
 
 
 

Chapter 5 
 

Vibrations 
 
 
 
5.1 Overview of Vibrations 
 
 
5.1.1 Examples of practical vibration problems 
 
Vibration is a continuous cyclic motion of a structure or a component. 
 
Generally, engineers try to avoid vibrations, because vibrations have a number of unpleasant effects: 

• Cyclic motion implies cyclic forces.  Cyclic forces are very damaging to materials. 
• Even modest levels of vibration can cause extreme discomfort; 
• Vibrations generally lead to a loss of precision in controlling machinery. 
 

Examples where vibration suppression is an issue include: 
 
Structural vibrations.  Most buildings are mounted on top of special 
rubber pads, which are intended to isolate the building from ground 
vibrations.  The figure on the right shows vibration isolators being installed 
under the floor of a building during construction (from www.wilrep.com ) 

 
No vibrations course is complete without a mention of the Tacoma Narrows 
suspension bridge.  This bridge, constructed in the 1940s, was at the time the longest suspension bridge in 
the world.  Because it was a new design, it suffered from an unforseen source of vibrations.  In high wind, 
the roadway would exhibit violent torsional vibrations, as shown in the picture below.  

 
 

You can watch newsreel footage of the vibration and even the final collapse at 
http://www.youtube.com/watch?v=HxTZ446tbzE  To the credit of the designers, the bridge survived for an 
amazingly long time before it finally failed.  It is thought that the vibrations were a form of self-
excited vibration known as `flutter,’ or ‘galloping’  A similar form of vibration is known to occur 

http://www.wilrep.com/
http://www.youtube.com/watch?v=HxTZ446tbzE
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in aircraft wings.  Interestingly, modern cable stayed bridges that also suffer from a new vibration problem: 
the cables are very lightly damped and can vibrate badly in high winds (this is a resonance problem, not 
flutter). You can find a detailed article on the subject at www.fhwa.dot.gov/bridge/pubs/05083/chap3.cfm. 
Some bridge designs go as far as to incorporate active vibration suppression systems in their cables. 
 
 

 
 
 
Vehicle suspension systems are familiar to everyone, but continue to evolve as 
engineers work to improve vehicle handling and ride (the figure above is from 
http://www.altairhyperworks.com.   A radical new approach to suspension design 
emerged in 2003 when a research group led by Malcolm Smith at Cambridge 
University invented a new mechanical suspension element they called an ‘inerter’.   
This device can be thought of as a sort of generalized spring, but instead of exerting a 
force proportional to the relative displacement of its two ends, the inerter exerts a 
force that is proportional to the relative acceleration of its two ends.  An actual 
realization is shown in the figure.  You can find a detailed presentation on the theory 
behind the device at http://www-control.eng.cam.ac.uk/~mcs/lecture_j.pdf The 
device was adopted in secret by the McLaren Formula 1 racing team in 2005 (they 
called it the ‘J damper’, and a scandal erupted in Formula 1 racing when the Renault 
team managed to steal drawings for the device, but were unable to work out what it 
does.   The patent for the device has now been licensed Penske and looks to become 
a standard element in formula 1 racing.  It is only a matter of time before it appears 
on vehicles available to the rest of us. 
 
Precision Machinery: The picture on the right shows one example of a precision 
instrument.   It is essential to isolate electron microscopes from vibrations.  A typical 
transmission electron microscope is designed to resolve features of materials down to 
atomic length scales.  If the specimen vibrates by more than a few atomic spacings, it 
will be impossible to see!  This is one reason that electron microscopes are always 
located in the basement – the basement of a building vibrates much less than the upper 
floors.   Professor K.-S. Kim at Brown recently invented and patented a new vibration 
isolation system to support his atomic force microscope on the 7th floor of the Barus-
Holley building – you can find the patent at United States Patent, Patent Number 7,543,791. 

 
Here is another precision instrument that is very sensitive to vibrations. 
 

 
 
 

http://www.fhwa.dot.gov/bridge/pubs/05083/chap3.cfm
http://www.altairhyperworks.com/
http://www-control.eng.cam.ac.uk/~mcs/lecture_j.pdf
http://www.freepatentsonline.com/7543791.html
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The picture shows features of a typical hard disk drive.  
It is particularly important to prevent vibrations in the 
disk stack assembly and in the disk head positioner, 
since any relative motion between these two 
components will make it impossible to read data. The 
spinning disk stack assembly has some very interesting 
vibration characteristics (which fortunately for you, is 
beyond the scope of this course). 
 
 
 
 
Vibrations are not always undesirable, however.  On occasion, they 
can be put to good use.  Examples of beneficial applications of 
vibrations include ultrasonic probes, both for medical application and 
for nondestructive testing. The picture shows a medical application 
of ultrasound: it is an image of someone’s colon.  This type of 
instrument can resolve features down to a fraction of a millimeter, 
and is infinitely preferable to exploratory surgery.  Ultrasound is also 
used to detect cracks in aircraft and structures. 
 
Musical instruments and loudspeakers are a second example of 
systems which put vibrations to good use.  Finally, most mechanical clocks use vibrations to 
measure time.   
 
 
5.1.2 Vibration Measurement 
 
When faced with a vibration problem, engineers generally start by making some 
measurements to try to isolate the cause of the problem.  There are two common 
ways to measure vibrations: 
 

1. An accelerometer is a small electro-mechanical device that gives an electrical 
signal proportional to its acceleration.   The picture shows a typical 3 axis 
MEMS accelerometer (you’ll use one in a project in this course).   MEMS accelerometers should be 
selected very carefully – you can buy cheap accelerometers for less than $50, but these are usually 
meant just as sensors, not for making precision measurements.   For measurements you’ll need to 
select one that is specially designed for the frequency range you are interested in sensing.  The best 
accelerometers are expensive ‘inertial grade’ versions (suitable for so-called ‘inertial navigtation’ in 
which accelerations are integrated to determine position) which are often use Kalman filtering to 
fuse the accelerations with GPS measurements. 
 

2. A displacement transducer is similar to an accelerometer, but gives an electrical signal proportional 
to its displacement. 

 
Displacement transducers are generally preferable if you need to measure low frequency vibrations; 
accelerometers behave better at high frequencies. 
 
 
 

https://www.silicondesigns.com/single-post/2017/11/09/Silicon-Designs-Introduces-Inertial-Grade-MEMS-Capacitive-Accelerometers-with-Internal-Temperature-Sensor-and-Improved-Low-Noise-Performance
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5.1.3  Features of a Typical Vibration Response 
 
The picture below shows a typical signal that you might 
record using an accelerometer or displacement 
transducer. 

 
Important features of the response are 
 

 The signal is often (although not always) periodic: that 
is to say, it repeats itself at fixed intervals of time.  
Vibrations that do not repeat themselves in this way 
are said to be random.  All the systems we consider in 
this course will exhibit periodic vibrations. 
 

 The PERIOD  of the signal, T,  is the time required for 
one complete cycle of oscillation, as shown in the picture. 

 
  The FREQUENCY of the signal, f,  is the number of cycles of oscillation per second. Cycles per 

second is often given the name Hertz: thus, a signal which repeats 100 times per second is said to 
oscillate at 100 Hertz. 
 

  The ANGULAR FREQUENCY of the signal,ω , is defined as 2 fω π= . We specify angular 
frequency in radians per second.  Thus, a signal that oscillates at 100 Hz has angular frequency 
200π radians per second.  
 

 Period, frequency and angular frequency are related by 
 

1 2f f
T T

πω π= = 2 =  

 
 

 The PEAK-TO-PEAK AMPLITUDE of the signal, A, is the difference between its maximum 
value and its minimum value, as shown in the picture 

 
  The AMPLITUDE of the signal is generally taken to mean half its peak to peak amplitude. 

Engineers sometimes use amplitude as an abbreviation for peak to peak amplitude, however, so be 
careful. 
 

  The ROOT MEAN SQUARE AMPLITUDE or RMS amplitude is defined as 
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5.1.4  Harmonic Oscillations 
 
 Harmonic oscillations are a particularly simple form of vibration response.  A conservative spring-mass 
system will exhibit harmonic motion – if you have Java, Internet Explorer (or a browser plugin that allows 
you to run IE in another browser) you can run a Java Applet to visualize the motion.  You can find 
instructions for installing Java, the IE plugins, and giving permission for the Applet to run here.  The 
address for the SHM simulator (cut and paste this into the Internet Explorer address bar) 

http://www.brown.edu/Departments/Engineering/Courses/En4/java/shm.html 
If the spring is perturbed from its static equilibrium position, it vibrates (press `start’ to watch the vibration).  
We will analyze the motion of the spring mass system soon. We will find that the displacement of the mass 
from its static equilibrium position, x , has the form 

( ) sin( )x t X tω φ= ∆ +  
Here, X∆  is the amplitude of the displacement, ω  is the frequency of oscillations in radians per second, 
and φ  (in radians) is known as the `phase’ of the vibration.  Vibrations of this form are said to be 
Harmonic.   
 
Typical values for amplitude and frequency are listed in the table below 
 

 Frequency /Hz Amplitude/mm 
Atomic Vibration 1210  710−  
Threshold of human perception 1-8 210−  
Machinery and building vibes 10-100 210 1− −  
Swaying of tall buildings 1-5 10-1000 

 
We can also express the displacement in terms of its period of oscillation T 

2( ) sinx t X t
T
π φ = ∆ + 

 
 

 
The velocity v  and acceleration a  of the mass follow as 

( ) ( )
( )

0
2

( ) sin cos

( ) sin

v t V t V X t

a t A t A V X

ω φ ω ω φ

ω φ ω ω

= ∆ + = ∆ +

= −∆ + ∆ = ∆ = ∆
 

 
Here, V∆  is the amplitude of the velocity, and A∆  is the amplitude of the acceleration.  Note the simple 
relationships between acceleration, velocity and displacement amplitudes. 
 
Surprisingly, many complex engineering systems behave just like the spring mass system we are looking at 
here.  To describe the behavior of the system, then, we need to know three things (in order of importance): 

(1) The frequency (or period) of the vibrations 
(2) The amplitude of the vibrations 
(3) Occasionally, we might be interested in the phase, but this is rare. 
 

So, our next problem is to find a way to calculate these three quantities for engineering systems. 
 
We will do this in stages.  First, we will analyze a number of freely vibrating, conservative systems.  
Second, we will examine free vibrations in a dissipative system, to show the influence of energy losses in a 
mechanical system.  Finally, we will discuss the behavior of mechanical systems when they are subjected to 
oscillating forces. 

http://www.brown.edu/Departments/Engineering/Courses/En4/Notes/Java_Configuration.html
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5.2 Free vibration of conservative, single degree of freedom, linear systems. 
 
First, we will explain what is meant by the title of this section. 

 Recall that a system is conservative if energy is conserved, i.e. potential energy + kinetic energy = 
constant during motion. 

 Free vibration means that no time varying external forces act on the system.   
 A system has one degree of freedom if its motion can be completely described by a single scalar 

variable.  We’ll discuss this in a bit more detail later. 
  A system is said to be linear if its equation of motion is linear.  We will see what this means 

shortly. 
 

It turns out that all 1DOF, linear conservative systems behave in exactly the same way.  By analyzing the 
motion of one representative system, we can learn about all others. 

 
We will follow standard procedure, and use a spring-mass system as our representative example. 
 
Problem:  The figure shows a spring mass system.  The spring has 
stiffness k and unstretched length 0L .  The mass is released with velocity 

0v  from position 0s  at time 0t = .  Find ( )s t . 
 
There is a standard approach to solving problems like this 
 

(i) Get a differential equation for s using F=ma (or other methods to be discussed) 
(ii) Solve the differential equation. 

 
The picture shows a free body diagram for the mass. 
 
 Newton’s law of motion states that 

2

2( )s
d sm F N mg m
dt

= ⇒ − + − =F a i j i  

The spring force is related to the length of the spring by 0( )sF k s L= − .  The i component of the equation 
of motion and this equation then shows that 

2
02

d sm ks kL
dt

+ =  

This is our equation of motion for s. 
 
Now, we need to solve this equation.  We could, of course, use Matlab to do this – in fact here is the Matlab 
solution.    

syms m k L0 s0 v0 real 
syms v(t) s(t) 
assume(k>0); assume(m>0); 
diffeq = m*diff(s(t),t,2) + k*s(t) == k*L0; 
v(t) = diff(s(t),t); 
IC = [s(0)==s0, v(0)==v0]; 
s(t) = dsolve(diffeq,IC) 
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In practice we usually don’t need to use matlab (and of course in exams you won’t have access to matlab!) 
 
 
 
5.2.1 Using tabulated solutions to solve equations of motion for vibration problems 
 
Note that all vibrations problems have similar equations of motion.  Consequently, we can just 
solve the equation once, record the solution, and use it to solve any vibration problem we might be 
interested in.  The procedure to solve any vibration problem is: 

1. Derive the equation of motion, using Newton’s laws (or sometimes you can use energy 
methods, as discussed in Section 5.3) 

2. Do some algebra to arrange the equation of motion into a standard form 
3. Look up the solution to this standard form in a table of solutions to vibration problems. 
 

We have provided a table of standard solutions as a separate document that you can download and 
print for future reference.   Actually, this is exactly what MATLAB is doing when it solves a 
differential equation for you – it is doing sophisticated pattern matching to look up the solution you 
want in a massive internal database. 
 
We will illustrate the procedure using many examples. 
 
5.2.2 Solution to the equation of motion for an undamped spring-mass system 
 
We would like to solve 

2
02

d sm ks kL
dt

+ =  

with initial conditions  0
ds v
dt

=  from position 0s  at time 0t = . 

 
We therefore consult our list of solutions to differential equations, and observe that it gives the 
solution to the following equation 

2

2 2
1

n

d x x C
dtω

+ =  

 
This is very similar to our equation, but not quite the same.  To make them identical, divide our 
equation through by k   

2
02

m d s s L
k dt

+ =  

We see that if we define  

http://www.brown.edu/Departments/Engineering/Courses/En4/Notes/Vibesols.pdf
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02
1

n
n

m k x s C L
k m

ω
ω

= ⇒ = = =  

then our equation is equivalent to the standard one. 
 
HEALTH WARNING: it is important to note that this substitution only works if 0L  is constant, so its time 
derivative is zero. 
 
