( J
Wheel has angular acceleration @ = ok T ]
B eC dE —— 1
Wheel rolls without slip A
This means that velocity of Ais zero ¢ N
(wheel has same velocity as the ground, see animation) A

Point A also has zero acceleration in the i direction
(tangential accelerations are equal at the contact
A has a nonzero upwards acceleration, however)

The rigid body formula tells us that

Ve = VAT OXIc,
=0+ wk xR}
Ve = —wRI
Then differentiate wrt time to see a . = —a RI

To find velocity or accel at A, B, D, E use the standard rigid body formulas....



Dynamics of rigid bodies

Preliminary definitions: mass moments of inertia used in planar motion (general 3D more complex)

Mass density p
Total Mass: M =j,odV COM nposition: 1, =ﬁjprdv
V Vv
Inertia about an axis through origin: | :jprde
v :
Parallel Axis Theorem: I, =1 +md? -0
Equations of Motion

Translational motion F=ma; (must use acceleration of COM)

Rotational motion Y Mg = Y roexF+ > M=l

Forces Pure Moments

This rotational motion equation is valid ONLY for planar motion — 3D motion has another term

For rotation about a fixed axis only Z Mg = Z e o xF+ Z M=Il,a ‘
Forces Pure Moments ‘

e



Free body diagrams with friction

Rolling without si @ % D '
ofling without s |p- Both FBDs below are correct J
Ve = —wRI T
a. = —aRi Bf eC JE “— |
T
T|<#N ! A
N N A

Rolling with sliding: Friction force must oppose sliding

Ve, + @R >0= A moves to right wrt A" @

Vo, + @R < 0= A moves to left wrt A" Q

T = u«N )

o
2




Analyzing motion of systems of rigid bodies

|dentify each particle/rigid body in the system
Draw a FBD for each particle / rigid body separately
Write down F=ma for each rigid body and patrticle

Write down > M. =l.a for each rigid body (for rotation about a fixed
point can also use > M, =l

Look for points in system where acceleration is known or related (eg
contacts, joints, etc)

Use dag =a,+axrg,+0x(®xrg,) torelate accelerations and
angular accelerations of rigid bodies

Solve system of equations from 3, 4, 6 to calculate unknown reactions
and accelerations / angular accelerations



Energy methods for rigid bodies

Power (rate of work done) by forces and moments acting on a rigid body 0
P= : ~
F;:es F VF ’ Pure%ments M ® F

t, t,
Total work done W =IP(t)dt=I£ DoFve+ ) M-m}dt

t t Forces Pure Moments

Gravitational potential energy of a rigid body — use position of COM V =mgh

Potential energy of a constant moment (planar motion only) V =-—

| T
Potential energy of a torsional spring V = EK‘QZ

Kinetic energy of arigid body

T :%m‘vG ‘2 +% I ‘co‘z General — can always use this %
T_ 1 I 2 Rotation about a fixed axis only
- E 0 ‘(’)‘ (use parallel axis theorem to find 10) o
dT

Power-KE relation P:E Work-KE relation W =T,-T,

Work- energy relation for a conservative system W =T, +V, - (T, +V,)

If no external work is done on a conservative system T, +V, =(T, +V;)



Angular momentum for rigid bodies

t
: ( F
Angular impulse about COM  Ag =I£ D, (r-r)xF+ > M)dt N
Forces Pure Moments

(note that COM need not be fixed) o t JT

Y oO=—— [
Angular impulse about a fixed point A, =I( D rxF+ ) M)dt

t, Forces Pure Moments

Angular momentum about COM hg =l;®

Angular momentum about a fixed point  hg =rgxmvg + I o

Special case: rotation about a fixed point  h, =1,®
.,"

dh
Impulse-momentum relations (COM) D, (r—rg)xF+ > M=—7%

Forces Pure Moments dt

AG = hGl - hGO

Momentum is conserved if A, =0

dh,,

Impulse-momentum relations (Fixed point) 2, rxF+ > M= Ao =ho —hgg

Forces Pure Moments dt

Momentum is conserved if Ay =0
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