Course Qutline

1. MATLAB tutorial

2. Motion of systems that can be idealized as particles
e Description of motion, coordinate systems; Newton’s laws;
« Calculating forces required to induce prescribed motion;
« Deriving and solving equations of motion
3. Conservation laws for systems of particles
 Work, power and energy; Exam tOpiCS
 Linear impulse and momentum
e Angular momentum

4. Vibrations
e Characteristics of vibrations; vibration of free 1 DOF systems
* Vibration of damped 1 DOF systems
 Forced Vibrations
5. Motion of systems that can be idealized as rigid bodies
« Description of rotational motion
« kinematics; gears, pulleys and the rolling wheel
e Inertial properties of rigid bodies; momentum and energy
 Dynamics of rigid bodies
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Particle Dynamics — concept checklist

Understand the concept of an ‘inertial frame’

Be able to idealize an engineering design as a set of particles, and know when this
idealization will give accurate results

Describe the motion of a system of particles (eg components in a fixed coordinate system;
components in a polar coordinate system, etc)

Be able to differentiate position vectors (with proper use of the chain rule!) to determine
velocity and acceleration; and be able to integrate acceleration or velocity to determine
position vector.

Be able to describe motion in normal-tangential and polar coordinates (eg be able to write
down vector components of velocity and acceleration in terms of speed, radius of curvature
of path, or coordinates in the cylindrical-polar system).

Be able to convert between Cartesian to normal-tangential or polar coordinate descriptions
of motion

Be able to draw a correct free body diagram showing forces acting on system idealized as
particles

Be able to write down Newton’s laws of motion in rectangular, normal-tangential, and polar
coordinate systems

Be able to obtain an additional moment balance equation for a rigid body moving without
rotation or rotating about a fixed axis at constant rate.

Be able to use Newton’s laws of motion to solve for unknown accelerations or forces in a
system of particles

Use Newton’s laws of motion to derive differential equations governing the motion of a
system of particles

Be able to re-write second order differential equations as a pair of first-order differential
equations in a form that MATLAB can solve



Particle Kinematics

Inertial frame — non accelerating, non rotating reference frame
Particle — point mass at some position in space

jA

Position Vector r(t) = x(t)i + y(t)j + z(t)K

. ] path of particle
Velocity Vector V(1) =Vy ()i +vy (1)) + v, (DK

d, . . dx. dy. dz

=—(Xi+yj+zKk)=—I+ +—k
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* Direction of velocity vector is parallel to path
« Magnitude of velocity vector is distance traveled / time

Acceleration Vector
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Particle Kinematics

e Straight line motion with constant acceleration

r:[xo +V0t+%at2 }i v=(Vp+at)i a=ai

* Timel/velocity/position dependent acceleration — use

calculus t t
r= [ Xo+ j v(t)dt]i V= [vo + ja(t)dt]i
0 0
_dv_g® _ 7 o|=t t)dt v _
S f(v):>\,jo N {g” gt~ 2%
X(t) t dVdX
=%=@:>jf(x)dv:jv(t)dt ~ i dt ax)= __a(x)
dt ) : . )

jvdv: I a(x)dx
V, 0



Graphical x-v-a relations

500

o
=

g

« Speed is the slope of the
distance-v-time curve §
« Distance is the area underthe  —=v
speed-v-time curve

/(t)dt

 Acceleration is the slope of the
speed-v-time curve

« Speed is the area under the dt
acceleration-v-time curve
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* Circular Motion at const speed
=0t s=RO V =owR

r =R(cosdi +sin6j)
v =wR(-sindi +cosfj)=Vt

Particle Kinematics

2
a= —a)ZR(cos@i +sind))= w’Rn :VFn

* General circular motion
w=d0/dt a=dw/dt=d%0/dt?
s=RO V =ds/dt=Rw
r =R (cosdi +sin 0j)
V=wR (—sin 6i + cos fj)=Vt

a=Ra(—sin di + cosdj) — Ro? (cos @i +sin 8j)

2
= aRt+a)2Rn:d—Vt+V—n
dt R



Particle Kinematics

* Motion along an arbitrary path

v =Vt
dv = V?
a=— t4-—
dt R

e Polar Coordinates




Using Newton’s laws

Calculating forces required to cause prescribed
motion

* |dealize system
* Free body diagram

* Kinematics (describe motion — usually goal is to find
formula for acceleration)

* F=ma for each particle.