The solution for x is 

( )0

2 2 2 1 0
0 0 0

0

sin

( )( ) / tan

n

n
n

x C X t

x CX x C v
v

ω φ

ω
ω φ −

= + +

 −
= − + =  

 

 

Here, 0x  and 0v  are the initial value of x and /dx dt  its time derivative, which must be computed from the 
initial values of s and its time derivative 

0 0 0
dx dsx s v
dt dt

= = =  

 
When we present the solution, we have a choice of writing down the solution for x, and giving formulas for 
the various terms in the solution (this is what is usually done): 

( )

( )

0

2 2 2 1 0 0
0 0 0 0

0

sin

( )/ tan

n

n
n n

x X t

s Lk X s L v
m v

ω φ

ω
ω ω φ −

= +

 −
= = − + =  

 

 

Alternatively, we can express all the variables in the standard solution in terms of  s 

( )2 2 2 1 0 0
0 0 0 0

0

( )/ sin tan n
n

s Lks L s L v t
m v

ω
ω −  −

= + − + +     
 

But this solution looks very messy (more like the Matlab solution). 
 
Observe that: 

 The mass oscillates harmonically, as discussed in the preceding section; 
  The angular frequency of oscillation, nω , is a characteristic property of the system, and is 

independent of the initial position or velocity of the mass.  This is a very important observation, and 
we will expand upon it below.  The characteristic frequency is known as the natural frequency of 
the system. 

   Increasing the stiffness of the spring increases the natural frequency of the system; 
   Increasing the mass reduces the natural frequency of the system. 

 
 
 
5.2.3 Natural Frequencies and Mode Shapes. 
 
We saw that the spring mass system described in the preceding section likes to vibrate at a characteristic 
frequency, known as its natural frequency. This turns out to be a property of all stable mechanical 
systems.   
 
All stable, unforced, mechanical systems vibrate harmonically at certain discrete frequencies, known 
as natural frequencies of the system. 
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For the spring—mass system, we found only one 
natural frequency.  More complex systems have 
several natural frequencies.  For example, the 
system of two masses shown below has two 
natural frequencies, given by 

1 2
3,k k

m m
ω ω= =  

 
 
A system with three masses would have three natural frequencies, and so on. 
 
In general, a system with more than one natural frequency will not vibrate harmonically. 
 
For example, suppose we start the two mass system vibrating, with initial conditions 

111

222

0
0

0

o

o

dxx x
dt t
dxx x
dt


= =  =

= = 

 

The response may be shown (see sect 5.5 if you want to know how) to be 
( ) ( )
( ) ( )

1 1 1 1 2 2 2

2 1 1 1 2 2 2

sin sin

sin sin

x A t A t

x A t A t

ω φ ω φ

ω φ ω φ

= + + +

= + − +
 

with 

1 1 2 2 1 2

1 2

1 1
2 2

2 2

o o o o
A x x A x x

π πφ φ

   
= + = −   

   

= =

 

 
In general, the vibration response will look complicated, and is not harmonic. The animation above shows a 
typical example (if you are using the pdf version of these notes the animation will not work)  
 
 However, if we choose the special initial conditions: 

1 0 2 0
o o
x X x X= =  

then the response is simply 
( )
( )

1 0 1 1

2 0 1 1

sin

sin

x X t

x X t

ω φ

ω φ

= +

= +
 

i.e., both masses vibrate harmonically, at the first natural frequency, 
as shown in the animation to the right.    
 
Similarly, if we choose 

1 0 2 0
o o
x X x X= = −  

then 
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( )
( )

1 0 2 2

2 0 2 2

sin

sin

x X t

x X t

ω φ

ω φ

= +

= − +
 

i.e., the system vibrates harmonically, at the second natural frequency.  
 
The special initial displacements of a system that cause it to 
vibrate harmonically are called  `mode shapes’ for the system. 
 
If a system has several natural frequencies, there is a corresponding 
mode of vibration for each natural frequency. 
 
The natural frequencies are arguably the single most important property of any mechanical system.  
This is because, as we shall see, the natural frequencies coincide (almost) with the system’s resonant 
frequencies.  That is to say, if you apply a time varying force to the system, and choose the frequency of 
the force to be equal to one of the natural frequencies, you will observe very large amplitude vibrations. 
 
When designing a structure or component, you generally want to control its natural vibration frequencies 
very carefully.  For example, if you wish to stop a system from vibrating, you need to make sure that all its 
natural frequencies are much greater than the expected frequency of any forces that are likely to act on the 
structure.  If you are designing a vibration isolation platform, you generally want to make its natural 
frequency much lower than the vibration frequency of the floor that it will stand on.  Design codes usually 
specify allowable ranges for natural frequencies of structures and components. 
 
Once a prototype has been built, it is usual to measure the natural frequencies and mode shapes for a 
system.  This is done by attaching a number of accelerometers to the system, and then hitting it with a 
hammer (this is usually a regular rubber tipped hammer, which might be instrumented to measure the 
impulse exerted by the hammer during the impact).  By trial and error, one can find a spot to hit the device 
so as to excite each mode of vibration independent of any other.  You can tell when you have found such a 
spot, because the whole system vibrates harmonically.  The natural frequency and mode shape of each 
vibration mode is then determined from the accelerometer readings. 
 
Impulse hammer tests can even be used on big structures like bridges or buildings – but you need a big 
hammer.  In a recent test on a new cable stayed bridge in France, the bridge was excited by first attaching a 
barge to the center span with a high strength cable; then the cable was tightened to raise the barge part way 
out of the water; then, finally, the cable was released rapidly to set the bridge vibrating. 
 
 
5.2.4 Calculating the number of degrees of freedom (and natural frequencies) of a system 
 
When you analyze the behavior a system, it is helpful to know ahead of time how many vibration 
frequencies you will need to calculate.  There are various ways to do this.   Here are some rules that you can 
apply: 
 
 
The number of degrees of freedom is equal to the number of independent coordinates required to 
describe the motion.  This is only helpful if you can see by inspection how to describe your system.  For 
the spring-mass system in the preceding section, we know that the mass can only move in one direction, and 
so specifying the length of the spring s will completely determine the motion of the system.  The system 
therefore has one degree of freedom, and one vibration frequency.   Section 5.6 provides several more 
examples where it is fairly obvious that the system has one degree of freedom. 
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For a 2D system, the number of degrees of freedom can be calculated from the equation 

3 2 cn r p N= + −  
where: 

r  is the number of rigid bodies in the system 
p is the number of particles in the system 

cN is the number of constraints (or, if you prefer, independent reaction forces) in the system. 
 

To be able to apply this formula you need to know how many constraints appear in the problem.  
Constraints are imposed by things like rigid links, or contacts with rigid walls, which force the system to 
move in a particular way.   The numbers of constraints associated with various types of 2D connections are 
listed in the table below.  Notice that the number of constraints is always equal to the number of reaction 
forces you need to draw on an FBD to represent the joint 
 

 
 
Roller joint  
 
1 constraint (prevents motion in 
one direction) 

A

RAy

R(1/2)
Ay

A

(1)

(2)A

A

A
or

R(1/2)
Ay

 
Rigid (massless) link (if the link 
has mass, it should be 
represented as a rigid body) 
 
1 constraint (prevents relative 
motion parallel to link)  
 

T T

T T  
Nonconformal contact (two 
bodies meet at a point) 
 
No friction or slipping: 1 
constraint (prevents 
interpenetration) 
 
Sticking friction 2 constraints 
(prevents relative motion 

N N

T

T

 

Conformal contact (two rigid 
bodies meet along a line) 
 
No friction or slipping: 2 
constraint (prevents 
interpenetration and rotation) 
 
Sticking friction 3 constraints 
(prevents relative motion) 

N N

T

T

M M
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Pinned joint (generally only 
applied to a rigid body, as it 
would stop a particle moving 
completely) 
 
2 constraints (prevents motion 
horizontally and vertically) 

A

RAy

RAx

R(1/2)
Ay

R(1/2)
Ax

A

A

A

(1)

(2)

R(1/2)
Ax

R(1/2)
Ay

 
Clamped joint (rare in dynamics 
problems, as it prevents motion 
completely) 
 
Can only be applied to a rigid 
body, not a particle 
 
3 constraints (prevents motion 
horizontally, vertically and 
prevents rotation) 

A

RAy

RAx

R(1/2)
Ay

R(1/2)
Ax

A

A
(1)

(2)
MAz i

j

M(1/2)
Az

R(1/2)
Ax

R(1/2)
Ay

M(1/2)
Az

 
 
 
 
For a 3D system, the number of degrees of freedom can be calculated from the equation 

6 3 cn r p N= + −  
where the symbols have the same meaning as for a 2D system.   A table of various constraints for 3D 
problems is given below. 
 

 
Pinned joint 
 
(5 constraints – prevents all motion, 
and prevents rotation about two 
axes) 

 
 
Roller bearing 
 
(5 constraints – prevents all motion, 
and prevents rotation about two 
axes) 
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Sleeve 
 
(4 constraints – prevents motion in 
two directions, and prevents rotation 
about two axes) 

 
 
Swivel joint 
 
4 constraints (prevents all motion, 
prevents rotation about 1 axis) 

 
Ball and socket joint 
 
3 constraints – prevents all motion. 

 
Nonconformal contact (two rigid 
bodies meet at a point) 
 
No friction or slipping: 1 
constraint (prevents 
interpenetration) 
 
Sticking friction 3 constraints, 
possibly 4 if friction is sufficient to 
prevent spin at contact)  
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Conformal contact (two rigid 
bodies meet over a surface) 
 
No friction or slipping: 3 
constraints: prevents 
interpenetration and rotation about 
two axes. 
 
Sticking: 6 constraints: prevents all 
relative motion and rotation. 

NA

NA
TA1TA2

TA2

TA1

MA3

MA3

 
Clamped joint (rare in dynamics 
problems, as it prevents all motion) 
 
6 constraints (prevents all motion 
and rotation) 

 
 
 
5.2.4 Calculating natural frequencies for 1DOF conservative systems 
 
In light of the discussion in the preceding section, we clearly need some way to calculate natural 
frequencies for mechanical systems.  We do not have time in this course to discuss more than the very 
simplest mechanical systems.  We will therefore show you some tricks for calculating natural frequencies of 
1DOF, conservative, systems. It is best to do this by means of examples. 
 
Example 1: The spring-mass system revisited 
 
Calculate the natural frequency of vibration for the system shown 
in the figure. Assume that the contact between the block and wedge 
is frictionless.  The spring has stiffness k and unstretched length 0L  
 
 Our first objective is to get an equation of motion for s.  We could 
do this by drawing a FBD, writing down Newton’s law, and 
looking at its components.  However, for 1DOF systems it turns 
out that we can derive the EOM very quickly using the kinetic and 
potential energy of the system.   
 
The potential energy and kinetic energy can be written down as: 

( )
2

2
0

1 1sin
2 2

dsV k s L mgs T m
dt

α  = − − =  
 

 

(The second term in V is the gravitational potential energy – it is negative because the height of the mass 
decreases with increasing s).  Now, note  that since our system is conservative 
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( )

constant

0

T V
d T V
dt

+ =

⇒ + =
 

Differentiate our expressions for T and V (use the chain rule) to see that 
2

02

2
02

( ) sin 0

sin

ds d s ds dsm k s L mg
dt dt dtdt
m d s mgs L
k kdt

α

α

+ − − =

⇒ + = +

 

Finally, we must turn this equation of motion into one of the standard solutions to vibration equations. 
Our equation looks very similar to 

2

2 2
1

n

d x x C
dtω

+ =  

By comparing this with our equation we see that the natural frequency of vibration is 

( )

2 (rad/s)
3

1 2     = Hz
2 3

n
k
m

k
m

ω

π

=
 

 
 
Summary of procedure for calculating natural frequencies: 
 

(1)  Describe the motion of the system, using a single scalar variable (In the example, we chose 
to describe motion using the distance s); 
(2) Write down the potential energy V and kinetic energy T of the system in terms of the scalar 
variable; 

(3) Use ( ) 0d T V
dt

+ =  to get an equation of motion for your scalar variable; 

(4) Arrange the equation of motion in standard form; 
(5) Read off the natural frequency by comparing your equation to the standard form. 
 

 
Example 2: A nonlinear system. 
 
We will illustrate the procedure with a second example, which will demonstrate 
another useful trick. 
 
Find the natural frequency of vibration for a pendulum, shown in the figure. 
We will idealize the mass as a particle, to keep things simple. 
 
We will follow the steps outlined earlier: 
  (1)  We describe the motion using the angle θ  
  (2)  We write down T and V: 

2

cos

1
2

V mgL

dT m L
dt

θ

θ

= −

 =  
 
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(if you don’t see the formula for the kinetic energy, you can write down the position vector of the 

mass as sin cosL Lθ θ= −r i j , differentiate to find the velocity: cos sind dL L
dt dt
θ θθ θ= +v i j , and 

then compute 
2

2 2 2( ) / 2 (sin cos )dT m mL
dt
θ θ θ = ⋅ = + 

 
v v  and use a trig identity.  You can also 

use the circular motion formulas, if you prefer). 
 (3) Differentiate with respect to time: 

2
2

2

2

2

sin 0

sin 0

d d dmL mgL
dt dtdt

L d
g dt

θ θ θθ

θ θ

+ =

⇒ + =

 

 (4) Arrange the EOM into standard form.  Houston, we have a problem.  There is no way this equation 
can be arranged into standard form.  This is because the equation is nonlinear ( sinθ  is a nonlinear function 
of θ ).  There is, however, a way to deal with this problem.  We will show what needs to be done, 
summarizing the general steps as we go along. 
 
 

(i) Find the static equilibrium configuration(s) for the system. 
 
 If the system is in static equilibrium, it does not move.  We can find values of θ  for which the 
system is in static equilibrium by setting all time derivatives of θ  in the equation of motion to zero, 
and then solving the equation.  Here, 

0sin 0 0, ,2 ...oθ θ π π= ⇒ =  
Here, we have used 0θ  to denote the special values of θ  for which the system happens to be in 
static equilibrium.  Note that 0θ  is always a constant. 
 
(ii) Assume that the system vibrates with small amplitude about a static equilibrium 
configuration of interest. 
 
To do this, we let 0 xθ θ= + , where 1x << . 
 
Here, x represents a small change in angle from an equilibrium configuration.. Note that x will vary 
with time as the system vibrates.  Instead of solving for θ , we will solve for x.  Before going on, 
make sure that you are comfortable with the physical significance of  both x and 0θ . 
 
