
Course Outline 
1. MATLAB tutorial 
2. Motion of systems that can be idealized as particles 

• Description of motion, coordinate systems; Newton’s laws;  
• Calculating forces required to induce prescribed motion;  
• Deriving and solving equations of motion 

3. Conservation laws for systems of particles 
• Work, power and energy; 
•  Linear impulse and momentum 
• Angular momentum 

4. Vibrations 
• Characteristics of vibrations; vibration of free 1 DOF systems 
• Vibration of damped 1 DOF systems 
• Forced Vibrations 

 
5. Motion of systems that can be idealized as rigid bodies 

• Description of rotational motion; Euler’s laws; deriving and solving 
equations of motion; motion of machines 

 
 

Exam topics 

Course Outline 



• Understand the concept of an ‘inertial frame’ 
• Be able to idealize an engineering design as a set of particles, and know when this 

idealization will give accurate results 
• Describe the motion of a system of particles (eg components in a fixed coordinate system; 

components in a polar coordinate system, etc) 
• Be able to differentiate position vectors (with proper use of the chain rule!) to determine 

velocity and acceleration; and be able to integrate acceleration or velocity to determine 
position vector. 

• Be able to describe motion in normal-tangential and polar coordinates (eg be able to write 
down vector components of velocity and acceleration in terms of speed, radius of curvature 
of path, or coordinates in the cylindrical-polar system). 

• Be able to convert between Cartesian to normal-tangential or polar coordinate descriptions 
of motion 

• Be able to draw a correct free body diagram showing forces acting on system idealized as 
particles 

• Be able to write down Newton’s laws of motion in rectangular, normal-tangential, and polar 
coordinate systems 

• Be able to obtain an additional moment balance equation for a rigid body moving without 
rotation or rotating about a fixed axis at constant rate. 

• Be able to use Newton’s laws of motion to solve for unknown accelerations or forces in a 
system of particles 

• Use Newton’s laws of motion to derive differential equations governing the motion of a 
system of particles 

• Be able to re-write second order differential equations as a pair of first-order differential 
equations in a form that MATLAB can solve 

Particle Dynamics – concept checklist 
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• Direction of velocity vector is parallel to path 
• Magnitude of velocity vector is distance traveled / time 

Inertial frame – non accelerating, non rotating reference frame 
Particle – point mass at some position in space 

Position Vector 

Velocity Vector 

Acceleration Vector 
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Particle Kinematics 



Particle Kinematics 
• Straight line motion with constant acceleration 

( )2
0 0 0

1
2

X V t at V at a = + + = + =  
r i v i a i

• Time/velocity/position dependent acceleration – use 
calculus 
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Particle Kinematics 



• Circular Motion at const speed 
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Particle Kinematics 

• General circular motion 
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Particle Kinematics 
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• Motion along an arbitrary path 

• Polar Coordinates 
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Calculating forces required to cause prescribed 
motion 

• Idealize system 
• Free body diagram 
• Kinematics (describe motion – usually goal is 

to find formula for acceleration) 
• F=ma for each particle. 
•                    (for steadily or non-rotating rigid 

bodies or frames only) 
• Solve for unknown forces or accelerations 

(just like statics) 
 

c =M 0

Using Newton’s laws 



1. Idealize system 
2. Introduce variables to describe motion 

(often x,y coords, but we will see other 
examples) 

3. Write down r, differentiate to get a 
4. Draw FBD 
5.  
6. If necessary, eliminate reaction forces 
7. Result will be differential equations for coords 

defined in (2), e.g. 
 