. MG =0 (for steadily or non-rotating rigid bodies or
frames only — this is a special case of the moment-
angular momentum formula for rigid bodies)

e Solve for unknown forces or accelerations
(just like statics)



Using Newton’s laws to derive equations of motion

1. Idealize system

2. Introduce variables to describe motion
(often X,y coords, but we will see other
examples)

3. Write down r, differentiate to get a

4. Draw FBD

5.F =ma

6. If necessary, eliminate reaction forces

7. Result will be differential equations for coords

defined in (2), e.g. d X+,1%+ kx = kY sin ot

dt2 dt

8. ldentify initial conditions, and solve ODE



Motion of a projectile in earths gravity

N

I = Xol +Y0j + Zok

dr ] ] 1 =0
E :VXOI -|-Vy0_] -I—Vzok

r=(Xg +Vxot)i+(Yo +Vyot)] +(ZO +V, ot _%thJk

V Z(on)i +(Vy0)j+(vzo — gt)k
a=-gk



Rearranging differential equations for MATLAB

2

dey dy
—+2 + 0
* Example 2 Ly oRy =

* Introduce v=dy/dt

. a1y Y
Then dtM {—%wnv—wﬁy}

e This has form Z—"t":f(t,w) W:m
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Conservation Laws — concept checklist

Know the definitions of power (or rate of work) of a force, and work done by a force

Know the definition of kinetic energy of a particle

Understand power-work-kinetic energy relations for a particle

Be able to use work/power/kinetic energy to solve problems involving particle motion

Be able to distinguish between conservative and non-conservative forces

Be able to calculate the potential energy of a conservative force

Be able to calculate the force associated with a potential energy function

Know the work-energy relation for a system of particles; (energy conservation for a closed
system)

Use energy conservation to analyze motion of conservative systems of particles

Know the definition of the linear impulse of a force

Know the definition of linear momentum of a particle

Understand the impulse-momentum (and force-momentum) relations for a particle
Understand impulse-momentum relations for a system of particles (momentum
conservation for a closed system)

Be able to use impulse-momentum to analyze motion of particles and systems of particles
Know the definition of restitution coefficient for a collision

Predict changes in velocity of two colliding particles in 2D and 3D using momentum and the
restitution formula

Know the definition of angular impulse of a force

Know the definition of angular momentum of a particle

Understand the angular impulse-momentum relation

Be able to use angular momentum to solve central force problems/impact problems



Work-Energy relations for a single particle

Rate of work done by a force P_F.v
(power developed by force) o

b Iy
Total work done by a force W = J-F-th W = j F-dr

0 I
L 1 1
Kinetic energy T =§m|v|2 =§m(v§ +v)2, +v22)
L . dT
Power-kinetic energy relation P= e




Potential energy of a
conservative force (pair)

r
V(r)= —I F - dr + constant

Potential Energy

Type of force

Potential energy

Gravity acting on a

particle near earths V =mgy
surface
F
_ r m
Gravitational force GMm
exerted on mass m by V=-
mass M at the origin r
r
Force exerted by a i / , @)
spring with stiffness k 2 J r
and unstretched length V=Zk(r-Lo) T O/N’o F
Lo :
05|
2 F
Force acting between V= QQ, +Q, 1 ',_."@sz
two charged particles - Arer 31
T
1

Force exerted by one
molecule of a noble gas
(e.g. He, Ar, etc) on
another (Lennard Jones
potential). a is the
equilibrium spacing
between molecules, and
E is the energy of the
bond.




Energy Relation for a Conservative System

Fext m4
Internal Forces: (forces exerted by 1 {\ E ext
one part of the system on another) R;j mZ\G’R . 3
R B A
External Forces: (any other forces) FieXt 12 = R, °
R 23
System is conservative if all internal forces are 4 E m,
conservative forces (or constraint forces) £ ext
2
Energy relation for a conservative system
External Power P®(t)
External work AW® = | P(t)dt
________ xternal wor _I "0 AW, =TOT 4TOT _ (TTOT +VTOT)
IE;;t %*, ....... - M., ext
) . ext >
mx """"""""" E3 ____________ r"‘". ; ext
1 o i M b .
L :5--.#.%&. ------ 'Tn: i Special case — zero external work:
m.Z--""“'-----l.' _________ .:\_-—-2’" m ;
K'erxt 2 -I-TOT +VTOT TOT _|_VTOT
t :to e t = 1 N
Total KE T, " Total KE T,”" KE+PE = constant

Total PE V" Total PE V,"



Impulse-Momentum for a single particle

Definitions

]
Linear Impulse of a force | =jF(t)dt
ty
Linear momentum of a particle p=mv i

Impulse-Momentum relations

-_dp
dt

I =p1 —Pg




Impulse-Momentum for a system of particles

F ext »
X
R:: Force exerted on patrticle i by particle j Fs
1)
xt R13 R31
F-e External force on particle i
! R
Rz%m 23
Vi Velocity of particle i 2
erxt
Total External Force F™7(t) Impulse-momentum for the system:
r dp™©"
Total External Impulse 177 =J'FTOT (t)dt FTOT _ P
...................... dt
TUM, e i
Foe @ T oM
______________ £, o |TOT _ pToT _
m . -3,__\‘_ _________ $e- ext \ pl
! ' ../ " H ml F3 \
' mé'"“'r -------- e emeae" o> !
\ ! 1 Fexit m, ;
I‘\ ‘-mi --------- -l'.' ......... :\. -- -2’ ““'m ,'l . .
e ? Special case — zero external impulse:
\\\ 2 "/ ‘\‘\ /,u
e Rl . TOT TOT
t=1 t=4 P, =P
Total momentum p;°’ Total momentum p;°"