(iii) Linearize the equation of motion, by expanding all nonlinear terms as Taylor Maclaurin 
series about the equilibrium configuration. 
 
We substitute for θ  in the equation of motion, to see that 
 

2
02 sin( ) 0L d x x

g dt
θ+ + =  

(Recall that 0θ  is constant, so its time derivatives vanish) 
 
Now, recall the Taylor-Maclaurin series expansion of a function f(x) has the form 
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2
0 0 0 0

1( ) ( ) ( ) ( ) ...
2

f x x f x xf x x f x′ ′′+ = + + +  

where 

0 0

2
0 0 2( ) ( )

x x x x

df d ff x f x
dx dx= =

′ ′′≡ ≡  

Apply this to the nonlinear term in our equation of motion 

( ) 2
0 0 0 0

1sin sin cos sin ...
2

x x xθ θ θ θ+ = + − +  

Now, since x<<1, we can assume that nx x<< , and so 
( )0 0 0sin sin cosx xθ θ θ+ ≈ +  

Finally, we can substitute back into our equation of motion, to obtain 
 

2
0 02 cos sinL d x x

g dt
θ θ+ = −  

(iv) Compare the linear equation with the standard form to deduce the natural frequency. 
 
We can do this for each equilibrium configuration.  

2
0 20, 2 , 4 ... 0L d x x

g dt
θ π π= ⇒ + =  

whence 

(rad/sec)

1 (Hz)
2

n

n

g
L

gf
L

ω

π

=

=

 

Note that all these values of 0θ  really represent the same configuration: the mass is hanging below 
the pivot.  We have rediscovered the well-known expression for the natural frequency of a freely 
swinging pendulum. 
 
Next, try the remaining static equilibrium configuration 

2
0 2, 3 , 5 ... 0L d x x

g dt
θ π π π= ⇒ − =  

If we look up this equation in our list of standard solutions, we find it does not have a harmonic 
solution.  Instead, the solution is 

0 0
0 0

1 1( )
2 2

t tv vx t x e x e

g
L

α α
α α

α

−   = + + −   
   

=

 

where 0 ( 0)x x t= =  and 0
0t

dxv
dt =

=  
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Thus, except for some rather special initial conditions, x increases without bound 
as time increases.  This is a characteristic of an unstable mechanical system. 
 
If we visualize the system with 0θ π= , we can see what is happening.  This 
equilibrium configuration has the pendulum upside down! 

 
No wonder the equation is predicting an instability… 
 
Here is a question to think about.  Our solution predicts that both x and dx/dt 
become infinitely large.  We know that a real pendulum would never rotate with 
infinite angular velocity.  What has gone wrong? 
 
 
 
 

Example 3: We will look at one more nonlinear system, to make sure that 
you are comfortable with this procedure. Calculate the resonant frequency 
of small oscillations about the equilibrium configuration 0θ =  for the 
system shown. The spring has stiffness k and unstretched length 0L . 

 
We follow the same procedure as before. 

 
The potential and kinetic energies of the system are 

( )2

22

1 1sin cos
2 2

1
2 3

V k L mgL

mL dT
dt

θ θ

θ

= +

 =  
 

 

Hence 
2 2

2
2

2 2
2

2

1( ) sin cos sin 0
3 2

cos sin 0
3 2

d mL d d d dT V kL mgL
dt dt dt dtdt

mL d mgLkL
dt

θ θ θ θθ θ θ

θ θ θ

+ = + − =

 ⇒ + − = 
 

 

Once again, we have found a nonlinear equation of motion.  This time we know what to do.  We are told to 
find natural frequency of oscillation about 0θ = , so we don’t need to solve for the equilibrium 
configurations this time.  We set 0 xθ = + , with 1x <<  and substitute back into the equation of motion: 

2 2
2

2 cos sin 0
3 2

mL d x mgLkL x x
dt

 + − = 
 

 

Now, expand all the nonlinear terms (it is OK to do them one at a time and then multiply everything out.  
You can always throw away all powers of x greater than one as you do so) 

( )

2 2
2

2

2

2

cos 1 sin

0
3 2

0
3 1 / 2

x x x

mL d x mgLkL x
dt

m d x x
k mg kL dt

≈ ≈

 ⇒ + − = 
 

⇒ + =
−

 

We now have an equation in standard form, and can read off the natural frequency 
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3 1 (rad/sec)
2

1 3 1 (Hz)
2 2

n

n

k mg
m kL

k mgf
m kL

ω

π

 = − 
 

 = − 
 

 

Question: what happens for 2mg kL> ? 
 
Example 3: A system with a rigid body (the KE of a rigid body will be defined in the next section of 
the course – just live with it for now!). 
 
Calculate the natural frequency of vibration for the system 
shown in the figure.  Assume that the cylinder rolls without 
slip on the wedge. The spring has stiffness k and unstretched 
length 0L  
 
Our first objective is to get an equation of motion for s.  We 
do this by writing down the potential and kinetic energies of 
the system in terms of s. 
 
The potential energy is easy: 

( )20
1 sin
2

V k s L mgs α= − −  

The first term represents the energy in the spring, while second term accounts for the gravitational potential 
energy. 
 
The kinetic energy is slightly more tricky.  Note that the magnitude of the angular velocity of the disk is 
related to the magnitude of its translational velocity by 

dsR
dt

ω =  

Thus, the combined rotational and translational kinetic energy follows as 
22

2

2

1 1
2 2 2

1 3
2 2

mR dsT m
dt

m ds
dt

ω  = +  
 

 =  
 

 

 
Now, note that since our system is conservative 

( )

constant

0

T V
d T V
dt

+ =

⇒ + =
 

Differentiate our expressions for T and V to see that 
2

02

2
02

3 ( ) sin 0
2

3 sin
2

m d s ds ds dsk s L mg
dt dt dtdt

m d s mgs L
k kdt

α

α

+ − − =

⇒ + = +
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The last equation is almost in one of the standard forms given on the handout, except that the right hand 
side is not zero.  There is a trick to dealing with this problem – simply subtract the constant right hand side 
from s, and call the result x.  (This only works if the right hand side is a constant, of course).  Thus let 

0 sinmgx s L
k

α= − −  

and substitute into the equation of motion: 
2

0 02

2

2

3 sin sin
2

3 0
2

m d x mg mgx L L
k k kdt

m d x x
k dt

α α+ + + = +

⇒ + =

 

This is now in the form 
2

2 2
1 0
n

d x x
dtω

+ =  

and by comparing this with our equation we see that the natural frequency of vibration is 

( )

2 (rad/s)
3

1 2     = Hz
2 3

n
k
m

k
m

ω

π

=
 

 
 
 
5.3 Free vibration of a damped, single degree of freedom, linear spring mass 
system. 
 
We analyzed vibration of several conservative systems in the preceding section.  In each case, we found that 
if the system was set in motion, it continued to move indefinitely.  This is counter to our everyday 
experience.  Usually, if you start something vibrating, it will vibrate with a progressively decreasing 
amplitude and eventually stop moving. 
 
The reason our simple models predict the wrong behavior is that we neglected energy dissipation.  In this 
section, we explore the influence of energy dissipation on free vibration of a spring-mass system.  As 
before, although we model a very simple system, the behavior we predict turns out to be representative of a 
wide range of real engineering systems. 

 
5.3.1 Vibration of a damped spring-mass system 
 
The spring mass dashpot system shown is released with velocity 0u  from position 0s  at time 0t = .  Find 

( )s t . 
 
Once again, we follow the standard approach to solving problems like this 

(i) Get a differential equation for s using F=ma  
(ii) Solve the differential equation. 
 k,L0

m
c

s(t)
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You may have forgotten what a dashpot (or damper) does.  Suppose we apply a force F to a dashpot, as 
shown in the figure. We would observe that the dashpot stretched at a rate proportional to the force 

dLF c
dt

=  

One can buy dampers (the shock absorbers in your car contain 
dampers): a damper generally consists of a plunger inside an oil filled 
cylinder, which dissipates energy by churning the oil.  Thus, it is 
possible to make a spring-mass-damper system that looks very much 
like the one in the picture.  More generally, however, the spring mass 
system is used to represent a complex mechanical system.  In this 
case, the damper represents the combined effects of all the various mechanisms for dissipating energy in the 
system, including friction, air resistance, deformation losses, and so on. 
 
To proceed, we draw a free body diagram, showing the forces exerted by the spring 
and damper on the mass. 

 
Newton’s law then states that 

2
0 2

2
02

( ) ds d sk s L c ma m
dt dt

m d s c ds s L
k k dtdt

− + = =

⇒ + + =

 

This is our equation of motion for s. 
 
Now, we check our list of solutions to differential equations, and see that we have a solution to: 

2

2 2
1 2

nn

d x dx x C
dtdt

ς
ωω

+ + =  

We can get our equation into this form by setting 

02n
k cs x C L
m km

ω ς= = = =  

 
As before, nω  is known as the natural frequency of the system.  We have discovered a new parameter, ς , 
which is called the damping coefficient.  It plays a very important role, as we shall see below. 
 
Now, we can write down the solution for x: 
 
Overdamped System 1ς >  

0 0 0 0( )( ) ( )( )( ) exp( ) exp( ) exp( )
2 2

n d n d
n d d

d d

v x C v x Cx t C t t tςω ω ςω ω
ςω ω ω

ω ω
 + + − + − −

= + − − − 
 

 

where 2 1d nω ω ς= −  
 
Critically Damped System  1ς =  

[ ]{ }0 0 0( ) ( ) ( ) exp( )n nx t C x C v x C t tω ω= + − + + − −  
 
 

c

L

FF

mc ds
dt

k(s-L0)
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Underdamped System 1ς <  

0 0
0

( )( ) exp( ) ( )cos sinn
n d d

d

v x Cx t C t x C t tςω
ςω ω ω

ω
 + −

= + − − + 
 

 

where 21d nω ω ς= −  is known as the damped natural frequency of the system. 
 
In all the preceding equations, 0 0,x v  are the values of x and its time derivative at time t=0. 
 
These expressions are rather too complicated to visualize what the system is doing for any given set of 
parameters.  – if you have Java, Internet Explorer (or a browser plugin that allows you to run IE in another 
browser) you can run a Java Applet to visualize the motion.  You can find instructions for installing Java, 
the IE plugins, and giving permission for the Applet to run here.  The address for the free vibration 
simulator (cut and paste this into the Internet Explorer address bar) is 

http://www.brown.edu/Departments/Engineering/Courses/En4/java/free.html 
 
You can use the sliders to set the values of either m, k, and c  (in this case the program will calculate the 
values of ς  and nω  for you, and display the results), or alternatively, you can set the values of ς  and nω  
directly.  You can also choose values for the initial conditions 0x  and 0v .  When you press `start,’ the 
applet will animate the behavior of the system, and will draw a graph of the position of the mass as a 
function of time.  You can also choose to display the phase plane, which shows the velocity of the mass as a 
function of its position, if you wish.  You can stop the animation at any time, change the parameters, and 
plot a new graph on top of the first to see what has changed.  If you press `reset’, all your graphs will be 
cleared, and you can start again. 
 
Try the following tests to familiarize yourself with the behavior of the system 

 Set the dashpot coefficient c  to a low value, so that the damping coefficient 1ς < .   Make sure the 
graph is set to display position versus time, and press `start.’ You should see the system vibrate.   
The vibration looks very similar to the behavior of the conservative system we analyzed in the 
preceding section, except that the amplitude decays with time.  Note that the system vibrates at a 
frequency very slightly lower than the natural frequency of the system. 

 Keeping the value of c  fixed, vary the values of spring constant and mass to see what happens to 
the frequency of vibration and also to the rate of decay of vibration.  Is the behavior consistent with 
the solutions given above? 

  Keep the values of k and m fixed, and vary c .  You should see that, as you increase c , the 
vibration dies away more and more quickly.  What happens to the frequency of oscillations as c  is 
increased?  Is this behavior consistent with the predictions of the theory? 

  Now, set the damping coefficient (not the dashpot coefficient this time) to 1ς = .  For this value, 
the system no longer vibrates; instead, the mass smoothly returns to its equilibrium position x=0.  If 
you need to design a system that returns to its equilibrium position in the shortest possible time, 
then it is customary  to select system parameters so that 1ς = .  A system of this kind is said to be 
critically damped. 

  Set ς  to a value greater than 1.  Under these conditions, the system decays more slowly towards its 
equilibrium configuration. 

  Keeping ς >1, experiment with the effects of changing the stiffness of the spring and the value of 
the mass.  Can you explain what is happening mathematically, using the equations of motion and 
their solution? 

  Finally, you might like to look at the behavior of the system on its phase plane.  In this course, we 
will not make much use of the phase plane, but it is a powerful tool for visualizing the behavior of 

http://www.brown.edu/Departments/Engineering/Courses/En4/Notes/Java_Configuration.html
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nonlinear systems.  By looking at the patterns traced by the system on the phase plane, you can 
often work out what it is doing.  For example, if the trajectory encircles the origin, then the system 
is vibrating.  If the trajectory approaches the origin, the system is decaying to its equilibrium 
configuration.   
 

 
We now know the effects of energy dissipation on a vibrating system.  One important conclusion is that if 
the energy dissipation is low, the system will vibrate.  Furthermore, the frequency of vibration is very close 
to that of an undamped system. Consequently, if you want to predict the frequency of vibration of a system, 
you can simplify the calculation by neglecting damping. 
 
 
5.3.2 Using Free Vibrations to Measure Properties of a System 
 
We will describe one very important application of the results developed in the preceding section. 
 
It often happens that we need to measure the dynamical properties of an engineering system.  For example, 
we might want to measure the natural frequency and damping coefficient for a structure after it has been 
built, to make sure that design predictions were correct, and to use in future models of the system. 
 
You can use the free vibration response to do this, as follows. First, you instrument your design by attaching 
accelerometers to appropriate points.  You then use an impulse hammer to excite a particular mode of 
vibration, as discussed in Section 5.1.3.  You use your accelerometer readings to determine the 
displacement at the point where the structure was excited: the results will be a graph similar to the one 
shown below. 

 
We then identify a nice looking peak, and call the time there 0t , as shown. 
 
