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Lateral force calibration of an atomic force microscope with a diamagnetic
levitation spring system
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A novel diamagnetic lateral force calibrator �D-LFC� has been developed to directly calibrate atomic
force microscope �AFM� cantilever-tip or -bead assemblies. This enables an AFM to accurately
measure the lateral forces encountered in friction or biomechanical-testing experiments at a small
length scale. In the process of development, deformation characteristics of the AFM cantilever
assemblies under frictional loading have been analyzed and four essential response variables, i.e.,
force constants, of the assembly have been identified. Calibration of the lateral force constant and
the “crosstalk” lateral force constant, among the four, provides the capability of measuring absolute
AFM lateral forces. The D-LFC is composed of four NdFeB magnets and a diamagnetic pyrolytic
graphite sheet, which can calibrate the two constants with an accuracy on the order of 0.1%.
Preparation of the D-LFC and the data processing required to get the force constants is significantly
simpler than any other calibration methods. The most up-to-date calibration technique, known as the
“wedge method,” calibrates mainly one of the two constants and, if the crosstalk effect is properly
analyzed, is primarily applicable to a sharp tip. In contrast, the D-LFC can calibrate both constants
simultaneously for AFM tips or beads with any radius of curvature. These capabilities can extend
the applicability of AFM lateral force measurement to studies of anisotropic multiscale friction
processes and biomechanical behavior of cells and molecules under combined loading. Details of
the D-LFC method as well as a comparison with the wedge method are provided in this article. ©

2006 American Institute of Physics. �DOI: 10.1063/1.2209953�
I. INTRODUCTION

From its inception,1 atomic force microscopes �AFM�
have been widely used for studying nanoscale friction
properties.2–4 The most commonly used experimental appa-
ratus for AFM friction measurements consists of a cantilever-
tip assembly and its force transducers. The tip is typically
made of a silicon or silicon nitride apex formed by chemical
etching, or a bead of a few micrometers in radius, sometimes
called a colloid tip,5,6 attached to a thin silicon or silicon
nitride film cantilever. The transducer is commonly made of
a position sensitive photodetector �PSPD� array, which
senses the deflection of a laser beam reflected off the top
surface of the AFM cantilever near the end. The deflection of
the laser beam is generated by the bending and torsional
deformations of the cantilever, which are caused by normal
contact and friction forces exerted by the substrate material
surface against the tip.

However, for as long as AFM has been used to study the
frictional properties of materials at the nanoscale, there have
been difficulties in measuring the absolute lateral force com-
ponents involved in the friction process. The friction force
detected as a lateral force on the AFM cantilever induces the
torsional deformation, i.e., twist, of the cantilever; however,
the normal force also contributes to the twist. The effect of
the normal force on the twist of the cantilever is known as
the “crosstalk” effect.4 Generally speaking, the crosstalk can
be induced mechanically, i.e., the shear center misalignment

of the cantilever with respect to the geometric center of the
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cantilever, and optically, i.e., the misalignment of the PSPD
array. The conventional method of avoiding the crosstalk ef-
fect was to hold the normal force constant during a friction
test and measure the relative friction force between the for-
ward and backward sliding processes. However, this method
cannot measure the absolute frictional lateral force if the ab-
solute values of the frictional forces for forward and back-
ward sliding processes are different from each other. In ad-
dition, the most current technique, the “wedge” method
employed in the wedge lateral force calibrator �W-LFC�,4,7 is
only valid for a sharp AFM tip, with a negligible radius of
curvature compared to the tip height, if the crosstalk caused
by misalignment of the shear center is properly taken into
account. However, it is required to use a tip of a relatively
large radius of curvature for studying scale effects of friction
and biomechanical testing of cells and molecules. For such a
large radius of curvature, a bead is usually attached to the
AFM cantilever, and the system of equations to convert the
AFM signals of the wedge calibration to the lateral force
constant has too many variables to have a unique solution, if
the mechanical crosstalk effect is considered properly. There-
fore, there has been great demand to develop a robust
method of accurately measuring the absolute lateral forces
exerted on the AFM bead with a relatively large radius of
curvature.

