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Lecture 10:  Performance Optimization for Complex CMOS Gates

Reading:  Chapter 4, sections 4.4-4.5             October 12, 2016
Weste & Harris Prof. R. Iris Bahar

© 2016 R.I. Bahar
Portions of these slides taken from Professors  
J. Rabaey, J. Irwin, V. Narayanan, and S. Reda

Transistor sizing for a complex gate
OUT = !(D + A • (B + C))
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Which on is better?

Does it even matter?

 Total Wp=24
 Worst case path resistance:

 Rpeff = β(1/8 +1/8 +1/4)
= 2 X (1/2) = 1

(same as for an inverter)
 Shortest path resistance:

 Rpeff =  β(1/4 +1/4)
= 2 X (1/2) = 1

 Best case pull up resistance:
 Rpeff =  β [((1/8 +1/8) || (1/4)) + 1/4] 

=  β [1/8 + 1/4] = 3/8
(approx. more than twice as fast as worst case)

Transistor sizing for a complex gate
OUT = !(D + A • (B + C))
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 Total Wp=21  (less area, intrinsic cap)
 Worst case path resistance:

 Rpeff = β(1/6 +1/6 +1/6)
= 2 X (1/2) = 1

(same as for an inverter)
 Shortest path resistance:

 Rpeff =  β(1/3 +1/6)
= 2 X (1/2) = 1

 Best case pull up resistance:
 Rpeff =  β [((1/6 +1/6) || (1/3)) + 1/6] 

=  β [1/6 + 1/6] = 1/3
(even better than shortest path first sizing!)
Creates larger disparity in delays as a function 
of inputs

Transistor sizing for a complex gate
OUT = !(D + A • (B + C))
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 Available on line later today
 Due Friday, October 21 by 5pm

 After today’s lecture, you should be able to complete all 
but the last problem (on dynamic logic)

 Monday’s lecture will finish covering dynamic logic

Homework #3

 A typical wire is a chain network with (simplified) Elmore 
delay of

 Where  rj = r1 + r2 + … + ri

Chain network Elmore delay

c1 c2 ci-1 ci cN

r1 r2 ri-1 ri rN

Vin
VN

1 2 i-1 i N

DN =  cirii =  ci rj

N i

i

Chain Network Elmore Delay

c1 c2 ci-1 ci cN

r1 r2 ri-1 ri rN

Vin
VN

1 2 i-1 i N

D1=c1r1 D2=c1r1 + c2(r1+r2)

Di=c1r1+ c2(r1+r2)+…+ci(r1+r2+…+ri)

Di=c1req+ 2c2req+ 3c3req+…+ icireq

Elmore delay equation     DN =  cirii =  ci  rj

If all resistors are equal size, 

N i

Uses for the Elmore Delay Model

 Modeling the delay of a wire
 Modeling the delay of a series of pass transistors
 Modeling the delay of a pull-up and pull-down 

networks
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Fanin considerations
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Distributed RC model
(Elmore delay)

tpHL = 0.69 Reqn(C1+2C2+3C3+4CL)
(assuming all NMOS equally sized)

Propagation delay deteriorates 
rapidly as a function of fanin:  
quadratically in the worst case.

 Gates with a fan-in greater than 4 should be avoided.

tp as a function of  fanin
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 RC tree characteristics
 Unique path from source to any node
 Single input (source), no loops
 All caps have connection to GND

 Path resistance:

rii =  rj  (rj  [path(s  i)]
 Shared path resistance:

rik =  rj  (rj  [path(s  i)  path(s  k)])
 A typical wire is a tree network with Elmore delay of:

RC tree definitions

N

j=1

Di =  ckrik

N
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s
r1

3

4

i

r4
r3

ri

c1

1

2
r2 c2

c4

ci

c3

Multiply each capacitance Ck
by the shared resistance from 
source to k and source to i

Fast complex gates:  techniques #0, #1
 Transistor sizing (i.e., scaling up all transistor in gate)

 as long as fan-out capacitance dominates

 Progressive sizing

InN CL

C3

C2

C1
In1

In2

In3

M1

M2

M3

MN

Distributed RC line

M1 > M2 > M3 > … > MN

(the FET closest to the output should 
be the smallest)

Can reduce delay by more than 20%; 
decreasing gains as technology shrinks
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Fast complex gates:  technique #2
 Input re-ordering

 when not all inputs arrive at the same time
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critical path critical path
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delay determined by time to 
discharge CL, C1 and C2

delay determined by time to 
discharge CL
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Sizing and ordering effects
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Example:
Progressive sizing in pull-down chain gives 
up to a 23% improvement.

Input ordering saves 6%
critical path A – 23%  
critical path D – 17%

Fast complex gates:  technique #3
 Alternative logic structures

F = ABCDEFGH
 Isolating fan-in from fan-out using buffer insertion

 Real lesson:  optimizing the propagation delay of a gate in 
isolation is misguided

Fast complex gates:  technique #4

CL
CL
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Technique #5 : Logical Effort
 The optimum effective fan-out for a chain of N inverters driving 

a load CL is
 Set N such that the fan-out per stage is around 4, whenever 

possible (FO4)
 Can we generalize this approach (logical effort) to any gate?