The following quantities are then measured from the graph: 
 
1. The period of oscillation.  The period of oscillation was defined in Section 5.1.2: it is the time 
between two peaks, as shown.  Since the signal is (supposedly) periodic, it is often best to estimate T as 
follows 

0nt tT
n
−

=  

where nt  is the time at which the nth peak occurs, as shown in the picture. 
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2. The Logarithmic Decrement.  This is a new quantity, defined as follows 

1

( )log
( )

n

n

x t
x t

δ
+

 
=  

 
 

where ( )nx t  is the displacement at the nth peak, as shown.  In principle, you should be able to pick any two 
neighboring peaks, and calculate δ .  You should get the same answer, whichever peaks you choose.   It is 
often more accurate to estimate δ  using the following formula 

0( )1 log
( )n

x t
n x t

δ
 

=  
 

 

This expression should give the same answer as the earlier definition. 
 
Now, it turns out that we can deduce nω  and ς  from T and δ , as follows. 

2 2

2 2

4

4
n T

δ π δς ω
π δ

+
= =

+
 

 
Why does this work? Let us calculate T and δ  using the exact solution to the equation of motion for a 
damped spring-mass system.  Recall that, for an underdamped system, the solution has the form 

0
0( ) exp( ) cos sinn n

n d d
d

v xx t t x t tςω
ςω ω ω

ω
 +

= − + 
 

 

where 21d nω ω ς= − . Hence, the period of oscillation is 

2

2 2

1d n

T π π
ω ω ς

= =
−

 

Similarly,  
0

0
0

0
0

0

exp( ) cos sin
log

exp( ( )) cos ( ) sin ( )

n n
n n d n d n

n n
n n d n d n

v xt x t t
v

v xt T x t T t T
v

ςωςω ω ω
d

ςωςω ω ω

 +
− + 

 =
 +

− + + + + 
 

 

where we have noted that 1n nt t T+ = + . 
 
Fortunately, this horrendous equation can be simplified greatly:  substitute for T in terms of nω  and 
ς , then cancel everything you possibly can to see that 

2

2

1

πςδ
ς

=
−

 

 
Finally, we can solve for nω  and ς  to see that: 

2 2

2 2

4

4
n T

δ π δς ω
π δ

+
= =

+
 

as promised. 
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Note that this procedure can never give us values for k, m or c .  However, if we wanted to find 
these, we could perform a static test on the structure.  If we measure the deflection d under a static 
load F, then we know that 

Fk
d

=  

Once k had been found, m and c  are easily deduced from the relations 

2n
k c
m km

ω ς= =  

 
 
5.4 Forced vibration of damped, single degree of freedom, linear spring mass 
systems. 
 
Finally, we solve the most important vibration problems of all.  In engineering practice, we are almost 
invariably interested in predicting the response of a structure or mechanical system to external forcing.  For 
example, we may need to predict the response of a bridge or tall building to wind loading, earthquakes, or 
ground vibrations due to traffic.  Another typical problem you are likely to encounter is to isolate a sensitive 
system from vibrations.  For example, the suspension of your car is 
designed to isolate a sensitive system (you) from bumps in the road.  
Electron microscopes are another example of sensitive instruments 
that must be isolated from vibrations.  Electron microscopes are 
designed to resolve features a few nanometers in size.  If the specimen 
vibrates with amplitude of only a few nanometers, it will be 
impossible to see!  Great care is taken to isolate this kind of instrument 
from vibrations.  That is one reason they are almost always in the 
basement of a building: the basement vibrates much less than the 
floors above. 
 
We will again use a spring-mass system as a model of a real 
engineering system.  As before, the spring-mass system can be thought 
of as representing a single mode of vibration in a real system, whose 
natural frequency and damping coefficient coincide with that of our 
spring-mass system. 
 
We will consider three types of forcing applied to the spring-mass 
system, as shown below: 
 
External Forcing models the behavior of a system which has a time 
varying force acting on it.  An example might be an offshore structure 
subjected to wave loading. 
 
Base Excitation models the behavior of a vibration isolation system.  
The base of the spring is given a prescribed motion, causing the mass 
to vibrate.  This system can be used to model a vehicle suspension 
system, or the earthquake response of a structure. 
 
Rotor Excitation models the effect of a rotating machine mounted on 
a flexible floor.  The crank with length 0Y  and mass 0m  rotates at 
constant angular velocity, causing the mass m to vibrate.   

k,L0

m
c

s(t)

k,L0

m
c

s(t)

k,L0

m
c

s(t)

y(t)

F(t)

m0

y(t)=Y0 sinω
ω

t

External Force

Base Excitation

Rotor Excitation

Y0
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Of course, vibrating systems can be excited in other ways as well, but the equations of motion will always 
reduce to one of the three cases we consider here. 
 
Notice that in each case, we will restrict our analysis to harmonic excitation.  For example, the external 
force applied to the first system is given by 

0( ) sinF t F tω=  
The force varies harmonically, with amplitude 0F  and frequency ω . Similarly, the base motion for the 
second system is 

0( ) siny t Y tω=  
and the distance between the small mass 0m  and the large mass m for the third system has the same form. 
 
We assume that at time t=0, the initial position and velocity of each system is 

0 0
dxx x v
dt

= =  

 
In each case, we wish to calculate the displacement of the mass x from its static equilibrium configuration, 
as a function of time t. It is of particular interest to determine the influence of forcing amplitude and 
frequency on the motion of the mass. 
 
We follow the same approach to analyze each system: we set up, and solve the equation of motion. 
 
 
 
5.4.1 Equations of Motion for Forced Spring Mass Systems 
 
Equation of Motion for External Forcing 
 
We have no problem setting up and solving equations of motion by now.  
First draw a free body diagram for the system, as show on the right 

 
Newton’s law of motion gives 

2
02 ( ) ( )d s dsm F t k s L c

dtdt
= − − −  

Rearrange and susbstitute for F(t) 
2

0 02
1 sinm d s c ds s L F t

k k dt kdt
ω+ + = +  

Check out our list of solutions to standard ODEs.  We find that if we set 
1, ,

2n
k c K
m kkm

ω ς= = = , 

our equation can be reduced to the form 
2

02 2
1 2 sin

nn

d x dx x C KF t
dtdt

ς ω
ωω

+ + = +   

which is on the list. 
 

mc ds
dt

k(s-L0)

F(t)
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The (horrible) solution to this equation is given in the list of solutions.  We will discuss the solution later, 
after we have analyzed the other two systems. 
 
 
Equation of Motion for Base Excitation 
 
Exactly the same approach works for this system.  The free body diagram is shown 
in the figure.  Note that the force in the spring is now k(x-y) because the length of 
the spring is 0L x y+ − .  Similarly, the rate of change of length of the dashpot is 
d(x-y)/dt. 
 
Newton’s second law then tells us that 

2
02

2
02

( )d s ds dym k s y L c
dt dtdt

m d s c ds c dys L y
k k dt k dtdt

 = − − − − − 
 

⇒ + + = + +

 

Make the following substitutions 

, , 1
2n

k c K
m km

ω ς= = =  

and the equation reduces to the standard form 
2

2 2
1 2 2

n nn

d x dx dyx C K y
dt dtdt

ς ς
ω ωω

 
+ + = + + 

 
 

Given the initial conditions  

0 0
dxx x v
dt

= =  

and the base motion 
0( ) siny t Y tω=  

we can look up the solution in our handy list of solutions to ODEs.   
 
 
Equation of motion for Rotor Excitation 
 
Finally, we will derive the equation of motion for the third case.  Free 
body diagrams are shown in the figure   for both the rotor and the mass 

 
Note that the horizontal acceleration of the mass 0m  is 

2 2 2

2 2 2( )d d s d ya s y
dt dt dt

= + = +  

Hence, applying Newton’s second law in the horizontal direction 
for both masses: 

mc d(s-y)
dt

k(s-y-L0)

s(t)

k(s-L0)

m

m0

c d(s-y)
dt

H

H

V

V

Q

QR1 R2
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2
02

2 2
0 2 2

( )d s dsm H k s L c
dtdt

d s d ym H
dt dt

= − − −

 
+ = −  

 

 

Add these two equations to eliminate H and rearrange 
2 2

0 0
02 2

m m md s c ds d ys L
k k dt kdt dt
+

+ + = −  

To arrange this into standard form, make the following substitutions 

0

0 00( ) 2 ( )n
mk c K

m m m mk m m
ω ς= = =

+ ++
 

whereupon the equation of motion reduces to 
2 2

02 2 2 2
1 2

nn n

d s ds K d ys L
dtdt dt

ς
ωω ω

+ + = −  

Finally, look at the picture to convince yourself that if the crank rotates with 
angular velocity ω , then 

0( ) siny t Y tω=  
where 0Y  is the length of the crank. 

 
The solution can once again be found in the list of solutions to ODEs. 
 
 
5.4.2 Definition of Transient and Steady State Response. 
 
If you have looked at the list of solutions to the equations of motion we derived in the preceding section, 
you will have discovered that they look horrible.  Unless you have a great deal of experience with 
visualizing equations, it is extremely difficult to work out what the equations are telling us. 
 
If you have Java, Internet Explorer (or a browser plugin that allows you to run IE in another browser) you 
can run a Java Applet to visualize the motion.  You can find instructions for installing Java, the IE plugins, 
and giving permission for the Applet to run here.  The address for the free vibration simulator (cut and paste 
this into the Internet Explorer address bar) is 

http://www.brown.edu/Departments/Engineering/Courses/En4/java/forced.html 
 
The applet simply calculates the solution to the equations of motion using the formulae given in the list of 
solutions, and plots graphs showing features of the motion.  You can use the sliders to set various 
parameters in the system, including the type of forcing, its amplitude and frequency; spring constant, 
damping coefficient and mass; as well as the position and velocity of the mass at time t=0.  Note that you 
can control the properties of the spring-mass system in two ways: you can either set values for k, m and c  
using the sliders, or you can set nω , K and ς  instead.  
  
We will use the applet to demonstrate a number of important features of forced vibrations, including the 
following: 
 
The steady state response of a forced, damped, spring mass system is independent of the initial 
conditions. 

http://www.brown.edu/Departments/Engineering/Courses/En4/Notes/Java_Configuration.html
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To convince yourself of this, run the applet (click on `start’ and let the system run for a while).  Now, press 
`stop’; change the initial position of the mass, and press `start’ again. 
You will see that, after a while, the solution with the new initial conditions is exactly the same as it was 
before.  Change the type of forcing, and repeat this test.  You can change the initial velocity too, if you 
wish. 
 
We call the behavior of the system as time gets very large the `steady state’ response; and as you see, it is 
independent of the initial position and velocity of the mass. 
 
The behavior of the system while it is approaching the steady state is called the `transient’ response.  The 
transient response depends on everything… 
 
Now, reduce the damping coefficient and repeat the test.  You will find that the system takes longer to reach 
steady state.  Thus, the length of time to reach steady state depends on the properties of the system (and also 
the initial conditions). 
 
The observation that the system always settles to a steady state has two important consequences.  Firstly, we 
rarely know the initial conditions for a real engineering system (who knows what the position and velocity 
of a bridge is at time t=0?) .  Now we know this doesn’t matter – the response is not sensitive to the initial 
conditions.   Secondly, if we aren’t interested in the transient response, it turns out we can greatly simplify 
the horrible solutions to our equations of motion. 
 
When analyzing forced vibrations, we (almost) always neglect the transient response of the system, 
and calculate only the steady state behavior. 
 
If you look at the solutions to the equations of motion we calculated in the preceding sections, you will see 
that each solution has the form 

( ) ( ) ( )h px t x t x t= +  
The term ( )hx t  accounts for the transient response, and is always zero for large time.  The second term 
gives the steady state response of the system.   
 
Following standard convention, we will list only the steady state solutions below.  You should bear in mind, 
however, that the steady state is only part of the solution, and is only valid if the time is large enough that 
the transient term can be neglected. 
 
 
5.4.3 Summary of Steady-State Response of Forced Spring Mass Systems. 
 
 
This section summarizes all the formulas you will need to solve problems 
involving forced vibrations.   
 
Solution for External Forcing 
 
Equation of Motion 

2

2 2
1 2 ( )

nn

d s ds s C KF t
dtdt

ς
ωω

+ + = +  

with 

k,L0

m
c

s(t)

F(t)

External Force
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0
1, ,

2n
k c K C L
m kkm

ω ς= = = =  

Steady State Solution: 
( )

( ) ( )

0 0 0

1
1/2 2 22 22 2

( ) sin ( / , )
2 /1( / , ) tan

1 /
1 / 2 /

n

n
n

n
n n

s t C X t X KF M

M

ω φ ω ω ζ
ςω ω

ω ω ζ φ
ω ω

ω ω ςω ω

−

= + + =

−
= =

− 
− + 

 

 

Here, the function M is called the ‘magnification’ for the system.  M and φ  are graphed below, as a 
function of / nω ω  

 
 

(a)                                                                             (b) 
Steady state vibration of a force spring-mass system (a) Magnification (b) phase. 

 
 
Solution for Base Excitation 
 
Equation of Motion 

2

2 2
1 2 2

n nn

d x dx dyx K y
dt dtdt

ς ς
ω ωω

 
+ + = + 

 
 

with 

, , 1
2n

k K
m km

λω ς= = =  

Steady State solution 
( )

( ){ }
( ) ( )

0 0 0
1/22

3 3
1

1/2 2 2 22 22 2

( ) sin ( / , )

1 2 / 2 /tan
1 (1 4 ) /

1 / 2 /

n

n n

n
n n

x t X t X KY M

M

ω φ ω ω ζ

ςω ω ςω ω
φ

ς ω ω
ω ω ςω ω

−

= + =

+ −
= =

− − 
− + 

 

 

The expressions for M  and φ  are graphed below, as a function of / nω ω  

k,L0

m
c

s(t)

y(t)
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(a)                                                                        (b) 

Steady state vibration of a base excited spring—mass system (a) Amplitude and (b) phase 
 
 
 
  
 

Solution for Rotor Excitation 
 

Equation of Motion 
2 2

2 2 2 2
1 2

nn n

d x dx K d yx
dtdt dt

ς
ωω ω

+ + = −  

with 
0

0 00( ) 2 ( )n
mk K

m m m mk m m
λω ς= = =

+ ++
 

Steady state solution 
( )

( ) ( )

0 0 0
2 2

1
1/2 2 22 22 2

( ) sin ( / , )

/ 2 /tan
1 /

1 / 2 /

n

n n

n
n n

x t X t X KY M

M

ω φ ω ω ζ

ω ω ςω ω
φ

ω ω
ω ω ςω ω

−

= + =

−
= =

− 
− + 

 

 

 
The expressions for 0X  and φ  are graphed below, as a function of / nω ω  
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Steady state vibration of a rotor excited spring—mass system (a) Amplitude (b) Phase 

 
 
5.4.4 Features of the Steady State Response of Spring Mass Systems to Forced Vibrations. 

 
 
Now, we will discuss the implications of the results in the preceding section. 
 