In this article we present a new apparatus, the diamag-
netic lateral force calibrator �D-LFC�, which provides a di-
rect means of calibrating an AFM to measure the absolute

lateral forces exerted on the AFM tip or bead. In order to

© 2006 American Institute of Physics5-1

 AIP license or copyright, see http://rsi.aip.org/rsi/copyright.jsp

http://dx.doi.org/10.1063/1.2209953
http://dx.doi.org/10.1063/1.2209953
http://dx.doi.org/10.1063/1.2209953


065105-2 Li, Kim, and Rydberg Rev. Sci. Instrum. 77, 065105 �2006�
make a comprehensive presentation and to make objective
comparisons with other calibration methods, we introduce an
analysis of the AFM friction test system in the following
section.

A. Deformation and transducer characteristics of an
AFM friction test system

Figure 1 shows a free body diagram of an AFM
cantilever-tip assembly on a projection plane, showing a
front end view of the deformed configuration. However,
since it is a small twist configuration, the cross section of the
cantilever is not rotated pictorially in the figure and the small
angle of twist �� caused by the deformation is imbedded in
�. The projection plane is the one which passes through the
geometrical contact point A and is parallel to the plane de-
fined by the vectors l and m shown in the figure. The vector
m is a unit vector in the direction from the point P of laser
reflection on the AFM cantilever to the center point Q of the
PSPD. We have drawn a laser illumination configuration that
our AFM �PSI AutoCP� employed. However, the orientation
of laser illumination can be in any direction, in general. The
lateral force sensing vector l is a unit vector on the plane of
the PSPD in the direction of sensing the laser beam deflec-
tion caused by torsional twist of the AFM cantilever. The
other normal force sensing vector n, shown in the upper inset
of Fig. 1, is the direction of sensing the laser beam deflection
induced by bending the cantilever. In this section we will
only consider the mechanical crosstalk effect, and the optical
misalignment effect will be discussed separately in a later

FIG. 1. Free body diagram of an AFM cantilever-tip assembly on a projec-
tion plane showing a deformed configuration: N is the normal force, f the
friction force, MA the adhesion moment, and subscript R indicates reaction
forces and moment; G, C, and O denote the geometric center, shear center of
the cantilever, and the center of the tip curvature, respectively; B1−B2 rep-
resents the principal axis of bending, �m the tip misfit angle, and �* the
substrate slope angle; dashed line depicts the laser light path; �x ,y� are the
force coordinates, �x̂ , ŷ� the cantilever coordinates, and �l ,n� shown in the
upper inset are the PSPD sensing directions. The lower inset shows the
outline of the tip for the free body diagram.
section.
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The point O is the center of curvature of the tip and the
point C is the shear center of the AFM cantilever. The shear
center is a spatial point of structural significance at which
any resultant concentrated force cannot induce a torsional
twist on the cantilever. The location of the shear center on
the projection plane is unique and depends on the distribu-
tion of the elastic moduli and the global geometry of the
cantilever structure. In general, the shear center C is dis-
tinctly displaced from the geometrical center G of the local
cross section of the cantilever on the projection plane. For
example, we estimated the location of the shear center based
on direct optical imaging of the planar geometry and the tip
location of a noncontact C-type triangular cantilever, using
the ABAQUS finite element analysis. The finite element
method �FEM� analysis shows that the misalignment of the
shear center was approximately 3 �m in a lateral direction.
The tip had a height of 4 �m. The misalignment could have
been much worse, if we had the asymmetry of the tip loca-
tion like the one shown in Fig. 2 of Ref. 4. The local cross
section of the cantilever is depicted by a rectangle in Fig. 1.
It is assumed that the AFM tip is locally spherical, with a
radius r near the contact point. The tip is represented by a
circle in the figure. Also, it is assumed that the nominal sur-
face normal of the undeformed substrate at the contact point
is aligned with the line AO, which lies on the projection
plane. The distance between the points O and C is denoted
by h, while the angle between AO and OC is depicted by �.
The angle �=�0+�� is composed of the initial tilt angle �0

in the undeformed configuration and the angle of twist ��
caused by the deformation.