(Linear momentum conserved)



Collisions

\/A\O VBO
=> —> Momentum mAV)'(A‘1 + mB\/)l(?’1 — mAVf\O + mBV)I(BO
A® (B
Restitution formula B! —y™ = g (VBO _ Ao )
@< VB =VBO_L(1+e)(VBO_VAO)
VAl VBl m, + Mg
X X m
—> —> v =y e gL Ay (yBO A0
A@ (B e e (v )
A' Bl Al BO AO
o B @ Momentum m, v +m,v:-=m, V- +m,V

‘®\ Restitution formula (vBl —~ vAl) = (vBO —VAO)—(1+ e)[(vBO - VAO)-n}n
n

m
v =vi e —B (14 e)[(vE‘0 —VAO)-n]n
m, + m

A B o
vA ’ Q VBl B1 BO My (1_|_ e)|:(VBO _VAO).n]n

Vi =vE -
Mg +m,




Angular Impulse-Momentum Equations for a particle

tl
Angular Impulse A= jr(t) x F(t)dt
b

Angular Momentum N =rxp=rxmv

dh

Impulse-Momentum relations IF X F = — A — hl — hO

dt

SpecialCase A=0= hl = ho Angular momentum conserved

Useful for central force problems (when forces on a particle always act through a
single point, eg planetary gravity)
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Free vibrations — concept checklist

You should be able to:

1. Understand simple harmonic motion (amplitude, period, frequency, phase)

2. Understand the motion of a vibrating spring-mass system (and how the motion is
predicted)

3. Calculate natural frequency of a 1 degree of freedom linear system (Derive EOM and
use the solutions given on the handout)

4. Calculate the amplitude and phase of an undamped 1 DOF linear system from the initial
conditions

5. Understand the concept of natural frequencies and mode shapes for vibration of a
general undamped linear system

6. Combine series and parallel springs to simplify a system
7. Use energy to derive an equation of motion for a 1 DOF conservative system
8. Analyze small amplitude vibration of a nonlinear system (eg pendulum) by linearizing

EOM with Taylor series

9. Understand natural frequency, damped natural frequency, and ‘Damping factor’ for a
dissipative 1DOF vibrating system

10. Know formulas for nat freq, damped nat freq and ‘damping factor’ for spring-mass
system in terms of k,m,c

11. Understand underdamped, critically damped, and overdamped motion of a dissipative
1DOF vibrating system

12. Be able to determine damping factor from a measured free vibration response (will be
covered next lecture)

13. Be able to predict motion of a freely vibrating 1DOF system given its initial velocity and

position, and apply this to design-type problems



Free vibrations

Displacement
or

Typical vibration response Acceleration
* Period, frequency, angular frequency Period, T
amplitude " Lo %;k
y Amplitudeg A

\/V\/ l \A/\/ time
Simple Harmonic Motion

X(t) = Xo + AX sin(wt + ¢) 1 /\ | /»\
- - / Amplitude AX / /
V(t) = AV cos(at + ¢) - | pituce ax [\

/ \ /
a(t) =—AAsin(wt + @) ) / \ {Mean v, \ /

AV =@AX  AA=wAV ° -~ \ \/ \/
05 Phase ¢ 127
Period T

Displacement

- s
-E.S (1] 0.5 1 1.5 2
Time

Free Vibration of Undamped 1DOF systems
* Free -> No time dependent external forces
 Undamped -> No energy loss
1 DOF -> one variable describes system K d

v

O O




Free vibrations

Canonical Vibration Problem: The spring mass system is

Harmonic Oscillator released with velocity v from position s¢ at time t=0.
Find s(t) .
Derive EOM (F= md%s oo A
erive (F=ma) a2 ST Lo _I:,/\;\O/\_
m

Compare with ‘standard’ differential equation

~
e

Ld X dx

Equation s— +x=C Initial Conditions x=xy —=v, =0
o dt” dr
X=s C=Ly Xp=5p
Solution x=C+ Xysin(a,t +¢) 1
Xo=\[(xo—C)2 +5 /@ g=tan” [L} 1?%] a)_g_?
Or x(t)=C+(xy —C)cosamt+ %sin .t

Solution

s(t) = Lo ++/(So — Lo)* + Vg / g sin(ant +¢) =
0

ds — _ mpliti.lde X, i
k Ly ° : '