 The steady state response is always harmonic, and has the same frequency as that of the forcing. 
 

To see this mathematically, note that in each case the solution has the form 0( ) sin( )x t X tω φ= + .  
Recall that ω  defines the frequency of the force, the frequency of base excitation, or the rotor 
angular velocity.  Thus, the frequency of vibration is determined by the forcing, not by the 
properties of the spring-mass system.  This is unlike the free vibration response. 
 
You can also check this out using our applet.  To switch off the transient solution, click on the 
checkbox labeled `show transient’.  Then, try running the applet with different values for k, m and 
c , as well as different forcing frequencies, to see what happens.  As long as you have switched off 
the transient solution, the response will always be harmonic. 
 

 The amplitude of vibration is strongly dependent on the frequency of excitation, and on the properties 
of the spring—mass system. 

 
To see this mathematically, note that the solution has the form 0( ) sin( )x t X tω φ= + .  Observe that 

0X  is the amplitude of vibration, and look at the preceding section to find out how the amplitude of 
vibration varies with frequency, the natural frequency of the system, the damping factor, and the 
amplitude of the forcing.  The formulae for 0X  are quite complicated, but you will learn a great 
deal if you are able to sketch graphs of 0X  as a function of / nω ω  for various values of ς .   
 
You can also use our applet to study the influence of forcing frequency, the natural frequency of the 
system,  and the damping coefficient.  If you plot position-v-time curves, make sure you switch off 
the transient solution to show clearly the steady state behavior.  Note also that if you click on the 
`amplitude –v- frequency’ radio button just below the graphs, you will see a graph showing the 
steady state amplitude of vibration as a function of forcing frequency.  The current frequency of 
excitation is marked as a square dot on the curve (if you don’t see the square dot, it means the 
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frequency of excitation is too high to fit on the scale – if you lower the excitation frequency and 
press `start’ again you should see the dot appear).  You can change the properties of the spring mass 
system (or the natural frequency and damping coefficient) and draw new amplitude-v-frequency 
curves to see how the response of the system has changed.   
 
Try the following tests 
 
(i) Keeping the natural frequency fixed (or k and m fixed), plot ampltude-v-frequency graphs for 
various values of damping coefficient (or the dashpot coefficient).  What happens to the maximum 
amplitude of vibration as damping is reduced? 
 
(ii) Keep the damping coefficient fixed at around 0.1.  Plot graphs of amplitude-v-frequency for 
various values of the natural frequency of the system.  How does the maximum vibration amplitude 
change as natural frequency is varied?  What about the frequency at which the maximum occurs? 
 
(iii) Keep the dashpot coefficient fixed at a lowish value.  Plot graphs of amplitude-v-frequency for 
various values of spring stiffness and mass.  Can you reconcile the behavior you observe with the 
results of test (ii)? 
 
(iv) Try changing the type of forcing to base excitation and rotor excitation.  Can you see any 
differences in the amplitude-v-frequency curves for different types of forcing? 
 
(v) Set the damping coefficient to a low value (below 0.1).  Keep the natural frequency fixed.  Run 
the program for different excitation frequencies.  Watch what the system is doing.  Observe the 
behavior when the excitation frequency coincides with the natural frequency of the system.  Try this 
test for each type of excitation. 
 

 If the forcing frequency is close to the natural frequency of the system, and the system is 
lightly damped, huge vibration amplitudes may occur.  This phenomenon is known as 
resonance.   

 
If you ran the tests in the preceding section, you will have seen the system resonate.  Note 
that the system resonates at a very similar frequency for each type of forcing. 
 
As a general rule, engineers try to avoid resonance like the plague.  Resonance is bad vibrations.  
Large amplitude vibrations imply large forces; and large forces cause material failure.  There are 
exceptions to this rule, of course.  Musical instruments, for example, are supposed to resonate, so as 
to amplify sound.  Musicians who play string, wind and brass instruments spend years training their 
lips or bowing arm to excite just the right vibration modes in their instruments to make them sound 
perfect.  Resonance is a good thing in energy harvesting systems, and many instruments, such as 
MEMS gyroscopes, and atomic force microscopes, work by measuring how an external stimulus of 
some sort (rotation, or a surface force) changes the resonant frequency of a system. 
 

 There is a phase lag between the forcing and the system response, which depends on the frequency of 
excitation and the properties of the spring-mass system. 

 
The response of the system is 0( ) sin( )x t X tω φ= + .  Expressions for φ  are given in the preceding 
section.  Note that the phase lag is always negative.   
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You can use the applet to examine the physical significance of the phase lag.  Note that you can 
have the program plot a graph of phase-v-frequency for you, if you wish. 
 
It is rather unusual to be particularly interested in the phase of the vibration, so we will not discuss 
it in detail here. 
 
 

5.4.5 Engineering implications of vibration behavior 
 
The solutions listed in the preceding sections give us general guidelines for engineering a system to avoid 
(or create!) vibrations. 
 
Preventing a system from vibrating: Suppose that we need to stop a structure or 
component from vibrating – e.g. to stop a tall building from swaying.   Structures 
are always deformable to some extent – this is represented qualitatively by the 
spring in a spring-mass system.  They always have mass – this is represented by 
the mass of the block.   Finally, the damper represents energy dissipation.  Forces 
acting on a system generally fluctuate with time.  They probably aren’t perfectly 
harmonic, but they usually do have a fairly well defined frequency (visualize 
waves on the ocean, for example, or wind gusts.  Many vibrations are man-made, 
in which case their frequency is known – for example vehicles traveling on a road 
tend to induce vibrations with a frequency of about 2Hz, corresponding to the 
bounce of the car on its suspension). 
 
So how do we stop the system from vibrating?   We 
know that its motion is given by 

( )

( ) ( )

0

0
0 1/22 22 2

1
2 2

( ) sin

1 / 2 /

2 /tan
1 /

n n

n

n

x t X t
KFX

ω φ

ω ω ςω ω

ςω ω
φ

ω ω
−

= +

=
 

− + 
 

−
=

−

 

1, ,
2n

k c K
m kkm

ω ς= = =  

To minimize vibrations, we must design the system 
to make the vibration amplitude 0X  as small as possible.  The formula for 0X  is a bit scary, which is why 
we plot graphs of the solution.  The graphs show that we will observe vibrations with large amplitudes if (i) 
The frequency  / nω ω  is close to 1; and (ii) the damping ζ  is small.  At first sight, it looks like we could 
minimize vibrations by making / nω ω  very large.  This is true in principle, and can be done in some 
designs, e.g. if the force acts on a very localized area of the structure, and will only excite a single vibration 
mode.  For most systems, this approach will not work, however.  This is because real components generally 
have a very large number of natural frequencies of vibration, corresponding to different vibration modes.   
We could design the system so that / nω ω  is large for the mode with the lowest frequency – and perhaps 
some others – but there will always be other modes with higher frequencies, which will have smaller values 
of  / nω ω  .  There is a risk that one of these will be close to resonance.  Consequently, we generally design 
the system so that / 1nω ω <<  for the mode with the lowest natural frequency.  In fact, design codes usually 
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specify the minimum allowable value of  / nω ω  for vibration critical components.  This will guarantee that 
/ 1nω ω <<  for all modes, and hence the vibration amplitude 0 0 0 /X KF F k→ = .  This tells us that the best 

approach to avoid vibrations is to make the structure as stiff as possible.  This will make the natural 
frequency large, and will also make 0 /F k  small. 
 
Designing a suspension or vibration isolation system.  Suspensions, and 
vibration isolation systems, are examples of base excited systems.  In this 
case, the system really consists of a mass (the vehicle, or the isolation table) 
on a spring (the shock absorber or vibration isolation pad).  We expect that 
the base will vibrate with some characteristic frequency ω . Our goal is to 
design the system to minimize the vibration of the mass. 
 
Our vibration solution predicts that the mass vibrates with displacement 

( )

( ){ }
( ) ( )

0
1/22

0
0 1/22 22 2

3 3
1

2 2 2

( ) sin

1 2 /

1 / 2 /
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1 (1 4 ) /

n
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ω ω ςω ω

ςω ω
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ς ω ω
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, , 1
2n

k c K
m km

ω ς= = =  

Again, the graph is helpful to understand how the 
vibration amplitude 0X  varies with system 
parameters. 
 
Clearly, we can minimize the vibration amplitude of 
the mass by making / 1nω ω >> .   We can do this by 
making the spring stiffness as small as possible (use a 
soft spring), and making the mass large.  It also helps 
to make the damping ζ  small.  This is counter-
intuitive – people often think that the energy 
dissipated by the shock absorbers in their suspensions 
that makes them work.   There are some disadvantages to making the damping too small, however.  For one 
thing, if the system is lightly damped, and is disturbed somehow, the subsequent transient vibrations will 
take a very long time to die out.   In addition, there is always a risk that the frequency of base excitation is 
lower than we expect – if the system is lightly damped, a potentially damaging resonance may occur.    
 
Suspension design involves a bit more than simply minimizing the vibration of the mass, of course – the car 
will handle poorly if the wheels begin to leave the ground.  A very soft suspension generally has poor 
handling, so the engineers must trade off handling against vibration isolation. 
 
 
 
 

k,L0

m
c

s(t)

y(t)
Base Excitation



 36 

5.4.6 Using Forced Vibration Response to Measure Properties of a System. 
 
We often measure the natural frequency and damping coefficient for a mode of vibration in a structure or 
component, by measuring the forced vibration response of the system. 
 
Here is how this is done.  We find some way to apply a harmonic excitation to the system (base excitation 
might work; or you can apply a force using some kind of actuator, or you could deliberately mount an 
unbalanced rotor on the system). 
 
Then, we mount accelerometers on our system, and use 
them to measure the displacement of the structure, at 
the point where it is being excited, as a function of 
frequency. 
 
We then plot a graph, which usually looks something 
like the picture on the right. We read off the maximum 
response maxX , and draw a horizontal line at 
amplitude max / 2X .  Finally, we measure the 
frequencies 1ω , 2ω  and maxω  as shown in the picture. 
 
We define the bandwidth of the response ω∆  as 

2 1ω ω ω∆ = −  
Like the logarithmic decrement, the bandwidth of the forced harmonic response is a measure of the 
damping in a system. 
 
It turns out that we can estimate the natural frequency of the system and its damping coefficient using the 
following formulae 

max
max2 n
ως ω ω

ω
∆

≈ ≈  

The formulae are accurate for small ς  - say 0.2ς < . 
 
To understand the origin of these formulae, recall that the amplitude of vibration due to external forcing is 
given by 

( ) ( )

0
0 2 22 21 / 2 /n n

KFX
ω ω ςω ω

=

− +

 

We can find the frequency at which the amplitude is a maximum by differentiating with respect to ω , 
setting the derivative equal to zero and solving the resulting equation for frequency.  It turns out that the 
maximum amplitude occurs at a frequency 

2
max 1 2nω ω ς= −  

For small ς , we see that 

max nω ω≈  
 
 

Next, to get an expression relating the bandwidth ω∆  to ς , we first calculate the frequencies 1ω  and 2ω .  
Note that the maximum amplitude of vibration can be calculated by setting maxω ω= , which gives 
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0
max 22 1

KFX
ς ς

=
−

 

Now, at the two frequencies of interest, we know 0 max / 2X X= , so that 1ω  and 2ω  must be solutions of 
the equation 

( ) ( )

0 0
2 2 22 2

1
22 1 1 / 2n n

KF KF

ς ς ω ω ςωω
=

− − +

 

Rearrange this equation to see that 
4 2 2 2 4 2 4 22 (1 2 ) 8 (1 ) 0n n nω ω ω ς ω ς ω ς− − + − − =  

This is a quadratic equation for 2ω  and has solutions 

{ }
{ }

1/2
2 2 2 2

1

1/2
2 2 2 2

2

(1 2 ) 2 1

(1 2 ) 2 1

n n

n n

ω ω ς ω ς ς

ω ω ς ω ς ς
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Expand both expressions in a Taylor series about 0ς =  to see that 

1

2

(1 )
(1 )

n

n

ω ω ς
ω ω ς

≈ −

≈ +
 

so, finally, we confirm that 
2 1 2 nω ω ω ςω∆ = − =  

 
 

5.4.7 Example Problems in Forced Vibrations 
 
Example 1: A structure is idealized as a damped spring—mass system with 
stiffness 10 kN/m; mass 2Mg; and dashpot coefficient 2 kNs/m.  It is subjected to 
a harmonic force of amplitude 500N at frequency 0.5Hz.  Calculate the steady 
state amplitude of vibration. 
 
Start by calculating the properties of the system: 

1 12.23 rad/s 0.224   m/N
100002n

k c K
m kkm

ω ς= = = = = =  

Now, the list of solutions to forced vibration problems gives 
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For the present problem: 
n0.5 2 rad/s / / 2.23 1.41ω π ω ω π= × ⇒ = =  

Substituting numbers into the expression for the vibration amplitude shows that 
0 43 mmX =  
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Example 2: A car and its suspension system are idealized as a damped spring—mass system, with natural 
frequency 0.5Hz and damping coefficient 0.2.  Suppose the car drives at speed V over a road with sinusoidal 
roughness.  Assume the roughness wavelength is 10m, and its amplitude is 20cm.  At what speed does the 
maximum amplitude of vibration occur, and what is the corresponding vibration amplitude? 
 

k,L0

m

c

s(t)

V

L=1m

H=20cm

s

 
Let s denote the distance traveled by the car, and let L denote the wavelength of the roughness and H the 
roughness amplitude.  Then, the height of the wheel above the mean road height may be expressed as 

2sin sy H
L
π =  

 
 

Noting that s Vt= , we have that 
2( ) sin Vy t H t

L
π =  

 
 

i.e., the wheel oscillates vertically with harmonic motion, at frequency 2 /V Lω π= . 
 