The diagrams of Fig. 1 are illustrated in three major
activity coordinates. One is the friction force coordinates
�x ,y�, another the mechanical sensing coordinates �x̂ , ŷ�, and
the last, the optical sensing coordinate directions �n , l�. The x
coordinate is aligned with the intersection between the pro-
jection plane and the tip-contact surface of the substrate, and
the y coordinate with the normal of the surface as shown in
the figure. The mechanical sensing coordinate, x̂, is lined up
with the principal axis �B1-B2� of the bending stiffness of the
thin film cantilever, which is assumed to be parallel to the
top surface of the cantilever at the laser reflection point P.
The ŷ coordinate is in the normal direction to the top surface.
We will describe the forces of the contact friction in the �x ,y�
coordinates and the deformation of the cantilever in the �x̂ , ŷ�
coordinates, and then derive the relationship between the
forces and the deformation quantities.

The force balance in the x and y directions requires fR

= f and NR=N, where f denotes the lateral force and N the
normal force at the contact point, while the subscript R indi-
cates the reaction forces at the root of the AFM cantilever.
The moment balance with respect to the shear center C is
simply reduced to

MR = Nh sin � + f�h cos � + r� − MA, �1�

where MA stands for the contact moment induced by the
asymmetry of the adhesive contact stress distribution. Then,
the torsional reaction moment MR is related to the elastic
torsional deformation �� of the AFM cantilever as
MR = ��� , �2�
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where � is the torsional spring constant of the cantilever. As
we operate the AFM in a small deformation range of ��
�1, Eqs. �1� and �2� can be further reduced to a fundamental
equation of twist as

Nh sin �0 + f�h cos �0 + r� − MA = �*�� , �3�

where the effective torsional spring constant �* = ��
−Nh cos �0+ fh sin �0� reduces to �* �� for Nh /��1 and
fh /��1. The maximum value of Nh /� and fh /� is less than
10−3 for typical AFM friction tests.

In the AFM friction test the output voltage V̂�l� of the
lateral direction PSPD, with respect to the twist angle ��,
can be represented by

V̂�l� = �l�� , �4�

where �l is the lateral angle sensitivity constant of the PSPD,
in V/rad. It is noticed that our definition of �l gives the
relationship �l=� /�, with the calibration constant � used by
Varenberg et al.7 Denoting the substrate angle between x and
x̂ as �*, and the shear center misfit angle between OC and ŷ
as �m, we have the relationship �0=�*−�m, and �3� can be
expanded to

N��1 − ��sin��* − �m� + sgn���f���1 − ��cos��* − �m� + ��

= 	lV̂�
�l�, for � = a or b , �5�

where �=r /H, with H=h+r, and sgn���=1 for �=a and −1
for �=b, with a and b denoting the quantities associated with
frictional loading in the forward �+x̂� and backward �−x̂�
directions, respectively. Here, it is assumed that MA / �f�H�
�1, where MA is a function of f and N, in general. The
generic lateral force constant 	l of the AFM friction mea-
surement appearing on the right hand side of �5� is defined
by

	l = �/��lH� . �6�

The generic lateral force constant 	l can be directly cali-
brated if the substrate angle is adjusted to be �0=�*−�m

=0 by regulating the variation of the lateral PSPD output,

V̂�l�, to vanish when the normal load N is altered. Then, the
relationship between the lateral force and the PSPD output in
�5� becomes

f� = sgn���	lV̂�
�l�. �7�

However, in general, this calibration requires a very
large tilt of the AFM head with respect to the scanning plane
of the substrate. In most cases, we use the AFM with an
alignment such that the top surface of the AFM thin film
cantilever is parallel to the scanning plane. For such a setup,
the force components in the �x ,y� coordinates,
�−sgn���f� ,N��, in �5� can be expressed in terms of the com-

ponents in the �x̂ , ŷ� coordinates, �−sgn��� f̂� , N̂��, using the
orthogonal transformation matrix

�N�

f�
	 = � cos �* sgn���sin �*

− sgn���sin �* cos �* 	�N̂�

f̂�

	 . �8�
Then, substituting �8� into �5�, we arrive at
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f̂� = sgn����	llV̂�
�l� + 	lnV̂�

�n�� , �9a�

where we used the normal system response relationship

N̂� = 	nV̂�
�n� �9b�

with the normal force constant 	n, the lateral force constant
	ll and the crosstalk lateral force constant 	ln, for which

	ll = 	l/��1 − ��cos �m + � cos �*� , �10a�

	ln = 	n��1 − ��sin �m + � sin �*�/��1 − ��cos �m

+ � cos �*� . �10b�

In �9b� the crosstalk normal force constant 	nl does not ap-
pear because the component of the lateral force in the direc-
tion of the cantilever axis is negligible. Therefore, it is re-
duced to calibrating the three force constants, 	n, 	ll, and
	ln, for complete characterization of the mechanical re-
sponses of the AFM cantilever-tip assembly. When �m=0
and �*=0, as a special case, 	ln vanishes and 	ll reduces to
the calibration constant 	 used by Varenberg et al.7

Except for special slope tests such as employed in
W-LFC,4 AFM friction tests are generally carried out with
the substrate angle �*=0, for which the transformation ma-
trix in �8� becomes the identity matrix and the force compo-
nents in the sensing coordinates are identical to the compo-

nents in the friction coordinates, i.e., f̂�= f� and N̂�=N�. In a
typical AFM friction experiment with �*=0, a friction loop
composed of forward sliding and backward sliding pro-
cesses, under constant normal load, is used to get rid of the
effect of the crosstalk force constant 	ln in �9a�. By adding
�9a� for �=a, and b, we have

f̄ = 	llŵ , �11�

where f̄ = �fa+ fb� /2 is the average friction for the forward

and backward sliding processes and ŵ= �V̂a
�l�− V̂b

�l�� /2 is the
loop width of the lateral PSPD output. For such experiments,
the system response constant is related to the other variables
as

	ll = �/��lH��1 − ��cos �m + ��� . �12�

While this technique of removing the crosstalk effect has
been widely used, it is insufficient to measure absolute val-
ues of friction forces which depend on slip directions. There-
fore, we provide a complete and direct method of measuring
	ln as well as 	ll in this article.

B. Difficulties and limitations in existing calibration
techniques

Calibrating the force constants, 	ll, 	ln, 	n, and 	l, based
on �7� and �9�, regarding the 	’s as constants of the system
response, is a direct method of calibration. Calibrating the
force constants based on �6� and �10�, evaluating the vari-
ables on the right hand sides of the equations separately, is an
indirect method of calibration. For indirect methods we have
to evaluate three AFM cantilever-tip characteristics. For ex-
ample, the lateral force constant 	l is comprised of a defor-
mation characteristic �, an intermediate transducer character-

istic �l, and a structural geometry characteristic H of the
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cantilever-tip assembly, as shown in �6�. So far, any existing
technique for calibrating the force constants could either be
characterized as an indirect method of calibration8–12 or as a
semidirect method of calibration.4,7 The wedge method4 is
one such semidirect calibration method, because we have to
evaluate separately some geometric variables, in general, for
��0, although we do not have to assess the torsional spring
constant and the angle sensitivity constant individually. In
this section we will discuss some difficulties and limitations
in calibrating the force constants with existing methods.

Evidently the indirect method has three error sources.
One is in the estimation of the torsional spring constant � of
the cantilever, another in assessing the effective cantilever-
tip structural geometry parameters �H ,� ,�m�, and the last, in
gauging the angle sensitivity constant �l of the PSPD. The
torsional spring constant � can be expressed in terms of the
elastic moduli and geometric dimensions of the cantilever in
theory.8–11 However, computational or analytical estimation
of the spring constant of the thin film cantilever structure is
inaccurate and the use of the calculated value is not practical.
Distribution of the elastic moduli of the submicron thick can-
tilever material is not uniform at the small scale, in general.
Cantilevers are often metallized and the effect of metalliza-
tion on the cantilever spring constant can be significant.13

The oxide layer and the surface roughness also affect the
spring constant. In general, the thickness of an AFM cantile-
ver is not really uniform and the cantilever is not straight in
its relative dimension. Nevertheless, the torsional spring con-
stant or its ratio to normal spring constant has been estimated
with various models of linear elastic analysis.8–11 In order to
overcome these difficulties, attempts have been made to
measure the torsional spring constant experimentally.13,14