Natural Frequency @ = 4| — MW 7 | L\
m T 6]

~ \ \/ O
.. Phase ¢ _ IO S

ds b 05 1 15 2
Dimensionless time o t




Calculating natural frequencies for 1DOF systems

Use F=ma (or energy) to find the equation of motion
For an undamped system the equation will look like y k,L,

2
A(;t2y+By=D

Handout online gives solution to




Natural Frequencies and Mode Shapes

General system does not always vibrate harmonically

All unforced undamped systems vibrate harmonically at special frequencies, called
Natural Frequencies of the system

The system will vibrate harmonically if it is released from rest with a special set of
initial displacements, called Mode Shapes or Vibration Modes.

Xl X2
kl—) —>
k k
—wW— m ] m w—
[ o NI ¢ ] Q 0O

2
0 W
-2
0 2 4 6
2
2
0
0
0 . . .
0 . - -
0 2 4 &



Counting degrees of freedom and vibration modes

# DOF = no. coordinates required to describe motion
2D system # DOF = 2*p + 3*r-c
3D system # DOF = 3*p+6*r-c Y

(d) Water molecule

# Vibration modes = # DOF - # translation/rotation rigid body modes

Examples of 2D constraints

A
Af ] | ] Conformal contact (two ngid L
Roller joint é bodies meet along a line) . N N l "
1 constaint (prevents motion in No friction or slipping: 2 3 ‘«f]. |
one direction) F constraint (prevents -
A interpenetration and rotation)
(1) .
Sticking friction 3 constraints
(prevents relative motion)
Nonconformal contact (two A

bodies meet at a point) N N Pinned joint (generally only F C‘;y:
CD Q— applied to a ngid body, as it

No friction or slipping: 1 T would stop a particle moving

constraint (prevents completely) P N
interpenetration) R m=—=— &%, wt__(2)
2 constraints (prevents motion LR; (1 R
Sticking friction 2 constraints horizontally and vertically) -' AR, 2
(prevents relative motion i : )




Tricks for calculating nat freqs of undamped systems

Using energy conservation to find EOM

1 (ds) 1 )
KE+PE=—m| — | +=k(s—L,)" =const S
2o W
d ds ) d2s ds i
—(KE+PE)=m| — |—+k(s-L,)—=0 o—0
:>dt( ) (dtjdtz ( I“’)dt

2

= m$+ ks = kL,

Combining springs
y —~

MW—_ parallel (forces add) K =k +K, "
W ’—N\/\—ﬁ
K, p—
| k. 1 1 1
WW——MA—— Series (lengths add) | =
I eff 1 2 =
k, y
These are all in parallel YW W ke =k 2K,




Calculating the natural frequency of a nonlinear system

Nonlinear systems

2
Sometimes EOM has form m d”y +f(y)=0

t2

We cant solve this in general...
Instead, assume y is small, and note f(0)=0

(because acceleration must be zero for y=0 for vibrations to be possible

Simplify using Taylor expansion of f:

2
9y, t0)+ 3"

m 2
dt dy

y+..=0

y=0

There are short-cuts to doing the Taylor expansion



Damped vibrations

Canonical damped vibration problem 5
d%s ds d k, L g
m— +c— +ks =k i —sy B _ 0
EOM. My *0q 7197 Ko with s=s = 0 L AN
d? d &
1 2 O 0]
Standard Form — o += % x=C x=x, Z-v, 10

D = k G = ¢ C:LO XOESO I-Ozl ; A0
" \m 2Jkm gi 1Lk
5 0.4 \}2% E Al
@y = Wn ‘1_4 ‘ o 2f- R 2 ’"\}ﬁ N
£ oot NPT
Overdamped ¢>1 (10 N (30 p\ /I NEEAN/
" P NN 22 AN 1
Critically Damped ¢=1 TN .f:;f y
-0.8EF Y
F || Y eEpds
Underdamped ¢ <1 105 5 10 5 W
Time w, t

Vo + (5@n + @4 )(Xp —C) exp(agt) - Vo + (69 — 4 )(X —C) exp(—a)dt)}

Overdamped ¢>1 x®=C+ EXp(—gwnt){ 200, 20

Critically Damped §=1  x()=C+{(x—C)+[vo + @, (% —C)]t}exp(-apt)

Vo +cwp (X —C) Sina)dt}

Underdamped ¢<1 x(t)=C+ exp(—gcont){(xo —C)cosayt + -
d



Application of damped vibrations

Calculating natural frequency and damping factor from a vibration
measurement

Displacement

VN X(t,) X(t,)

Measure log decrement: 5:£Iog X(to)
N {X(ty)

Measure period: T

5 _Var? 452

Then c=
\/4722 + 52




Forced Vibrations — concept checklist

You should be able to:

1.