Now, the suspension has been idealized as a spring—mass system subjected to base excitation.  The steady 
state vibration is 
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For light damping, the maximum amplitude of vibration occurs at around the natural frequency.  Therefore, 
the critical speed follows from 

2

/ 2 5m/s=18 km/hr

n

n

V
L

V L

πω ω

ω π

= =

⇒ = =
 

Note that K=1 for base excitation, so that the amplitude of vibration at / 1nω ω =  is approximately 

0
0 20 / 0.4 50cm

2
YX
ς

≈ = =  

Note that at this speed, the suspension system is making the vibration worse.  The amplitude of the car’s 
vibration is greater than the roughness of the road.  Suspensions work best if they are excited at frequencies 
well above their resonant frequencies.   
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Example 3: The suspension system discussed in the preceding problem has the following specifications.  
For the roadway described in the preceding section, the amplitude of vibration may not exceed 35cm at any 
speed.  At 55 miles per hour, the amplitude of vibration must be less than 10cm.  The car weighs 3000lb.  
Select values for the spring stiffness and the dashpot coefficient. 
   
We must first determine values for ζ  and nω  that will 
satisfy the design specifications. To this end: 
(i) The specification requires that 

0

0

35 1.75
20

X
Y

< =  

for any value of ω  (remember 2 /V Lω π=  ).  
Recall that 0 0 ( / , )nX KY M ω ω ζ=  and that K=1 
for a base excited spring—mass system. This tells 
us that the magnification 0 0/M X Y=  has to be 
below 1.75 for any frequency. The graph shows 
that if 0.4ς > , the magnification never exceeds 
1.75.  We also see that smaller values of ζ  make 
the suspension more effective (M is smaller) at high frequencies.   So 0.4ς =  is a good choice. 
 
If you prefer not to use the graph, you can use the approximation max 1 / (2 )M ζ≈  which suggests that 

1 / (2 1.75)ζ > ×  which gives 0.3ζ ≈  - but the approximation is not very accurate for such large values 
of ζ  (to get a better estimate you’d have to maximize the formula for magnification with respect to ω  
but that’s very messy). 

 
(ii) Now, the frequency of base excitation at 55mph is  

2 2 0.447 55 15.45  rad/s
10

V
L
π πω × ×

= = =  

We must choose system parameters so that, at this excitation frequency, 0 0/ 10 / 20 1/ 2X Y < = .  
This tells us that M must be less than ½ when ω  is 15.45 rad/s or greater.  We already know that 

0.4ζ = , and following the curve for this value of ζ  we see that M<1/2 if  / 2nω ω > . Therefore, we 
must pick / 2 7.7  rad/snω ω< = .  
 
Again, if you prefer not to use the graph, you can also solve 
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ω ω ςω ω

+
= <
 

− + 
 

 

for / nω ω  , but this is a pain, and the graph is accurate enough for a design estimate.  
Finally, we can compute properties of the system.  We have that 

7.7 78  kN/m
0.44 3000n

k k k
m

ω = ⇒ = ⇒ =
×

 

Similarly 

2 0.4 78000 .44 3000 8kNs/m
2 mk
λς λ= ⇒ = × × × × =  



 40 

5.5 Solving differential equations for vibrating systems 
 
Our goal in this course is to understand what the solutions to differential equations tell us about engineering 
problems we might need to solve.   But if you have time on your hands, you might be interested in learning 
how to solve the differential equations. It’s fairly straightforward, if a little tedious algebraically.  You will 
learn this material in future courses (applied math, and several more advanced engineering courses) whether 
you want to or not…    
 
Review of complex numbers 
It’s easiest to solve linear ODEs using complex variables.   The following definitions and results are 
particularly useful: 

 Define 1i = −   
 Any complex number z can be split into imaginary and real parts as 

z a ib= +  
where a and b are two real numbers.  

 Define the complex conjugate as z a ib= −   
 It follows that  ( ) / 2 ( ) / 2a z z b i z z= + = − −   
 The exponential of an imaginary number (Euler’s formula) is 

cos sinie iθ θ θ= +  
You can prove this by taking the Taylor expansion of both sides of the formula 

 Euler’s formula enables us to write any complex number in polar form 
2 2 1tan ( / )

cos sin

ia ib e a b b a
a b

θρ ρ θ
ρ θ ρ θ

−+ = = + =
= =

 

 Euler’s formula also allows us to represent trig functions as complex exponentials 
cos ( ) / 2 sin ( ) / 2i i i ie e i e eθ θ θ θθ θ− −= + = − −  

 Note that  
2

2
2

i t i t
i t i tde d ei e e

dt dt

ω ω
ω ωω ω= = −  

 
Solution to the equation of motion for an undamped harmonic oscillator 

Solve 
2

2 2
1

n

d x x C
dtω

+ =  with initial conditions 0 0/ 0x x dx dt v t= = =   

Guess a solution of the form tx C Aeλ= +  where A and λ  are two complex numbers to be determined  (this 
may seem a cheat, but actually there are only two ways to do an integral (1) guess a solution, differentiate it, 
and see if the answer is correct; and (2) rearrange the integral into another form with a known solution.   We 
know an exponential is a good guess for x because when an exponential is differentiated it stays an 
exponential).   Substitute this into our ODE 

2

2 0t t

n
Ae Aeλ λλ

ω
+ =  

We can satisfy this for any A by choosing 2 2/ 1 1n n niλ ω λ ω ω= − ⇒ = ± − = ±  .   This gives us two families 
of solutions to the equations, one with exp( )nx C A i tω= +  and another with exp( )nx A i tω= − .  The most 
general solution is the sum of these, with different coefficients 

1 2n ni t i tx C A e A eω ω−= + +  
We need to find 1 2,A A : we can do this by substituting t=0 into x and using the given values of x at t=0 
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1 2 0 1 2 0

1 2 0 1 2 0
0

(0)

( ) /n n
t

x A A C x A A x C
dx i A A v A A iv
dt

ω ω
=

= + + = ⇒ + = −

= − = ⇒ − = −
 

Add and subtract these two equations to see that 

0 0
1 0 2 0

1 1( ) ( )
2 2n n

v vA x C i A x C i
ω ω

   
= − − = − +   

   
 

We can use Euler’s formula to re-write this as 

( )
( ) ( )

1 0 2 0

2 2 2 0 0
0 0 0 2 22 2 2 2

0 0 0 0

2 2
// sin cos

/ /

i i

n
n

n n

i iA X e A X e

x C vX x C v
x C v x C v

φ φ

ω
ω φ φ

ω ω

−= − =

−
= − + = =

− + − +

 

(to see this just substitute 0 ,X φ  into the formulas and use Euler’s formula to show 1 2,A A   are correct).  
Finally substitute 1 2,A A  into the general solution for x to see that 

( )( ) ( )
0 0 0

0

2 2 2
sin( )

n n n ni t i t i t i ti i

n

i i ix C X e e X e e C X e e

C X t

ω ω ω φ ω φφ φ

ω φ

− + − +−= − + = − −

= + +
 

This agrees with the answer on the formula sheet. 
 
 
Solution to the equation of motion for a free damped system 
 

Solve 
2

2 2
1 2

nn

d x dx x C
dtdt

ς
ωω

+ + =  with initial conditions 0 0/ 0x x dx dt v t= = =  

 
As before we guess a solution tx C Aeλ= +  where A and λ  are two complex numbers to be determined.  
Substituting into the equation: 

2

2
2 1 0t

nn
Aeλλ ςλ

ωω

 
+ + =  

 
 

This gives a quadratic equation for λ  (it is called the ‘characteristic equation’ for the differential equation).  
It has solutions 

2 1n nλ ζω ω ζ= − −  
Depending on the value of ζ  we find 

• 1ζ >   (overdamped) – two real values of λ  n dλ ζω ω= − ±   
• 1ζ =   (critical damping): nλ ω= −   
• 1ζ <  (underdamped) – two complex values of λ  n diλ ζω ω= − ±  

where we have defined 2 1d nω ω ζ= −   To write the answers in terms of real valued functions we need 

to treat these cases separately. 
 
Overdamped solution: We have that 

( ) ( )
1 2n d n dt tx C A e A eζω ω ζω ω− + − −= + +  
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We can use the initial conditions to determine 1 2,A A  : 

1 2 0

1 1 0
0

0 0 0 0
1 2

(0)

( ) ( )

( )( ) ( )( )
2 2

d n d n
t

n d n d

d d

x C A A x
dx A A v
dt

v x C v x CA A

ω ζω ω ζω

ςω ω ςω ω
ω ω

=

= + + =

= − − + =

+ + − + − −
⇒ = = −

 

Hence 

0 0 0 0( )( ) ( )( )( ) exp( ) exp( ) exp( )
2 2

n d n d
n d d

d d

v x C v x Cx t C t t tςω ω ςω ω
ςω ω ω

ω ω
 + + − + − −

= + − − − 
 

 

 
 
 
Critically damped solution: our guess for the critically damped solution gives only 1 ntx C A e ζω−= +  which 
cannot satisfy the initial conditions on both x and dx/dt, so the solution is incomplete.   We have to look 
around for another solution – it turns out that 

1 2n nt tx C A e A teω ω− −= + +  
will also satisfy the differential equation (this is a standard trick in situations where the characteristic 
equation has repeated roots).   We can solve for 1 2,A A using the initial conditions: 

1 0

1 2 0
0

(0)

n
t

x C A x
dx A A v
dt

ω
=

= + =

= − + =
 

It follows that 1 0 2 0 0( )nA x C A v x Cω= − = + −  so the solution is 

[ ]{ }0 0 0( ) ( ) ( ) exp( )n nx t C x C v x C t tω ω= + − + + − −  
 
Underdamped solution: For this case 

( ) ( )
1 2n d n di t i tx C A e A eζω ω ζω ω− + − −= + +  

We can use the initial conditions to determine 1 2,A A  (which are now complex): 

1 2 0

1 1 0
0

0 0 0 0
1 2

(0)

( ) ( )

( )( ) ( )( )
2 2

d n d n
t

n d n d

d d

x C A A x
dx A i A i v
dt

v i x C v i x CA i A i

ω ζω ω ζω

ςω ω ςω ω
ω ω

=

= + + =

= − − + =

+ + − + − −
⇒ = − =

 

We can substitute this back into the solution and re-arrange the result 

( ) ( )0 0
0

( )1( ) exp( ) ( )
2 2

d d d di t i t i t i tn
n

d

v x C ix t C t x C e e e eω ω ω ωςω
ςω

ω
− − + −

= + − − + − − 
 

 

Finally we recognize the combinations of complex exponentials as trig functions, giving 

0 0
0

( )( ) exp( ) ( )cos sinn
n d d

d

v x Cx t C t x C t tςω
ςω ω ω

ω
 + −

= + − − + 
 
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Solution to the equation of motion for a system subjected to harmonic external force 

Solve 
2

02 2
1 2 sin

nn

d x dx x C KF t
dtdt

ς ω
ωω

+ + = +  with initial conditions 0 0/ 0x x dx dt v t= = =  

It is helpful to replace the trig function with its equivalent representation in terms of complex 
exponentials 

( )
2

02 2
1 2

2
i t i t

nn

d x dx ix C KF e e
dtdt

ω ως
ωω

−+ + = − −  

We guess a solution of the form 

( )1 2

( ) ( ) ( )

( )
2

p h

i t i t t
p h

x t x t x t

ix t B e B e x C Aeω ω λ−

= +

= − − = +
 

where  1 2, , ,B B A λ  are complex numbers to be determined.   Substituting into the ODE: 

( )
2 2 2

1 2 02 2 2
2 2 21 1 1

2 2
t i t i t i t i t

n n nn n n

i iAe i B e i B e KF e eλ ω ω ω ωλ ςλ ω ςω ω ςω
ω ω ωω ω ω

− −
      
 + + − − + − − − = − −                 

 

 We can satisfy this by setting 
2 2 2

1 0 2 02 2 2
2 2 21 1 1 0

n n nn n n
B i KF B i KFω ςω ω ςω λ ςλ

ω ω ωω ω ω

     
− + = − − = + + =          

     
 

The first two equations show that  
12

1 0 02

12
2 0 02

1
2 22 22

2

21 ( / , )

21 ( / , )

2 /1( / , ) tan
(1 / )21

i
n

nn

i
n

nn

n
n

n

nn

B KF i KF M e

B KF i KF M e

M

φ

φ

ω ςω ω ω ζ
ωω

ω ςω ω ω ζ
ωω

ζω ω
ω ω ζ φ

ω ωω ςω
ωω

−

−
−

−

 
= − + =  

 

 
= − − =  

 
−

= =
−   

− +       

 

(we introduced M and φ  to re-write 1 2,B B  in polar form).  Finally substitute back for 1 2,B B  into the guess 
for ( )px t  and simplify the solution to see that 

( )( ) ( )
0 0( ) ( / , ) ( / , )sin( )

2
i t i t

p n n
ix t KF M e e KF M tω φ ω φω ω ζ ω ω ζ ω φ+ − += − − = +  

Finally, we must determine ( )hx t  .  By construction, our guess for ( )hx t  satisfies 
2

2 2

0 0 0

0 0 0
0 0

1 2

(0) (0) sin

cos

h h
h

nn

h p

ph

t t

d x dx x C
dtdt

x x x x X

dxdx v v X
dt dt

ς
ωω

φ

ω φ
= =

+ + =

= − = −

= − = −

 

This is identical to the differential equation for a damped free vibrating system (but with modified initial 
conditions), and we can just write down the solution from the preceding section. 
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Short-cut for calculating steady-state solutions for forced vibrating systems 
 
For example, consider the base excited system 

2
02 2

1 2 21 sin
n nn

d x dx dx C K Y t
dt dtdt

ς ς ω
ω ωω

 
+ + = + + 

 
 

We anticipate that the steady-state solution will have the form 
0 0 0( ) sin( ) ( / , )p nx t X t X KY Mω φ ω ω ζ= + =  

so we only need to determine the magnification M  and the phase φ  .   We can do this quickly by 

(i) Replacing the harmonic function 0 sinY tω  by a complex exponential 0
i tY e ω   

(ii) Substituting 0
i i tx C KY Me eφ ω= +  into the solution 

This gives 
2

0 02
2 21 1i i t i t

n nn
KY Me i e K i Y eφ ω ωω ςω ςω

ω ωω

   
− + = +       

 

Hence 

2

2

21

21

ni

nn

i
Me

i

φ

ςω
ω

ω ςω
ωω

 
+ 

 =
 
− +  

 

 

Finally, write the complex numbers on the right hand side in polar form and read off M and φ   
2

1 1
22 22
22

2 21
2tan tan

2 11

n n

n

nnn

M

ςω ςω
ω ωςωφ

ω ωω ςω
ωωω

− −

 
+  
 = = −

     − − +         

 

Similarly, to find the magnification and phase for the rotor-excited system, which has differential equation 
2 2

2 2 2 2
1 2

nn n

d x dx K d yx C
dtdt dt

ς
ωω ω

+ + = −  

we make the substitutions (i) and (ii) above and simplify the result to see that: 
2 2

2

2

/

21

i n

nn

Me

i

φ ω ω

ω ςω
ωω

=
 
− +  

 

 

Re-write the right hand side in polar form 
2 2

1
22 22
22

/ 2 /tan
2 11

n n

nnn

M ω ω ςω ω
φ

ωω ςω
ωωω

− −
= =

     − − +         

 

You will learn even faster tricks for solving differential equations in circuits next semester, and perhaps in 
more advanced level linear systems and control theory courses.   In fact, the pros know tricks that avoid 
writing down the differential equation altogether – they can just go straight to the solution!   If you want to 
develop these superpowers, stick with engineering, and keep writing those generous tuition checks! 
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5.6 Introduction to vibration of systems with many degrees of freedom 
 
The simple 1DOF systems analyzed in the preceding section are very helpful to develop a feel for the 
general characteristics of vibrating systems.   They are too simple to approximate most real systems, 
however.   Real systems have more than just one degree of freedom.   Real systems are also very rarely 
linear.   You may be feeling cheated – are the simple idealizations that you get to see in intro courses really 
any use?   It turns out that they are, but you can only really be convinced of this if you know how to analyze 
more realistic problems, and see that they often behave just like the simple idealizations.   
 
