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Abstract 
 
This paper experimentally examines axisymmetric adhesive contact under equi-biaxial stretch of 
the substrate. It is motivated by recent theoretical models which predict that the contact radius 
decreases sharply beyond a critical strain, with an instability that can result in spontaneous 
detachment or gross slipping across the contact area. The model system in the present 
experiments consists of convex glass lenses resting on PDMS sheets, which are subjected to 
equi-biaxial stretch in a specially designed experimental setup. It is shown that the evolution of 
the contact area is well described by the theoretical model after accounting for the mode-mixity 
dependence of work of adhesion at the contact edge. More significantly, the conditions of 
instability observed in the experiments were well predicted by the model. The findings are 
expected to be significant in predicting soft material contact behavior, such as that in biological 
adhesion.          
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1. Introduction 
 

It has been widely reported that living cells respond to substrate strain by re-orienting 
themselves away from the direction of the stretch [1-12]. It has also been reported that the extent 
of re-orientation depends on the strain amplitude [8-9]. Motivated by such observations, Chen 
and Gao [13-16] developed contact models for how symmetric contact between two elastic solids 
evolves under substrate strain. In particular, they considered the contact between a cylinder and a 
half-space under uniaxial strain [13], and that between a sphere and a half-space under equi-
biaxial strain [14]. The canonical result that they demonstrated is the following; in the absence of 
any normal force, the contact radius decreases with substrate strain and approaches zero 
continuously. In the presence of a normal force, as the substrate strain increases, the contact area 
decreases until a critical value, beyond which it becomes unstable and spontaneous detachment is 
predicted. The importance of the contact problem under substrate straining extends beyond the 
behavior of cells; it can be a spontaneous detachment mechanism in biological attachment 
systems, which involve soft materials [17-26]. The objective of this article is to carry out an 
experimental investigation of adhesive contact under substrate strain, compare the results with 
those of Chen and Gao model prediction and suggest any improvements to the model if 
necessary. In the next section, a revised form of the Chen and Gao [14] model is presented, in 
which the effect of mode-mixity on work of adhesion is considered phenomenologically. The 
results are used to motivate the subsequent experimental section. 
 
2. Axisymmetric adhesive contact under equi-biaxial straining  
 

Consider a sphere of radius R in no-slip contact with a half-space, which is subsequently 

subjected to an equi-biaxial strain of m, as illustrated in Fig. 1. A circular contact area of radius 
a is established in the presence of a compressive normal force of P. Although Chen and Gao [14] 
developed a general solution for two elastic spheres in contact, here we will consider its limiting 
case of a rigid sphere in contact with an incompressible elastic half-space, which approximates 

Figure 1: Schematic illustration of the geometry of the biaxial stretching contact 
problem. A rigid sphere of radius R is initially in no-slip contact with a half-space 
under external normal loading P. Biaxial stretching induces a mismatch strain m 
within the contact radius a. 
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the experiments involving glass spheres in contact with elastomeric substrates. The stress 
intensity factors at the contact periphery for this case are given by 
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where, E* = E/(1 − 2) is the reduced elastic modulus, R is the radius of the sphere, a is the 
radius of contact, and P is the applied load (P > 0 for compression). For this specific case, the 
stress intensity factors are decoupled; KI is dependent upon P only, while KII is dependent upon 
the mismatch strain εm only. To incorporate the phenomenological mixed-mode fracture 
criterion, the energy release rate G is set equal to a mode-mixity-dependent work of adhesion 
w(y): 
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where the phase angle y  was defined as tan-1(KII/KI).  The parameterization of Hutchinson and 
Suo [27] is chosen to describe w(y) as follows, 
 

      2
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where w0 is the work of adhesion for pure mode I loading. The parameter  in Eq. 4 determines 
the influence of mode mixity and is bounded between 0 and 1. Figure 2 shows the variation of 

w/w0 with y  for a range of . If  = 1, ξ(y) = 1 and w(y) = w0 for all y, which is the classical 

surface energy criterion used by Chen and Gao [14]. If  = 0, the crack is “fully shielded” from 

any effects of mode II and crack advance depends only upon the mode I component. The  = 0 
case is thus often referred to as being “KII–independent”.  
 
Using Eqs. (1)–(2) and Eq. (4), the contact equilibrium condition given by Eq. (3) can be 
expressed as 
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which determines the relationship between a and m for a given w0, ξ(y), R, and P. Chen and Gao 
[14] found that, when w = w0, this contact problem could be described by the dimensionless 
parameters 
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where a0 is the contact radius at m = 0 with w = w0, equivalent to that for the classical JKR case. 
In the present case, with w = w0 ξ(y) as defined in Eq. (4), Eq. (5) can be normalized as 
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where the phase angle y  can be expressed in terms of the dimensionless parameters as 
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Using this expression, Eq. (7) can be solved numerically for m for given values of ොܽ, ܴ, and ܨ. 
Sample results are shown in Fig. 3. Increasing m is seen to reduce the contact area from its 
initial value of a0, similar to the reduction in contact area seen for increased tangential loading in 