 The inverter equation is
tp = tp0 (1 + Cext/ Cg) = tp0 (1 + f/)

we can generalize it to…

tp = tp0 (p +  g f/)

 tp0 is the intrinsic delay of an inverter
 f is the effective fan-out (Cext/Cg) – also called the electrical effort
 p is the ratio of the intrinsic delay of the gate relative to a simple inverter 

(a function of the gate topology and layout style):  parasitic delay
 g is the logical effort

N
inL CCf /

 The more involved the structure of the complex gate, the 
higher the intrinsic delay compared to an inverter

Intrinsic delay term, p

Gate Type P
Inverter 1

n-input NAND n
n-input NOR n
n-way mux 2n

XOR, XNOR n 2n-1

Ignoring second order 
effects such as internal 
node capacitances

 g represents the fact that, for a given load, complex gates 
have to work harder than an inverter to produce a similar 
(speed) response
 complex gates have higher input capacitance  worse 

output current

Logical effort term, g

Gate Type g  (for 1 to 4 input gates)
1 2 3 4

Inverter 1
NAND 4/3 5/3 (n+2)/3
NOR 5/3 7/3 (2n+1)/3
mux 2 2 2
XOR 4 12

Delay as a function of  fanout
 The slope of the line is 

the logical effort of the 
gate (g)

 The y-axis intercept is 
the intrinsic delay (tp0)

 What are 2 ways to 
reduce delay?
 Adjust the effective 

fanout (by scaling up 
transistor sizes)

 Choose a gate with a 
different logical effort
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Gate effort: h=fg



10/12/2016

6

Path delay of  logic gate network

1
a b c

CL 5

 Total path delay through a combinational logic block
tp =  tp,j = tp0 (pj + (fj gj)/ )

 Using the same analysis as for the inverter we find that 
each stage should bear the same gate effort

f1g1 = f2g2 = . . . = fNgN or
g1Cext,1/Cg,1= g2Cext,2/Cg,2=…= gNCL/Cg,N

 Optimize the path delay through the logic network 

How do we optimally size gates a, b, and c?

 The path logical effort, G =  gi

 Path effective fanout (path electrical effort) is  F = CL/Cg1
[1]

 The branching effort accounts for fan-out to other gates in  
the network:   b = (Con-path + Coff-path)/Con-path

 The path branching effort is then B =  bi

…and the total path effort is then H = GFB   [1]

 The gate effort that minimizes path delay is 
 So, the minimum delay through the path is

Path delay (equation derivation)

N Hh 

 








 



N

j

N

jp γ
HNptD

1
0

Note the textbook   
swaps the definitions 
of F,H and fi, h

[1]

Path delay of  logic gate network (cont.)
 For gate i in the chain, its size is determined by h = figibi

 For this network what do we need to compute h?
 F = CL/Cg1 = 5
 G = 1 x 5/3 x 5/3 x 1 = 25/9
 B = 1 (no branching)
 H = GFB = 125/9, so the optimal stage effort is h= H = 1.93
 Fanout factors are computed as fi=h/(gi·bi).  Since bi=1 we have:

f1 = h/g1=1.93, f2 = 1.93 / (5/3) = 1.16, 

f3 = 1.93/(5/3)=1.16, f4 = 1.93

1
a b c

CL 5

4

Path delay of  logic gate network (cont.)
 Given fi for each gate i in the chain, what is the final sizing?

 f1=1.93, f2=1.16, f3 = 1.16, f4 = 1.93
 So the gate sizes are (working from outputs to inputs):

 c: f4=cext,4/cg,4 = cL/cg,4 = 1.93    cg,4=5/1.93=2.59
 b:  f3=cext,3/cg,3 = cg,4/cg,3 = 1.16    cg,3=2.59/1.16=2.23
 a:  f2=cext,2/cg,2 = cg,3/cg,2 = 1.16    cg,2=2.23/1.16=1.93
 g1:  f1=cext,1/cg,1 = cg,2/cg,1 = 1.93    cg,1=1.93/1.93=1.00

1
a b c

CL 5
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Path delay of  logic gate network (cont.)
 So what are the actually scaling sizes of the gates?

 Consider again the intrinsic capacitance values we calculated
 cg,4=5/1.93=2.56, cg,3=2.59/1.16=2.23, cg,2=2.23/1.16=1.93, 

cg,1=1.93/1.93=1.00
 These are relative to a minimum sized inverter, so we need to adjust to 

the gate type:
 cg,4 = 2.56  gate c is 2.56X size of minimum sized inverter, so 

Sc=2.56 since gate c is an inverter as well.
 cg,3 = 2.23  gate b is 2.23X size of minimum sized nor.  Minimum 

sized nor is 5/3 as big as min sized inv so Sb = 2.23 X 3/5 = 1.34
(i.e., NOR is 1.34X size of minimum sized NOR)

 cg,2 = 1.93  gate a is 1.93X size of minimum sized NAND3.  
Minimum sized nand3 is 5/3 as big as min sized nand so Sa = 1.93X 
3/5 = 1.16 (i.e. NAND is 1.16X size of minimum sized NAND3)

1
a b c

CL 5