The motion of systems with many degrees of freedom, or nonlinear systems, cannot usually be described 
using simple formulas. Even when they can, the formulas are so long and complicated that you need a 
computer to evaluate them.  For this reason, introductory courses typically avoid these topics.  However, if 
you are willing to use a computer, analyzing the motion of these complex systems is actually quite 
straightforward – in fact, often easier than using the nasty formulas we derived for 1DOF systems.   
 
This section of the notes is intended mostly for advanced students, who may be insulted by simplified 
models.  If you are feeling insulted, read on… 
 
5.6.1 Equations of motion for undamped linear systems with many degrees of freedom.  
 
We always express the equations of motion for a 
system with many degrees of freedom in a 
standard form.  The two degree of freedom 
system shown in the picture can be used as an 
example.  We won’t go through the calculation 
in detail here (you should be able to derive it for 
yourself – draw a FBD, use Newton’s law and 
all that tedious stuff), but here is the final 
answer: 
 

( )
2

1
1 1 2 1 2 22

2
2

2 2 1 2 3 22

0

( ) 0

d xm k k x k x
dt
d xm k x k k x
dt

+ + − =

− + + =

 

To solve vibration problems, we always write the equations of motion in matrix form.  For an undamped 
system, the matrix equation of motion always looks like this 

2

2
d
dt

+ =
xM Kx 0  

where x is a vector of the variables describing the motion,  M is called the ‘mass matrix’ and K is called the 
‘Stiffness matrix’ for the system.  For the two spring-mass example, the equation of motion can be written 
in matrix form as 

2
1 2 21 1 1

2 2 2 32 2 2

0 0
0 0

k k km x xd
k k km x xdt

+ −        
+ =        − +        

 

For a system with two masses (or more generally, two degrees of freedom), M and K are 2x2 matrices.  For 
a system with n degrees of freedom, they are nxn matrices. 
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The spring-mass system is linear.  A nonlinear system has more complicated 
equations of motion, but these can always be arranged into the standard matrix 
form by assuming that the displacement of the system is small, and linearizing 
the equation of motion.   For example, the full nonlinear equations of motion for 
the double pendulum shown in the figure are 

2
1 2 1 1 2 2 2 1 2 2 2 2 1 2 1 2 1

2
2 2 2 2 1 1 1 2 2 1 1 1 2 2 2

( ) sin( ) cos( ) ( ) sin 0

cos( ) sin( ) sin 0

m m L m L m L m m g

m L m L m L m g

θ θ θ θ θ θ θ θ

θ θ θ θ θ θ θ θ

+ + − + − + + =

+ − − − + =

  

  

 
Here, a single dot over a variable represents a time derivative, and a double dot 
represents a second time derivative (i.e. acceleration). These equations look 
horrible (and indeed they are – the motion of a double pendulum can even be 
chaotic), but if we assume that if 1θ , 2θ , and their time derivatives are all 
small, so that terms involving squares, or products, of these variables can all be 
neglected, that and recall that cos( ) 1x ≈  and sin( )x x≈  for small x, the equations simplify to 

1 2 1 1 2 2 2 1 2 1

2 2 2 2 1 1 2 2

( ) ( ) 0

0

m m L m L m m g

m L m L m g

θ θ θ

θ θ θ

+ + + + =

+ + =

 

 

 

Or, in matrix form 
( ) 2

1 1 2 11 2 1 2 2
2 2 2 22 1 2 2

( ) 0 0
0 0

m m gm m L m L d
m gm L m L dt

θ θ
θ θ

+ +        
+ =         

       
 

This is again in the standard form. 
 
Throughout the rest of this section, we will focus on exploring the behavior of systems of springs and 
masses.  This is not because spring/mass systems are of any particular interest, but because they are easy to 
visualize, and, more importantly the equations of motion for a spring-mass system are identical to those of 
any linear system.  This could include a realistic mechanical system, an electrical system, or anything that 
catches your fancy.  (Then again, your fancy may tend more towards nonlinear systems, but if so, you 
should keep that to yourself). 
 
 
5.6.2 Natural frequencies and mode shapes for undamped linear systems with many degrees of 
freedom.  
 
First, let’s review the definition of natural frequencies and mode shapes. Recall that we can set a system 
vibrating by displacing it slightly from its static equilibrium position, and then releasing it.   In general, the 
resulting motion will not be harmonic.   However, there are certain special initial displacements that will 
cause harmonic vibrations.   These special initial deflections are called mode shapes, and the corresponding 
frequencies of vibration are called natural frequencies.    
 
The natural frequencies of a vibrating system are its most important property.  It is helpful to have a simple 
way to calculate them.  
 
Fortunately, calculating natural frequencies turns out to be quite easy (at least on a computer).  Recall that 
the general form of the equation of motion for a vibrating system is 

2

2
d
dt

+ =
xM Kx 0  
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where x is a time dependent vector that describes the motion, and M and K are mass and stiffness matrices. 
Since we are interested in finding harmonic solutions for x, we can simply assume that the solution has the 
form sin tωX , and substitute into the equation of motion 

2 2sin sint tω ω ω ω− + = ⇒ =MX KX 0 KX MX  
The vectors u and scalars λ  that satisfy a matrix equation of the form λ=Ku Mu  are called ‘generalized 
eigenvectors’ and ‘generalized eigenvalues’ of the equation.  It is impossible to find exact formulas for λ  
and u for a large matrix (formulas exist for up to 5x5 matrices, but they are so messy they are useless), but 
MATLAB has built-in functions that will compute generalized eigenvectors and eigenvalues given 
numerical values for M and K.   
 
The special values of λ  satisfying λ=KX MX are related to the natural frequencies by i iω λ=  
 
The special vectors X are the ‘Mode shapes’ of the system.  These are the special initial displacements that 
will cause the mass to vibrate harmonically.   
 
If you only want to know the natural frequencies (common) you can use the MATLAB command 

d = eig(K,M) 
This returns a vector d, containing all the values of λ satisfying λ=Ku Mu  (for an nxn matrix, there are 
usually n different values).  The natural frequencies follow as i iω λ= . 
 
If you want to find both the eigenvalues and 
eigenvectors, you must use 

[V,D] = eig(K,M) 
This returns two matrices, V and D. Each 
column of the matrix V corresponds to a vector 
u that satisfies the equation, and the diagonal 
elements of D contain the corresponding value 
of λ .  To extract the ith frequency and mode shape, use 
     omega = sqrt(D(i,i)) 
     X = V(:,i) 
 
For example, here is a MATLAB function that uses this function to automatically compute the natural 
frequencies of the spring-mass system shown in the figure. 

function [freqs,modes] = compute_frequencies(k1,k2,k3,m1,m2) 
  

M = [m1,0;0,m2]; 
K = [k1+k2,-k2;-k2,k2+k3]; 
[V,D] = eig(K,M); 
for i = 1:2 
    freqs(i) = sqrt(D(i,i)); 
end 
modes = V; 

  
end 

 
You could try running this with 
>> [freqs,modes] = compute_frequencies(2,1,1,1,1) 

k1

m1 m2

k2 k3

x1 x2
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This gives the natural frequencies as 1 21, 2.236ω ω= = , and the mode shapes as 1 ( 0.707, 0,707)= − −X  (i.e. 
both masses displace in the same direction) and 2 ( 0.707,0.707)= −X  (the two masses displace in opposite 
directions. 
 
If you read textbooks on vibrations, you will find that they may give different formulas for the natural 
frequencies and vibration modes. (If you read a lot of textbooks on vibrations there is probably something 
seriously wrong with your social life).  This is partly because solving λ=Ku Mu for λ  and u is rather 
complicated (especially if you have to do the calculation by hand), and partly because this formula hides 
some subtle mathematical features of the equations of motion for vibrating systems.  For example, the 
solutions to λ=Ku Mu  are generally complex (λ  and u have real and imaginary parts), so it is not obvious 
that our guess sin tωX  actually satisfies the equation of motion.  It turns out, however, that the equations of 
motion for a vibrating system can always be arranged so that M and K are symmetric.   In this caseλ  and u 
are real, and λ  is always positive or zero.  The old fashioned formulas for natural frequencies and vibration 
modes show this more clearly.   But our approach gives the same answer, and can also be generalized rather 
easily to solve damped systems (see Section 5.5.5), whereas the traditional textbook methods cannot. 
 
5.6.3 Free vibration of undamped linear systems with many degrees of freedom.  
 
As an example, consider a system with n 
identical masses with mass m, connected by 
springs with stiffness k, as shown in the picture.   
Suppose that at time t=0 the masses are 
displaced from their static equilibrium position 
by distances 1 2, ... nu u u , and have initial speeds 

1 2, .... nv v v .  We would like to calculate the 
motion of each mass 1 2( ), ( )... ( )nx t x t x t  as a 
function of time. 
 
It is convenient to represent the initial displacement and velocity as n dimensional vectors u and v, as 

1 2[ , ... ]nu u u=u , and 1 2[ , ... ]nv v v=v .  In addition, we must calculate the natural frequencies iω  and mode 
shapes iX , i=1..n for the system.   The motion can then be calculated using the following formula 

1
( ) cos sin

n
i i i i i i

i
t A t B tω ω

=
= +∑x X X  

where 
i i

i i
i i i i i

A B
ω

⋅ ⋅
= =

⋅ ⋅
u X v X
X X X X

 

Here, the dot represents an n dimensional dot product (to evaluate it in matlab, just use the dot() command). 
 
This expression tells us that the general vibration of the system 
consists of a sum of all the vibration modes, (which all vibrate 
at their own discrete frequencies).  You can control how big the 
contribution is from each mode by starting the system with 
different initial conditions.   The mode shapes iX  have the 
curious property that the dot product of two different mode 
shapes is always zero ( 1 2 1 30 0⋅ = ⋅ =X X X X , etc) – so you 
can see that if the initial displacements u happen to be the same 
as a mode shape, the vibration will be harmonic. 
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The figure on the right animates the motion of a system with 6 masses, which is set in motion by displacing 
the leftmost mass and releasing it.  The graph shows the displacement of the leftmost mass as a function of 
time.   You can download the MATLAB code for this computation here, and see how the formulas listed in 
this section are used to compute the motion.  The program will predict the motion of a system with an 
arbitrary number of masses, and since you can easily edit the code to type in a different mass and stiffness 
matrix, it effectively solves any transient vibration problem. 
 
 
5.6.4 Forced vibration of lightly damped linear systems with many degrees of freedom.  
 
It is quite simple to find a formula for the motion 
of an undamped system subjected to time varying 
forces.   The predictions are a bit unsatisfactory, 
however, because their vibration of an undamped 
system always depends on the initial conditions.  
In a real system, damping makes the steady-state 
response independent of the initial conditions.   
However, we can get an approximate solution for lightly damped systems by finding the solution for an 
undamped system, and then neglecting the part of the solution that depends on initial conditions. 
As an example, we will consider the system with two springs and masses shown in the picture.  Each mass 
is subjected to a harmonic force, which vibrates with some frequency ω  (the forces acting on the different 
masses all vibrate at the same frequency). The equations of motion are 

( )
2

1
1 1 2 1 2 2 12

2
2

2 2 1 2 3 2 22

cos

( ) cos

d xm k k x k x F t
dt
d xm k x k k x F t
dt

ω

ω

+ + − =

− + + =

 

We can write these in matrix form as 
2

1 2 21 1 1 1
2 2 2 32 2 2 2

0
0

k k km x x Fd
k k km x x Fdt

+ −        
+ =        − +        

 

or, more generally, 
2

2 cosd t
dt

ω+ =
xM Kx f  

To find the steady-state solution, we simply assume that the masses will all vibrate harmonically at the same 
frequency as the forces.  This means that 1 1 cosx X tω= , 2 2 cosx X tω= , where 1 2,X X  are the (unknown) 
amplitudes of vibration of the two masses.  In vector form we could write ( ) cost tω=x X , where 

1 2[ , ]X X=X .  Substituting this into the equation of motion gives  
2

2

cos cos cos

[ ]

t t tω ω ω ω

ω

− + =

⇒ − =

MX KX f

K M X f
 

This is a system of linear equations for X.  They can easily be solved using MATLAB.  As an example, here 
is a simple MATLAB function that will calculate the vibration amplitude for a linear system with many 
degrees of freedom, given the stiffness and mass matrices, and the vector of forces f. 

function X = forced_vibration(K,M,f,omega) 
% Function to calculate steady state amplitude of 
% a forced linear system. 

http://www.brown.edu/Departments/Engineering/Courses/En4/Notes/vibration_10dof.m
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% K is nxn the stiffness matrix 
% M is the nxn mass matrix 
% f is the n dimensional force vector 
% omega is the forcing frequency, in radians/sec. 
% The function computes a vector X, giving the amplitude of 
% each degree of freedom 
% 
X = (K-M*omega^2)\f; 
end 

The function is only one line long! 
 