Be able to derive equations of motion for spring-mass systems subjected
to external forcing (several types) and solve EOM by comparing to
solution tables

Understand (qualitatively) meaning of ‘transient’ and ‘steady-state’
response of a forced vibration system

Understand the meaning of ‘Amplitude’ and ‘phase’ of steady-state
response of a forced vibration system

Understand amplitude-v-frequency formulas (or graphs), resonance, high
and low frequency response for 3 systems

Determine the amplitude of steady-state vibration of forced spring-mass
systems.

Use forced vibration concepts to design engineering systems



EOM for forced spring-mass systems

o X0 . 1d%  2cdx
kVIW F(t)=F, sin ot e et KFysin t
3y 1|—> | forci o —ﬁ -4 k=1
External forcing =\ > e’ ”
L, X
2
—I(\'/\LN\— o 12d 2X+2g%+x:K(y+2—gﬂ]
—I— i Base Excitation wp dt ka)n dt ) wp dt
y(t)=Y, sinmt o = | _ | K -1
O " m g 2~/km
b Xt y®=Yginet
K, L, «—> ) , ,
. 1 d°x 2c¢ dx K d Yo’
"_\,.,M m ®  Rotor Excitation ———+ S i x=- 5 2y=K 0 >—Sinot
A oy, dt wp dt wp dt o
o = k . A K Mo

M+ Mo 2,/k(m+mg) S m+mg



Steady-state solution for external forcing
— o X F()=F, sin ot

1 d°x | 2g dx

W | + +x=KF(t) _ |k __ 4
— " [ o dt? oy dt “TNm T ok
X(t) = Xgsin(ot+¢)

-2
Xo = KM (,0,,¢)F M = 1 = 6= tan‘l%
5 92 2 1-0° | o]
L (l—a) /a)n) +(2¢0/ @)
max ~ 7 -

10k

—

Magnification M(w/ &)

0.1

0.5 1 15 2 25 3
Frequency Ratio co/con

System vibrates at same frequency as force
Amplitude depends on forcing frequency, nat frequency, and damping coetft.



Steady-state solution for base excitation

K, L
1 d%x  2¢ dx 2¢ dy K i
m +—=—+X=K| y+—=— Op =4[ &= K=l
L———IIT o dt? o, dt (y oy dt T m 2:Jkm
y(t)=Y, sinmt
X(t) = Xgsin(wt +¢)
{1 (260l a2}
+(|Z2cw | o, } _ 3, 3
Xo =KM (@, 0,8)Yy M= - 172 ¢:tan_1 Zngla;n 2
s 2\2 5 1-(1-4s%) 0" | o
(l—a) /a)n) +(2¢0/ o)
1
M max ~—
max 24«

10"k

Magnification M

0 0.5 1 1.5 2 2.5 3

Frequency Ratio wfwn



Steady-state solution for rotor excitation

"
2 2 -]
12d2x+2g%+xzc_£2d_2y |>n—l:

wf dt© o, dt of dt

kL,
o, = K = ¢ K —_ Mo Xp(t) = Xgsin(wt +¢) t;»—\f\ﬂh-(

Steady state solution to

m+mg 2, /k(m+mp) m+mg
—
o’ | @2 —2co0 | @ -
Xo =KYpgM (@, 0,¢) M = n 7 ¢=tan‘1f”2
5 22 5 1-o° | o,
(1—0) /a)n) +(2¢0/ ay)
N 1
max 20
4.5
4
=
c 3.5
9
8 °
T 25
o)
S 2
1.5

—_—

0.5

0 0.5 1 15 2 2.5 3
Frequency Ratio &)/mn
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 Work, power and energy;
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e Angular momentum
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e Characteristics of vibrations; vibration of free 1 DOF systems
* Vibration of damped 1 DOF systems
 Forced Vibrations
5. Motion of systems that can be idealized as rigid bodies
« Description of rotational motion
« kinematics; gears, pulleys and the rolling wheel
e Inertial properties of rigid bodies; momentum and energy
 Dynamics of rigid bodies




Rigid Body Dynamics - Roadmap
1. Describing motion of arigid body

- Rotation tensor (matrix) o
. Angular Velocity Vector

. Spin tensor (matrix)

2. Analyzing motion in systems of rigid bodies

. Relating velocity/acceleration of two points on a rigid body
. Mechanisms

. Gears, pulleys and rolling wheels

3. Linear/Angular Momentum and Kinetic Energy of a rigid body
. Rigid body as an infinite number of particles
. Calculating inertia tensors

. Momentum and energy of a rotating body

4. Dynamics of rigid bodies
. Torques

. Force — linear momentum and moment — angular momentum relations
. Examples

. Using energy and momentum for rigid bodies
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10.
11.

12.

13.

14.

15.