Figure 2: Phenomenological model for the effective work of adhesion w increasing with 
phase angle of mode mixity y.   = 1 corresponds to w remaining constant, similar to 
“ideally brittle” fracture, while  = 0 corresponds to a “fully shielded” case. 
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the case studied by Waters and Guduru [28,29], where an adhesive contact was subjected to 
normal and tangential loads. Of note is that, qualitative differences in behavior are predicted here 

for neutral and finite normal loading. For the case of neutral loading (ܨ = 0) shown in Fig. 3a, 
there is a smooth transition towards a/a0 = 0 for increasing strain. However, for the case of 

compressive loading (ܨ = −0.025) shown in Fig. 3b, an instability is seen; there is a critical value 

of m beyond which higher mismatch strains cannot be sustained by the interface. Such 
instabilities are seen for any finite compressive or tensile normal loading. In the tensile case, the 
instability initiates spontaneous separation at a critical value of mismatch strain; in the 
compressive case, reaching a critical value of mismatch strain triggers a slip event followed by 

reattachment. In both cases, the effect of decreasing  (i.e., increasing the amount of dissipation) 
in the expression for w(y) is to increase the critical mismatch strain at which such instabilities 
occur. 

3. Biaxial stretching experiments 
The influence of equi-biaxial strain on adhesive contact was investigated through a series 

of experiments, in which PDMS (polydimethilsiloxane) sheets were used as substrates subjected 
to strain. Spherical convex glass lenses of various radii were brought into contact with PDMS 
sheets, and the contact area between the lens and the PDMS substrate was observed and recorded 
as strain was applied at a controlled rate, as described below. The choice of the model 
experimental configuration is guided by the existing body of literature that examined other 
aspects of adhesion between glass lenses and PDMS substrates [30]. 

Figure 3: Theoretical predictions for the reduction in contact radius a/a0 versus normalized 
mismatch strain ܴߝ. (a) When normalized load ˆ 0F  , a smooth transition to zero contact 
area is predicted. (b) Under a compressive load ˆ 0.025F   , an instability is seen; there is a 
critical value of ߝ  beyond which higher mismatch strains cannot be sustained by the 
interface without slip occurring. Qualitatively similar instabilities are also seen for tensile 
normal loading. Note that in (b) the location of instability is shown for l = 0.1 case only. 
Each of the other curves has an instability where the tangent to the curve is vertical. 

Unstable 
detachment 
or slip 
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PDMS (Sylgard 184, Dow Corning) samples were prepared by casting on a smooth 115 
mm diameter borosilicate glass plates, resulting in circular PDMS sheets, approximately 4 mm in 
thickness. The elastomer base and curing agent were mixed in a 10:1 ratio by weight and 
degassed in a vacuum chamber for 1 hour. The mixture was cured in an oven at 75oC for 3 hours. 
The reduced elastic modulus for these samples was measured to be 2.3 MPa, as described in 
Waters and Guduru [28,29]. The samples were gently dusted with spray paint in order to 
introduce particles on the surface which would be used to measure strain. A circular area of 2-3 
mm diameter at the center of the sample was protected from the spray paint, where the glass 
lenses would be brought into contact. The PDMS surface cast against the glass plate was used for 
all experiments, in order to minimize roughness, defects and curvature.  
 

 
 
 

R (mm) mass (mg) P (mN) w0 (mJ/m2) R̂  F̂  
2.55 13.5 0.13 53 19 -0.05 
2.55 13.5 0.13 40 21 -0.06 
4.25 15.1 0.15 62 22 -0.03 
6.2 17.8 0.17 70 24 -0.02 

Table 1: Parameters for the biaxial stretching experiments. 

Figure 4: Schematic diagram of biaxial stretching experiment. Circular flanges are used to 
secure a PDMS membrane to the moving crosshead of an Instron machine. The motion of the 
crosshead stretches the PDMS over an aluminum cylinder. A spherical convex lens is placed 
on the surface in the center of the membrane to idealize the biaxial strain condition. The 
weight of the lens provides a constant compressive normal load P. Images of the contact area 
are observed and recorded during the experiment using a microscope objective attached to a 
digital camera. 
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The experimental setup to equi-biaxially stretch PDMS sheets is illustrated in Fig. 4.   
PDMS sheets were clamped flat between a pair of aluminum flanges and lowered concentrically 
over a stationary aluminum cylinder, in a manner similar to stretching the head of a drum over its 
body. The cylinder was rigidly attached to the lower crosshead of an Instron 5880 materials 
testing machine, while the flanges holding the PDMS were rigidly attached to the upper 
crosshead through a 50 kN load cell. Each flange had a 76 mm diameter hole in the center over 
which the 115 mm PDMS disc was placed. Each flange had a pair of 2.5 mm thick and 1.3 mm 
tall concentric ridges to prevent the clamped sheet from slipping in the grip during loading. The 
inner and outer diameters of the aluminum cylinder were 32 mm and 38 mm respectively. The 
top edge of the cylinder in contact with the PDMS sheet had radius of 1.5 mm; it was polished 
smooth to allow the PDMS sheet to slide on it with minimal friction.  In addition, Dupont Krylox 
lubricant (Duport Corporation) was applied on the cylinder surface.  