As an example, the graph below shows the predicted steady-state vibration amplitude for the spring-mass 
system, for the special case where the masses are all equal 1 2m m m= = , and the springs all have the same 
stiffness 1 2 3k k k k= = = .  The first mass is subjected to a harmonic force 1 1( ) cosf t F tω= , and no force 
acts on the second mass.   Note that the graph shows the magnitude of the vibration amplitude – the formula 
predicts that for some frequencies some masses have negative vibration amplitudes, but the negative sign 
has been ignored, as the negative sign just means that the mass vibrates out of phase with the force. 

 
 
Several features of the result are worth noting: 

 If the forcing frequency is close to any one of the natural frequencies of the system, huge vibration 
amplitudes occur.  This phenomenon is known as resonance.  You can check the natural frequencies of 
the system using the little matlab code in section 5.5.2 – they turn out to be 

1 / 1m kω =  and 2 / 3 1.7m kω = ≈ .  At these frequencies the vibration 
amplitude is theoretically infinite. 

 The figure predicts an intriguing new phenomenon – at a magic frequency, the 
amplitude of vibration of mass 1 (that’s the mass that the force acts on) drops 
to zero.   This is called ‘Anti-resonance,’ and it has an important engineering 
application.  Suppose that we have designed a system with a serious vibration 
problem (like the London Millenium bridge).  Usually, this occurs because 
some kind of unexpected force is exciting one of the vibration modes in the 
system.   We can idealize this behavior as a mass-spring system subjected to a 
force, as shown in the figure.  So how do we stop the system from vibrating?  

k,L0

m
c

s(t)

F(t)

External Force

http://www2.eng.cam.ac.uk/~den/ICSV9_06.htm
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Our solution for a 2DOF system shows that a system with two masses will have an anti-resonance.  So 
we simply turn our 1DOF system into a 2DOF system by adding another spring and a mass, and tune 
the stiffness and mass of the new elements so that the anti-resonance occurs at the appropriate 
frequency.   Of course, adding a mass will create a new vibration mode, but we can make sure that the 
new natural frequency is not at a bad frequency.   We can also add a dashpot in parallel with the spring, 
if we want – this has the effect of making the anti-resonance phenomenon somewhat less effective (the 
vibration amplitude will be small, but finite, at the ‘magic’ frequency), but the new vibration modes will 
also have lower amplitudes at resonance. The added spring – mass system is called a ‘tuned vibration 
absorber.’   This approach was used to solve the Millenium Bridge vibration problem. 

 
 
5.6.5 The effects of damping  
 
In most design calculations, we don’t worry about accounting for the 
effects of damping very accurately.  This is partly because it’s very 
difficult to find formulas that model damping realistically, and even 
more difficult to find values for the damping parameters.   Also, the 
mathematics required to solve damped problems is a bit messy. Old 
textbooks don’t cover it, because for practical purposes it is only 
possible to do the calculations using a computer.   It is not hard to 
account for the effects of damping, however, and it is helpful to have a 
sense of what its effect will be in a real system.  We’ll go through this 
rather briefly in this section. 
 
Equations of motion: The figure shows a damped spring-mass system.  The equations of motion for the 
system can easily be shown to be 

( ) ( )

( )

2
1 1 2

1 1 2 2 1 2 1 2 22

2
2 1 2

2 2 2 3 2 1 2 3 22

0

( ) 0

d x dx dxm c c c k k x k x
dt dtdt

d x dx dxm c c c k x k k x
dt dtdt

+ + − + + − =

− + + − + + =

 

To solve these equations, we have to reduce them to a system that MATLAB can handle, by re-writing them 
as first order equations.  We follow the standard procedure to do this – define 1 1 /v dx dt=  and 

2v = 2 /dx dt  as new variables, and then write the equations in matrix form as 

1 1

2 2

1 2 2 1 2 21 1 1

2 2 3 2 2 32 2 2

0 0 1 01 0 0 0 0
0 0 0 10 1 0 0 0

( ) ( )0 0 0 0
( ) ( )0 0 0 0

x x
x xd

k k k c c cm v vdt
k k k c c cm v v

−        
        −        + =
        + − + −
        − + − +        

 

(This result might not be obvious to you – if so, multiply out the vector-matrix products to see that the 
equations are all correct). This is a matrix equation of the form 

d
dt

+ =
yM Dy 0  

where y is a vector containing the unknown velocities and positions of the mass.    
 
Free vibration response: Suppose that at time t=0 the system has initial positions and velocities 

0 10 20 10 20[ , ,... , ...]x x v v=Y , and we wish to calculate the subsequent motion of the system. To do this, we 
must solve the equation of motion. We start by guessing that the solution has the form exp( )tλ= −y Γ  (the 

k1

m
c1

x1

k2

m2

c2

k3

c3

x2

m1

http://www2.eng.cam.ac.uk/~den/ICSV9_04.htm
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negative sign is introduced because we expect solutions to decay with time).  Here, Γ  is a constant vector, 
to be determined.   Substituting this into the equation of motion gives 

exp( ) exp( )t tλ λ λ λ− − + − = ⇒ =M Γ DΓ 0 DΓ MΓ  
This is another generalized eigenvalue problem, and can easily be solved with MATLAB.  The solution is 
much more complicated for a damped system, however, because the possible values of Γ  and λ  that 
satisfy the equation are in general complex – that is to say, each λ  can be expressed as iλ ζ ω= ± , where 
ζ and ω are positive real numbers, and 1i = − .  This makes more sense if we recall Euler’s formula  

exp( ) cos sini iω ω ω= +  
(if you haven’t seen Euler’s formula, try doing a Taylor expansion of both sides of the equation – you will 
find they are magically equal.  If you don’t know how to do a Taylor expansion, you probably stopped 
reading this ages ago, but if you are still hanging in there, just trust me…).  So, the solution is predicting 
that the response may be oscillatory, as we would expect.  Once all the possible vectors 0Γ  and λ  have 
been calculated, the response of the system can be calculated as follows: 

1. Construct a matrix H , in which each column is one of the possible values of Γ  (MATLAB 
constructs this matrix automatically) 

2. Construct a diagonal matrix Λ (t), which has the form 
1

2

exp( ) 0 0
( ) 0 exp( ) 0

0 0

t
t t

λ
λ

− 
 = − 
  

Λ


 

where each λ  is one of the solutions to the generalized eigenvalue equation. 
3. Calculate a vector a (this represents the amplitudes of the various modes in the vibration response) 

that satisfies 
0=Ha Y  

4. The vibration response then follows as 
( ) ( )t t=y HΛ a  

All the matrices and vectors in these formulas are complex valued – but all the imaginary parts magically 
disappear in the final answer.  
 
HEALTH WARNING: The formulas listed here only work if all the generalized eigenvalues λ  satisfying 

λ=DΓ MΓ are different.   For some very special choices of damping, some eigenvalues may be repeated.  
In this case the formula won’t work.  A quick and dirty fix for this is just to change the damping very 
slightly, and the problem disappears.   Your applied math courses will hopefully show you a better fix, but 
we won’t worry about that here.  
 
This all sounds a bit involved, but it actually only takes a few lines of 
MATLAB code to calculate the motion of any damped system. As an 
example, a MATLAB code that animates the motion of a damped 
spring-mass system shown in the figure (but with an arbitrary number 
of masses) can be downloaded here.   You can use the code to explore 
the behavior of the system.  In addition, you can modify the code to 
solve any linear free vibration problem by modifying the matrices M 
and D. 
 
Here are some animations that illustrate the behavior of the system. The animations below show vibrations 
of the system with initial displacements corresponding to the three mode shapes of the undamped system 
(calculated using the procedure in Section 5.5.2).  The results are shown for k=m=1 0.05c = . In each case, 
the graph plots the motion of the three masses – if a color doesn’t show up, it means one of the other masses 
has the exact same displacement. 
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http://www.brown.edu/Departments/Engineering/Courses/En4/Notes/vibration_ndof_damped.m
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Mode 1                                           Mode 2                                          Mode 3 

 
Notice that 

1. For each mode, the displacement history of any mass looks very similar to the behavior of a 
damped, 1DOF system. 

2. The amplitude of the high frequency modes die out much faster than the low frequency mode. 
This explains why it is so helpful to understand the behavior of a 1DOF 
system.  If a more complicated system is set in motion, its response 
initially involves contributions from all its vibration modes.  Soon, 
however, the high frequency modes die out, and the dominant behavior is 
just caused by the lowest frequency mode. The animation to the right 
demonstrates this very nicely – here, the system was started by displacing 
only the first mass.  The initial response is not harmonic, but after a short 
time the high frequency modes stop contributing, and the system behaves 
just like a 1DOF approximation.  For design purposes, idealizing the 
system as a 1DOF damped spring-mass system is usually sufficient. 
 
Notice also that light damping has very little effect on the natural 
frequencies and mode shapes – so the simple undamped approximation is a good way to calculate these. 
 
Of course, if the system is very heavily damped, then its behavior changes completely – the system no 
longer vibrates, and instead just moves gradually towards its equilibrium position.   You can simulate this 
behavior for yourself using the matlab code – try running it with 5c =  or higher.   Systems of this kind are 
not of much practical interest. 
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Steady-state forced vibration response.  Finally, we take a look at the effects of damping on the response 
of a spring-mass system to harmonic forces.  The equations of motion for a damped, forced system are 

1 1

2 2

1 2 2 1 2 21 1 1 1

2 2 3 2 2 32 2 2 2

0 0 1 01 0 0 0 0
0 0 0 10 1 0 0 0

cos
( ) ( )0 0 0

( ) ( )0 0 0

x x
x xd t

k k k c c cm v v fdt
k k k c c cm v v f

ω

−        
        −        + =
        + − + −
        − + − +        

 

 This is an equation of the form 

{ }cos exp( ) exp( ) / 2d t i t i t
dt

ω ω ω+ = = + −
yM Dy f f  

where we have used Euler’s famous formula again.  We can find a solution to  

exp( )d i t
dt

ω+ =
yM Dy f  

by guessing that 0 exp( )i tω=y Y , and substituting into the matrix equation 

0 0[ ] exp( ) exp( ) [ ]i i t i t iω ω ω ω+ = ⇒ + =M D Y f M D Y f  
This equation can be solved for 0Y .  Similarly, we can solve 

exp( )d i t
dt

ω+ = −
yM Dy f  

by guessing that 0 exp( )i tω= −y Y , which gives an equation for 0Y  of the form 0[ ]iω− + =M D Y f . You 
actually don’t need to solve this equation – you can simply calculate 0Y  by just changing the sign of all the 
imaginary parts of 0Y . The full solution follows as 

{ }0 0( ) exp( ) exp( ) / 2t i t i tω ω= + −y Y Y  
This is the steady-state vibration response.  Just as for the 1DOF system, the general solution also has a 
transient part, which depends on initial conditions. We know that the transient solution will die away, so we 
ignore it. 
 
The solution for y(t) looks peculiar, because of the complex numbers.  If we just want to plot the solution as 
a function of time, we don’t have to worry about the complex numbers, because they magically disappear in 
the final answer.  In fact, if we use MATLAB to do the computations, we never even notice that the 
intermediate formulas involve complex numbers.  If we do plot the solution, it is obvious that each mass 
vibrates harmonically, at the same frequency as the force (this is obvious from the formula too).  It’s not 
worth plotting the function – we are really only interested in the amplitude of vibration of each mass. This 
can be calculated as follows 

1. Let 1 2 2[ , ... ]nY Y Y , 1 2 2[ , ... ]nY Y Y  denote the components of 0Y  and 0Y  
2. The vibration of the jth mass then has the form  

( ) cos( )j j jx t X tω φ= +  
where 

1 log
2

j
j j j j

j

Y
X Y Y

i Y
φ= =  

are the amplitude and phase of the harmonic vibration of the mass. 
If you know a lot about complex numbers you could try to derive these formulas for yourself.  If not, just 
trust me – your math classes should cover this kind of thing.  MATLAB can handle all these computations 
effortlessly.  As an example, here is a simple MATLAB script that will calculate the steady-state amplitude 
of vibration and phase of each degree of freedom of a forced n degree of freedom system, given the force 
vector f, and the matrices M and D that describe the system. 
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function [amp,phase] = damped_forced_vibration(D,M,f,omega) 
% Function to calculate steady state amplitude of 
% a forced linear system. 
% D is 2nx2n the stiffness/damping matrix 
% M is the 2nx2n mass matrix 
% f is the 2n dimensional force vector 
% omega is the forcing frequency, in radians/sec. 
% The function computes a vector ‘amp’, giving the amplitude of 
% each degree of freedom, and a second vector ‘phase’, 
% which gives the phase of each degree of freedom 
% 
Y0 = (D+M*i*omega)\f;  % The i here is sqrt(-1) 
% We dont need to calculate Y0bar - we can just change the sign of 
% the imaginary part of Y0 using the 'conj' command 

for j =1:length(f)/2 
    amp(j) = sqrt(Y0(j)*conj(Y0(j))); 
    phase(j) = log(conj(Y0(j))/Y0(j))/(2*i); 
end 

end 
Again, the script is very simple. 
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Here is a graph showing the predicted vibration amplitude of each mass in the system shown.  Note that 
only mass 1 is subjected to a force. 
 

 

   
 
The important conclusions to be drawn from these results are: 

1. We observe two resonances, at frequencies very close to the undamped natural frequencies of the 
system. 

2. For light damping, the undamped model predicts the vibration amplitude quite accurately, except 
very close to the resonance itself (where the undamped model has an infinite vibration amplitude) 
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3. In a damped system, the amplitude of the lowest frequency resonance is generally much greater 
than higher frequency modes.  For this reason, it is often sufficient to consider only the lowest 
frequency mode in design calculations.  This means we can idealize the system as just a single DOF 
system, and think of it as a simple spring-mass system as described in the early part of this chapter.  
The relative vibration amplitudes of the various resonances do depend to some extent on the nature 
of the force – it is possible to choose a set of forces that will excite only a high frequency mode, in 
which case the amplitude of this special excited mode will exceed all the others.   But for most 
forcing, the lowest frequency one is the one that matters.  

4. The ‘anti-resonance’ behavior shown by the forced mass disappears if the damping is too high. 
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