Even if the spring constant could be estimated reason-
ably, evaluations of the geometric variables �H ,� ,�m� are
most uncertain in assessing the force constants with the in-
direct methods. Albeit the dimensions of the cantilever-tip
assembly could be measured precisely with a very good
scanning electron microscope, the location of the shear cen-
ter, C in Fig. 1, of a beam which is curved slightly or has an
uneven property distribution can be far from the midpoint of
the thin film cross section near the tip. In addition, estimation
of � and �m is also nontrivial. Furthermore, it has been no-
ticed that the accuracy of the angle sensitivity constant �l of
the PSPD depends on the laser alignment and photodetector
sensitivity significantly.4,9 In many cases, the indirect method
erroneously determines the force constants to be an order of
magnitude away from their actual value. Thus, calibration of
the force constants based on an indirect method is very dif-
ficult and ineffective.

Next we consider a semidirect method of calibration,
known as the wedge method. Ogletree et al.4 developed the
wedge method for a calibration of the lateral force constant,
	ll, circumventing the difficulties of evaluating the variables
involved in the indirect methods. The calibration was accom-
plished by sliding the tip across surfaces of two different
slopes, �±

*, with 
 indicating the two different wedge faces,

and measuring the PSPD outputs V̂�
�l� of critical slips at dif-

ˆ
ferent levels of N. The basic principle of this calibration can
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be understood as follows. If the parametric functional form
of the friction law, e.g., f��N� ;q�� with parameters q�, is
known, the measurement of f���* ;�m ,� ,	l� and
N���* ;�m ,� ,	l� for various �* can be used to get the best fit
values of the parameters q�, �m, �, and 	l. The differential
friction coefficient � and the adhesion parameter A of Ogle-
tree et al.4 are examples of the parameters q�. The minimum
necessary number of independent measurement data sets
�f� ,N�� for different �* is the number of total parameters to
determine the unknown parameters with the best fit process.
Once the parameters are determined, the lateral force con-
stant 	ll can be found with �9a� in terms of the parameters.
Ogletree et al.4 used well-defined crystallographic surfaces
of the wedge to minimize uncertainties in measuring �*.

However, this method has several issues: �A� This
method has to employ frictional sliding processes to use a
friction law, e.g., f��N� ;q��; �B� since the friction law ex-
hibits approximately a characteristic of piecewise linearity,

the large number of data sets for a wide range of N̂� has only
four independent relationships to determine the parameters
involved in the friction process, and thus the total number of
unknown parameters cannot exceed 4; and �C� if we treat the
shear center misalignment properly, the geometric variables
�m and � have to be evaluated to determine 	ll through com-
plicated data processing, although, unlike other indirect
methods, the torsional spring constant � and the geometric
variable H do not have to be estimated explicitly.

Regarding the problem of �A�, since the calibration re-
lies on frictional slip processes over sharp edges of the
wedge, the tip can be subjected to wear damage during the
calibration process as pointed out by Cain et al.15 Also the
critical friction forces at the onset of slip have stochastic
features and it is difficult to read such forces accurately. With
regard to �B�, it is convenient to use a difference form of �5�,
and the corresponding comprehensive analysis of an AFM
response in the wedge method is summarized in Appendix A.
Defining the differential friction coefficient f�� =�f� /�N�, in
general we have seven parameters, f�±� , �m, �, and 	l, to be
determined with the four independent relationships. There-
fore, Ogletree et al.4 assumed that the friction is independent
of the slip directions so that the frictional responses for the
forward and backward slips are the same, i.e., fa±� = fb±� . This
could reduce the unknowns to five. Furthermore, they as-
sumed that the tip is ideally sharp, i.e., �=0, to solve the
problem. Considering �C�, the geometric variables �m and �
have to be evaluated explicitly, in general, and therefore, the
wedge method is not truly a direct method. The wedge
method has an additional technical limitation on the size of
the tip radius. For example, in the study of Ogletree et al.,4

the wedge method could be only applied to tips with radii
less than 100 nm because of the short �10–100 nm� spacing
between SrTiO3 �305� surface ridge crests of the calibrating
wedge.