Rigid Body Dynamics — Concept checklist

Understand and manipulate rotation tensors in 2D and 3D

Understand angular velocity and acceleration vectors; be able to integrate / differentiate
angular velocities / accelerations for planar motion.

Understand formulas relating velocity/acceleration of two points on a rigid body
Understand constraints at joints and contacts between rigid bodies

Be able to relate velocities, accelerations, or angular velocities/accelerations of two
members in a system of links or rigid bodies

Be able to analyze motion in systems of gears

Understand formulas relating velocity/angular velocity and acceleration/angular
acceleration of a rolling wheel

Be able to calculate the center of mass and mass moments of inertia of simple shapes;
use parallel axis theorem to shift axis of inertia or calculate mass moments of inertia for
a set of rigid bodies connected together

Understand how to calculate the angular momentum and kinetic energy of a rigid body
Understand the meaning of a ‘force couple’ or ‘pure moment/torque’

Understand the force-linear momentum and moment-angular momentum formulas

Y F=Mag > rxF+)> Q,k=rgxMag +lg,a;k

Understand the special case of these equations for fixed axis rotation

Be able to use dynamics equations and kinematics equations to calculate accelerations /
forces in a system of planar rigid bodies subjected to forces

Understand power/work/potential energy of a rigid body; use energy methods to analyze
motion in a system of rigid bodies

Use angular momentum to analyze motion of rigid bodies



Rotations

Rotation tensor (matrix) Ig—ra=R(Pg —Pa)

B
JI Ps-P
cosd -siné@ A
sin@ cos@

2D rotations R {

3D rotation through ¢ about axis parallel to unit vector n=n,i+nyj+n,k

cosd + (1—cos€)n§ (1-cos@)nyny —sindn, (1-cos@)nyn, +sindny

Rix Ry Ry
R=|Ry Ry Ry, [=](@-cosO)nyny +sinon, cosé + (1—cos€)n§ (1-cos@)nyn, —sinony
2 Ry Rz |@-coso)nen, —sinon, (1-cos@)nyn, +sinon,  cosd+ (1-cos@)n?

1+2c0s0 =Ry + Ry + Ry,

- Zsilne[(Rzy _Ryz)i+(sz _sz)j+(RyX _ny)k]

n

Sequence of rotations R =R?R®

Orthogonality RR' =R'R=1

R" and R represent opposite rotations



Rotational Motion

Angular velocity vector:

1. Direction — parallel to rotation axis (RH screw rule)
2. Magnitude — angle (radians) turned per sec
dé . .
O=—n=on=0,itoj+ok .
dt AXIS'Of
rotation
. do
Angular acceleration vector: «a :En

Spin Tensor

iR iR 0 -o Wy e
— T — —_ —
W—ER E_WR W=l o, O @ Wu=wmxu for all vectors U
—0y Oy 0
For planar motion:
2 do d20
a)Z:d—H azzda)zzdze (’):_k a = 2l{
dt dt dt dt dt

0 —d&/dt
W:
dag/dt 0



Rigid Body Dynamics - Roadmap

1. Describing motion of arigid body

. Rotation tensor (matrix)
. Angular Velocity Vector

Spin tensor (matrix)

2. Analyzing motion in systems of rigid bodies

. Relating velocity/acceleration of two points on a rigid body
. Mechanisms

. Gears, pulleys and rolling wheels

3. Linear/Angular Momentum and Kinetic Energy of a rigid body
. Rigid body as an infinite number of particles
. Calculating inertia tensors

. Momentum and energy of a rotating body

4. Dynamics of rigid bodies
. Torques

Force — linear momentum and moment — angular momentum relations
. Examples

. Using energy and momentum for rigid bodies



Rigid Body Kinematics

Rigid body kinematics formulas

Velocities of two points on a rigid body related by
Vg =V, =0x(r; —1,)

Accelerations of two points on a rigid body related by
ag —a, = 0x(ry _rA)"'(’)X{(’)X(rB _rA)}

For 2D problems VvV, —V, =&, Kx(r; —r,)
g —a, = a,Kx(ry—ry)—a; (g —r,)

Constraints at connections n
—>

A n
A B | \fT | :

%:I 3 NoO 3||p V,=Vg
Tangential
accels equal

V,=Vg V,-N=Vg-N
a, =ag a,-n=a;-n S||p V,-N=V;-Nn

Accels arbitrary



Gears, Belts and the rolling wheel

. ) R
Velocities at C are equal = —=-—-"
a)A RB
I Wy RA
Belt speed is constant — B __A
o, Ry
Planet
Planetary gears O — Do Carrer )\

(solve with rotating frame)

Ring gear

Wheel rolling without slip

Cis stationary so  vg -V =w,Kx(rg—rc) = Vo =-o,R = a,0 =—a,R

v
TJ : VxO
i.
C




Wheels rolling and sliding on a stationary surface

®
J

Wheel rolling without slip v¢ =0

0,

Backspin Vxc >0

0,

Topspin  vyc <0

0,

/ VxO
| > VC—VO :a)ZkX(rC—ro)DVXC =VX0+G)ZR
I
C

Both FBDs correct

.