Convex glass lenses (CVI Corporation, Rochester, NY) with radius of curvature R were 
gently placed at the center of the unstretched PDMS surface as illustrated in Fig. 4; the central 
location prevents unwanted lateral movement of the lens in the field of view of the microscope 
during the experiment. Note that the weight of the lens provides a constant compressive normal 
load P on the contact area. The contact area was imaged with a microscope (2.5× objective) 
placed directly above the center of the PDMS sheet and the images were acquired with a digital 

Figure 5: Representative images of contact area during the biaxial stretching 
experiments (R = 6.2 mm). Top: Full field of view. Spray paint particles outside the 
area of contact were used for strain measurement. Bottom: Series of images 
illustrates shrinking contact area with increased stretching. Final image shows 
reattachment after slip instability. 
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camera attached to the microscope. During the experiments, the PDMS sheet was lowered onto 
the cylindrical ring at a speed of 6 mm/min; displacement and load data were collected at a rate 
of 1 Hz. The substrate strain was measured from the microscope images, by tracking the distance 
between pairs of paint particles. Figure 5 shows a typical sequence of images recorded during the 
experiment. The top image illustrates the field of view during the experiment, which contains the 
contact area as well as the paint particles. The sequence of images at the bottom shows the 
shrinking contact area with increasing strain. The last frame illustrates reattachment over a larger 
contact area following a slip instability.  

In order to compare the experimental results to the theoretical model, the initial contact 
area a0 was used to determine the mode I work of adhesion w0 using the JKR theory [31] 
equation  

2* 3

* 3

1 4

8 3

E a
w P

E a R
 

  
 

 (9)

 

The parameters ܴ and ܨ were then computed, as defined in Eq. 6. This data is summarized in 
Table 1. Figure 5 compares the experimental data to the theoretical results. It was found that the 
theoretical curves for this range of parameters were virtually identical on a logarithmic scale; 

Figure 5: Results of the biaxial stretching experiment. Fitting of the phenomenological 
mixed mode contact model with ~ 0.05 – 0.1 provides a better fit to the data than the 
model of Chen and Gao [14] ( = 1). The critical mismatch strain and contact radius at 
the onset of slip instability are also captured well by the phenomenological model. 

Chen & Gao [14]
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thus, only the curves for ܨ = −0.05 and ܴ = 19 are shown. Fig. 5 shows that the Chen and Gao 

[14] model ( = 1) significantly underpredicts the contact radius a/a0 for a given mismatch strain 

m. Considering the mixed mode fracture criterion (Eqs. 3 & 4) and adding dissipation by 

decreasing  gives a much better agreement with the experimental results, with  = 0.05 – 0.1 

giving a reasonable match. The small value of  indicates that substantial dissipation occurs in 
the interface, which is similar to the observation of Liechti and Chai [32] in the context of mixed 
mode interfacial fracture mechanics. More significantly, the experiments capture the instability 

predicted by the theoretical model at a critical value of m ~ 0.53 (or ܴߝ~10ሻ. The data points 

plotted in Fig. 5 are those prior to the onset of the instability, and the values of a/a0 and m at 
which the instability occurs in the experiments is estimated well by the model. Beyond this point 
of instability, the contact area spontaneously slips and increases in size due to reattachment. It 
also loses its symmetrical shape possibly because the interface does not slip symmetrically; it 
initiates at a point on the periphery and spreads across, while reattaching simultaneously in the 
slip zone.  The instability indicates that slip is not a gradual process as seen in Hertzian contact 
models, but rather that the no-slip condition provides an accurate description of the adhesive 
contact of PDMS under these loading conditions. These results from biaxially strained contact 
experiments, with symmetric circular contact areas throughout the tests, validate that the model 
developed using the higher precision data of the initial symmetric peeling stage of tangential 
loading as reported by Waters and Guduru [28, 29], and has general utility for a range of contact 
problems. Use of a mode-mixity-dependent work of adhesion provides for better agreement with 
experimental data and will allow for more accurate predictions of contact problems involving 
soft materials. 
 
4. Summary 

The mechanics of adhesive contact under biaxial straining of the substrate is an important 
problem in contact problems involving soft materials, such as those that appear in cell-substrate 
interaction and reversible attachment-detachment of biological organisms. A theoretical model 
developed by Chen and Gao [14] showed that the contact area decreases precipitously when the 
biaxial strain exceeds a critical value; subsequent increase in strain can result in an instability 
that appears as either spontaneous detachment or interfacial slip. An experimental investigation 
has been carried out here to study adhesive contacts under biaxial strain and examine the 
predictions of Chen and Gao [14] model. The main result is that the experiments show contact 
instability, as predicted by the model. Further, the evolution of contact area with strain is well 
predicted by the model, after the fracture criterion is modified to account for additional 
dissipation due to mixed mode conditions at the contact periphery. A phenomenological mixed 
mode work of adhesion, similar to that of Hutchinson and Suo [27] yielded good agreement 

between the experiment and model predictions, with  = 0.05 – 0.1, suggesting significant 
dissipation due to mode mixity.      
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