8. Identify initial conditions, and solve ODE 
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Using Newton’s laws to derive equations of motion 
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Motion of a projectile in earths gravity 
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Rearranging differential equations for MATLAB 



Conservation laws for particles: Concept Checklist 
• Know the definitions of power (or rate of work) of a force, and work done by a force 
• Know the definition of kinetic energy of a particle 
• Understand power-work-kinetic energy relations for a particle 
• Be able to use work/power/kinetic energy to solve problems involving particle motion 
• Be able to distinguish between conservative and non-conservative forces 
• Be able to calculate the potential energy of a conservative force 
• Be able to calculate the force associated with a potential energy function 
• Know the work-energy relation for a system of particles; (energy conservation for a closed 

system) 
• Use energy conservation to analyze motion of conservative systems of particles 
 
• Know the definition of the linear impulse of a force 
• Know the definition of linear momentum of a particle 
• Understand the impulse-momentum (and force-momentum) relations for a particle 
• Understand impulse-momentum relations for a system of particles (momentum 

conservation for a closed system) 
• Be able to use impulse-momentum to analyze motion of particles and systems of particles 
• Know the definition of restitution coefficient for a collision 
• Predict changes in velocity of two colliding particles in 2D and 3D using momentum and the 

restitution formula 
 

• Know the definition of angular impulse of a force 
• Know the definition of angular momentum of a particle 
• Understand the angular impulse-momentum relation 
• Be able to use angular momentum to solve central force problems/impact problems 

Conservation Laws – concept checklist 



Rate of work done by a force 
(power developed by force) 

i
j

k

O

P
F

vP = ⋅F v

Total work done by a force 
 

i
j

k

O

P
F(t)

r0

r1

1

0

t
W dt= ⋅∫F v

1

0

W d= ⋅∫
r

r
F r

( )2 2 2 21 1
2 2 x y zT m m v v v= = + +vKinetic energy 

i
j

k

O
P

v
r0

r1Work-kinetic energy relation 
1

0

0W d T T= ⋅ = −∫
r

r
F r

Power-kinetic energy relation dTP
dt

=

Work-Energy relations for a single particle 
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Gravity acting on a 
particle near earths 
surface 
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Gravitational force 
exerted on mass m by 
mass M at the origin 
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Force exerted by a 
spring with stiffness k 
and unstretched length 
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Force acting between 
two charged particles 

1 2

4
Q QV

rπε
=  

r

+Q1
+Q2

i
j

1

F2

 
Force exerted by one 
molecule of a noble gas 
(e.g. He, Ar, etc) on 
another (Lennard Jones 
potential). a is the 
equilibrium spacing 
between molecules, and 
E is the energy of the 
bond. 
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Potential Energy 
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Energy relation for a conservative system 
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Energy Relation for a Conservative System 



Linear Impulse of a force 
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Impulse-Momentum relations 

Impulse-Momentum for a single particle 



Impulse-momentum for a system of particles 

m1

m2

m3

m4

R21

R12
R13 R31

R23

R32

F2
ext

F3
ext

F1
ext

Force exerted on particle i by particle j ijR
ext
iF External force on particle i 

iv Velocity of particle i 

m1

m2

m3

m4

F2
ext

F3
ext

F1
ext

m1

m2

m3

m4

F2
ext

F3
ext

F1
ext

1

0

( )

( )

TOT

t
TOT TOT

t

Total External Force t

Total External Impulse t dt= ∫

F

I F

0

0
TOT

t t
Total momentum
=

p
1

1
TOT

t t
Total momentum
=

p

TOT
TOT d

dt
=

pF

1 0
TOT TOT TOT= −I p p

Special case – zero external impulse: 

Impulse-momentum for the system: 
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(Linear momentum conserved) 

Impulse-Momentum for a system of particles 



Collisions 
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Restitution formula 

Momentum 

Momentum 

Restitution formula 

Collisions 



Angular Impulse-Momentum Equations for a Particle 
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Useful for central force problems (when forces on a particle always act through a 
single point, eg planetary gravity) 

Angular Momentum 

Angular Impulse 

Special Case  
1 0= ⇒ =A 0 h h Angular momentum conserved 

Angular Impulse-Momentum Equations for a particle 
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