T N N

T T =uN
N

T T =uN
N



Rigid Body Dynamics - Roadmap

1. Describing motion of arigid body

. Rotation tensor (matrix)
. Angular Velocity Vector

Spin tensor (matrix)

2. Analyzing motion in systems of rigid bodies

. Relating velocity/acceleration of two points on a rigid body
. Mechanisms

. Gears, pulleys and rolling wheels

3. Linear/Angular Momentum and Kinetic Energy of a rigid body
. Rigid body as an infinite number of particles
. Calculating inertia tensors

. Momentum and energy of a rotating body

4. Dynamics of rigid bodies
. Torques

Force — linear momentum and moment — angular momentum relations
. Examples

. Using energy and momentum for rigid bodies



Calculating the momentum and energy of arigid body

Preliminary: Momentum and Energy for a System of Particles

Total mass M :Zmi

— er

1
.=—) Mmr., Ve =—— >
Center of mass I MZ’ if ¢ = 4t . m,
df +d  —didiy  —dyd;,

Mass moment of inertia matrix ig=m| -d,d, dZ+d2 -dyd;
i

2 42 I
—dixdi;  —djydi; dix +djy l>\

Linear Momentum p= > mv;=Mvg
particles

Angular Momentum  h= ) rxmyv;=rgxMvg +lgo
particles

Kinetic Energy T 1 d>om \vi\z 1w \VG\Z +1co-(IGm)
particles 2 2

We use the same idea to calculate the momentum and energy of a rigid body.
The sums become integrals over an infinite number of infinitesimal particles



Inertial Properties

Inertial Properties of Rigid Bodies

Total mass M = j pdV
\Y

1
Center of mass o =ﬁjrpdv Vg =—2
\%

Mass moment of inertia
d=r—ry=di+d j+dk
df +di  —didiy  —died;, .
3D I :_[ _diXdiy d& +di22 _diydiz pdVv 2D IGzz = JA‘(dx +dy),UdA

v
~didi;  —dyd;;  dE +d

Parallel Axis Theorem
d=r,-r,=di+d j+dk
dizy +d3 —dixdiy  —dixdj;
3D: 1g=1g+M| —dydy di+dE  —dyd;, 2D: o, =g, +M(d] +d))
~didi,  —dydi;  d +di

Rotation formula for inertia matrix

Ig =RIZRT d(;—f=W|G —IgW



Mass Moments of Inertia

et 0 0 Lo
Prism E 0 a2 +c:2 0 2 01 0
M= pabc 12
0 0 atsb? - 001
1+3a%/ 2 0 0 = 2 o 0
Solid Cylinder M2 2 Solid Ellipsoid R
2 e 13 /F 0 P R L M| o a2
M =mpa’L 12 Sl — + 0
Fireles 2 M = —mpabe i m——— 5
0 0 6’ /1 3 2. 7b 0 0 a*+®
Sali 1+ 72 14D 0 0 3@t anh) 0 0
id Cone .
3] 121 aa2 Hollow Cylinder M 5 5
T2 e 0 1+ i/ (4a2) 0 3 = 0 g T ) 0
M=Zp 20 0 0 5 M=o’ -a")L 12
0 0 a5
i
Square b i I, -E(az_bz) My
! =710 Hollow disk loz= (@57
e— 7
a 1
Disk Ig..= % R? Slender rod %‘i Iz = %ﬁ
a/3
% b/3 M 2* 2
Thin ring Igg = UR2 Triangular Plate i E(c;' +b°)
—




Calculating mass moments of inertia by summation

(lllustrated with 2D example, same idea works in 3D)

@ $G2
[
& & ‘o
G — ‘Q‘ le +
Gl d3
(1) G3
(3 & ¥

To find position of COM and inertia of a complex shape, use:
Totalmass M =m +m,+m,
1
Center of mass ' :ﬁ(mlrel""mzrez +m;rg;)

Mass moment of inertia (use parallel axis theorem and add all sections)

_ 2 2 2
IGzz - IGlzz + mldl + IGZZz + m2d2 + IGSzz + m3d3

d. is the distance of the COM of the ith section from the combined COM at G



Momentum and Energy Equations

Momentum and Energy of arigid body

Linear Momentum p=Mvg
3D: Angular Momentum h=rgxMvg +Ilg®
o 1 1
Kinetic Energy T =§M Vg \2 +§0)-(IG(0)
Linear Momentum p=Mvg

2D:  Angular Momentum  h=rg xMvg + lg,; @,k
1 1 2

<o,

Kinetic Energy T =§I\/I \VG \2 +§ |Gz 07 !

