ENGN 1750: Advanced Mechanics of Solids Homework 1

Due: Friday, September 13, 2013

The purpose of this homework is to gain facility with indicial notation in vector analysis. Three concepts are especially crucial:

• The Kronecker delta δ_{ij} , defined by

$$\delta_{ij} = \begin{cases} 1 & \text{if } i = j, \\ 0 & \text{if } i \neq j. \end{cases}$$

• The alternating symbol ϵ_{ijk} , defined by

$$\epsilon_{ijk} = \begin{cases} 1 & \text{if } \{i, j, k\} = \{1, 2, 3\}, \{2, 3, 1\}, \text{ or } \{3, 1, 2\}, \\ -1 & \text{if } \{i, j, k\} = \{2, 1, 3\}, \{1, 3, 2\}, \text{ or } \{3, 2, 1\}, \\ 0 & \text{otherwise.} \end{cases}$$

• The *Einstein summation convention*, which implies summation over the range 1, 2, 3 for any repeated index (the appearance of an index more than twice in any term is not allowed), i.e.

$$u_i v_i = u_1 v_1 + u_2 v_2 + u_3 v_3.$$

Throughout, φ and ψ refer to scalar fields and \mathbf{u} , \mathbf{v} , and \mathbf{w} refer to vector fields. (Boldface notation is equivalent to the under-squiggle on the blackboard.)

- 1. By employing the summation convention, simplify the following expressions involving the Kronecker delta: (a) δ_{ii} , (b) $\delta_{ij}\delta_{ij}$, (c) $\delta_{ik}\delta_{kj}$, (d) $\delta_{ij}\delta_{ik}\delta_{jk}$, and (e) $\delta_{ij}u_j$.
- 2. Simplify the following expressions involving the alternating symbol: (a) $\epsilon_{ijk}\delta_{jk}$ (b) $\epsilon_{ijk}u_ju_k$, and (c) $\epsilon_{ij3}u_i\delta_{2j}$.
- 3. Consider the identity

$$\epsilon_{ijk}\epsilon_{pqr} = \det \begin{bmatrix} \delta_{ip} & \delta_{iq} & \delta_{ir} \\ \delta_{jp} & \delta_{jq} & \delta_{jr} \\ \delta_{kp} & \delta_{kq} & \delta_{kr} \end{bmatrix}.$$

(a) Verify the identity for

(i)
$$i = 1, j = 2, k = 3, p = 3, q = 1, r = 2,$$

(ii)
$$i = 1, j = 2, k = 3, p = 3, q = 2, r = 1,$$

(iii)
$$i = 1, j = 2, k = 3, p = 1, q = 2, r = 1.$$

(b) Show that

$$\epsilon_{ijk}\epsilon_{iqr} = \delta_{jq}\delta_{kr} - \delta_{jr}\delta_{kq}.$$

This is referred to as the epsilon-delta identity and is especially useful when working with cross products.

- (c) Using the epsilon-delta identity, evaluate $\epsilon_{ijp}\epsilon_{ijq}$ and $\epsilon_{ijk}\epsilon_{ijk}$.
- 4. Using indicial notation, show that
 - (a) $\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w}) = \mathbf{v} \cdot (\mathbf{w} \times \mathbf{u}) = \mathbf{w} \cdot (\mathbf{u} \times \mathbf{v}),$
 - (b) $\mathbf{u} \times \mathbf{v} = -\mathbf{v} \times \mathbf{u}$,
 - (c) $\mathbf{u} \times \mathbf{u} = \mathbf{0}$,
 - (d) $\mathbf{u} \cdot (\mathbf{u} \times \mathbf{v}) = 0$,
 - (e) $\mathbf{u} \times (\mathbf{v} \times \mathbf{w}) = (\mathbf{u} \cdot \mathbf{w})\mathbf{v} (\mathbf{u} \cdot \mathbf{v})\mathbf{w}$,
 - (f) $\mathbf{u} \times (\mathbf{v} \times \mathbf{w}) + \mathbf{v} \times (\mathbf{w} \times \mathbf{u}) + \mathbf{w} \times (\mathbf{u} \times \mathbf{v}) = \mathbf{0}$,
 - (g) $(\mathbf{u} \times \mathbf{v}) \cdot (\mathbf{u} \times \mathbf{v}) = (\mathbf{u} \cdot \mathbf{u})(\mathbf{v} \cdot \mathbf{v}) (\mathbf{u} \cdot \mathbf{v})^2$.
- 5. (from Fung) Write out the following equation in unabridged form:

$$\mu u_{i,jj} + (\mu + \lambda)u_{j,ij} + F_i = 0,$$

where μ and λ are scalar constants. As we shall see later in the course, these are the Navier-Cauchy equations of elasto-statics, where u_i is the displacement and F_i is the body force.

- 6. Using indicial notation, establish the following identities:
 - (a) $\nabla \cdot (\varphi \mathbf{u}) = \varphi \nabla \cdot \mathbf{u} + \mathbf{u} \cdot \nabla \varphi$,
 - $\mathrm{(b)} \ \nabla \cdot (\mathbf{u} \times \mathbf{v}) = \mathbf{v} \cdot (\nabla \times \mathbf{u}) \mathbf{u} \cdot (\nabla \times \mathbf{v}),$
 - (c) $\nabla \times (\varphi \mathbf{u}) = \varphi(\nabla \times \mathbf{u}) + \nabla \varphi \times \mathbf{u}$,
 - (d) $\nabla \cdot (\nabla \varphi \times \nabla \psi) = 0$,
 - (e) $\nabla \times (\nabla \varphi) = \mathbf{0}$,
 - (f) $\nabla \times (\nabla \times \mathbf{u}) = \nabla(\nabla \cdot \mathbf{u}) \nabla^2 \mathbf{u}$, where $\nabla^2(\cdot) = \nabla \cdot \nabla(\cdot)$.
- 7. (adapted from Fung) Let \mathbf{r} be the position vector and r be its magnitude $\sqrt{\mathbf{r} \cdot \mathbf{r}}$. Using indicial notation, show that
 - (a) $\nabla \cdot \mathbf{r} = 3$,
 - (b) $\nabla r = \frac{\mathbf{r}}{r}$,
 - (c) $\nabla \mathbf{r} = \mathbf{1}$,
 - (d) $\nabla \cdot (r^n \mathbf{r}) = (n+3)r^n$,
 - (e) $\nabla \times (r^n \mathbf{r}) = \mathbf{0}$,
 - (f) $\nabla^2(r^n\mathbf{r}) = n(n+3)r^{n-2}\mathbf{r}.$