Special Case: Rotation about a fixed point

Angular Momentum h=Igw® Angular Momentum  h=loz o,k

N 1 L
Kinetic Energy T :Em-(IG(y)) Kinetic Energy T :%IOZZa)Z2




Rigid Body Dynamics - Roadmap
1. Describing motion of arigid body

. Rotation tensor (matrix)
. Angular Velocity Vector

. Spin tensor (matrix)

2. Analyzing motion in systems of rigid bodies

. Relating velocity/acceleration of two points on a rigid body
. Mechanisms

. Gears, pulleys and rolling wheels

3. Linear/Angular Momentum and Kinetic Energy of a rigid body
. Rigid body as an infinite number of particles
. Calculating inertia tensors
. Momentum and energy of a rotating body

4. Dynamics of rigid bodies
. Torques
. Force — linear momentum and moment — angular momentum relations
. Examples of solutions to 2D problems
. Using energy and momentum for rigid bodies




Torques (Couples, or ‘pure moments’)

Torque
A torque is a rotational force: P\/;
Causes rotation without translation / (®

: _ ] 3D Torque 2D Torque
Torque is a vector: Q=0Q,1+QyJ+Q,k

Torque has units of Nm

Two non-collinear equal and opposite forces exert a
torque F /‘\&,

= :.)Q:de

Power of atorque @ P=Q-®

t )4
Work done by a torque W ZJQ ot @
4 Q Qk

For 2D: W :jQng



2D inertia, parallel axis theorem

Inertial Properties

Total mass M = [ udA
A

1

Center of mass 's :ﬁjrﬂdA Ve
A

_drs
dt 4 - Mass/unit area

Mass moment of inertia o, = [(d} +d})udA  d=r—rg=d,i+d,]
A

j j
b é M2 :
Square I i IGZZ_E(G‘_Z’) Hollow disk @ Il’jzz=£l£’2+b:}
| & 2
1
i b

3

L

M _» 5
Disk i Igz==1I

a
j ’
. b b3 M o2 02
Thin ring ':.\ Iog = MR2 Triangular Plate I I ﬁ(e.:' ~57)
g i H—l)a
a

Parallel Axis Theorem

¢
IOzz=|G22+M(df+dj) @’ )
AO !

gz = ? R* Slender rod




2D Momentum and energy

Momentum and Energy of arigid body

Linear Momentum p=Mvg j N

Angular Momentum  h=rg xMvg + Ig,,@,K dA
Kinetic Energy T =%M Vg \2 +% |G @2

Special Case: Rotation about a fixed point

Angular Momentum h=lgz; o,k 'y
Kinetic Energy T :%lozza)zz o i



2D equations of motion for rigid bodies

Analyzing 2D motion of arigid body

Linear Momentum ZF :d_p

SZF:MaG

Angular Momentum ZrXF+ZQZk:?j_T (about origin)

=Y rxF+> Qk=rg xMag + lgz o,k

Special Case: Rotation about a fixed point

ZrXF+ZQz = loz ;K @.
AO



2D Kinematics formulas

Kinematics Formulas

(:3/
: | vV,
Wheel rolling without slip Vo — V¢ = @,kx(rp —rc) ’[J ” °
on stationary surface = Vyg =—o,R i
C

General Vo=V, =0,Kx(ry—r,)

ag —a, = akx (I, _rA)_wz(rB —r,)



Analyzing motion of rigid bodies

Calculating forces or accelerations

* |dealize system

* Free body diagram for each rigid body

e Y.F=Mag for each rigid body.

o Y rxF+Y Qk=rgxMag +lgza.k for each rigid body

* Use kinematics equations to relate as.2; for each
rigid body

Vg =V =0, kx(rg —1,)
a, —a, =akx(ry—r,)—o’(r,-r,)

e Solve for unknown forces or accelerations



Energy equation for systems of rigid bodies

External Power P®(t)

tl
External work AW ®* = I P(t)dt

Total KE T,°" Total KE T,/"
Total PE V' Total PE V"

AW = (T V) = (T 4VGT) - AW = 0= (117 +V7) = (177 +V,)

Same as systems of particles, but we now use the rigid body formula for KE

1 1
T=%M‘V6‘2+%m-16m T=§M\VG\2+§'Gzzwzz



Angular Momentum equation for systems of rigid bodies

External Moment Z rxFE> + Z Q

o zola

t=t,

Total Angular Momentum hy°" Total Angular Momentum h;°"

ext d h o1 ext TOT TOT
ZrixFi +ZQ: " A" =h°" —h]

Same as systems of particles, but we now use the rigid body formula for AM

h=erVG+|G(!) h:erVG—I_IGZZa)Zk
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