The wedge method was extended by Varenberg et al.7 to
handle the probes with large radii, i.e., ��0, but practically
smaller than 2 �m. However, they assumed that �m is zero
in their derivations,7 and it is not an accurate assumption for
general colloid probes. A few microns offset of the shear

center can completely break down the validity of the uphill
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and downhill moments in their equation ��7� and �8��.7 Fur-
thermore, since the torsion loop offset is crucial for their
improved wedge method, Varenberg et al.7 tried to use a flat
facet to cancel the crosstalk effect. But their assumption that
on the flat surface the torsion loop offset must be equal to
zero is not correct for �m�0. The torsion loop offset varies
with the normal load, in general, due to the crosstalk effect.
Moreover, the Eqs. �A3� and �A4� in our analysis show that
by simple subtraction the crosstalk effect cannot be ruled out
if ��0. For these reasons the lateral force constants cali-
brated by the W-LFC method are compared with those of the
D-LFC method only for sharp tips in the following section.

Finally, it is worth mentioning that many indirect and
semidirect methods of lateral force calibration depend on
knowledge of the normal spring constant, which has some
uncertainties. The current state of the art technique provides
approximately 10% accuracy in measuring the normal force
constant with a direct method of calibration.16 The direct
method usually employs another lever of known spring con-
stant or a microfabricated array of reference springs �MARS�
for the calibration.16 In this article, a novel in situ direct
method is developed to independently calibrate the lateral
force constant. It correlates the output voltage signals from a
PSPD directly to the lateral force applied on the AFM can-
tilever assembly by a diamagnetic levitation spring system.
This method is relatively easy to implement and has great
sensitivity to small lateral forces at the nano-Newton scale.

II. D-LFC: A DIRECT METHOD OF CALIBRATING THE
FRICTION FORCE CONSTANTS

In this section, we present a direct method of calibrating
the lateral force constants of an AFM cantilever-tip system,
which leads to the development of a D-LFC. For this devel-
opment, we noticed that most AFM thin film cantilevers have
typical lateral spring constants on the order of 100 nN/nm
and an operational range well within 100 nm of deflection.
Thus, a compliant load cell with a spring constant of about
10 pN/nm can calibrate the AFM force constants accurately
with a few micrometers of a spring displacement of the load
cell. Such a compliant load cell, small enough to be adapted
to most AFM systems, can be made simply with a diamag-
netic levitation spring. We start this section with a descrip-
tion of such a spring load cell system.

A. A diamagnetic levitation spring system

It is known that a diamagnetic material such as a graph-
ite sheet can be levitated in a magnetic field and behaves like
a spring system. The levitated graphite sheet has negligible
air and eddy-current drag due to its slow motion, and the
spring constants of the system can be tuned quite small in
magnitude. These two important features make the system
attractive for the calibration of AFM force constants as will
be clearly described in the rest of this article.

In a diamagnetic substance the magnetic moment in-
duced by an applied magnetic field opposes the applied mag-
netic field and the substance repels the source of the mag-
netic field, e.g., magnet, exhibiting negative susceptibility.

Many substances including water, protein, carbon, DNA,
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plastic, wood, graphite, and bismuth are diamagnetic.17 Sus-
ceptibilities of some diamagnetic materials are summarized
in Table I. Among them, graphite and bismuth display very
strong diamagnetism. The susceptibility of a chemical-vapor
deposition �CVD�-grown pyrolytic graphite �PG� is highly
anisotropic and the susceptibility in the direction perpendicu-
lar to the basal plane is several times higher than that in the
direction parallel to the plane. This strong anisotropy is use-
ful in suspending a PG sheet in a magnetic field, balancing
the gravity force, while the lateral spring constant of levita-
tion is tuned to be small. Properties of a diamagnetic levita-
tion spring system are explained as follows.

The body force per unit volume, f�m�, exerted on a PG
sheet in a magnetic field of flux density B is given as

f�m� = ��� · B� , �13�

where �=� ·B /�0 is the magnetic dipole moment per unit
volume, with � the molecular susceptibility tensor of PG and
�0 the permeability of the vacuum. Then, the net magnetic
force F�m� and the magnetic moment M�m� applied at the
mass center of the PG sheet are expressed as

F�m� =
1

�0



V�y�
�x�B�x� · � · B�x��dV , �14a�

M�m� =
1

�0



V�y�
�y + � � y� � �x�B�x� · � · B�x��dV ,

�14b�

where x=x�0�+y+��y, with V�y� the volume of the PG
sheet, x�0� the position of the mass center of the PG sheet, y
a position vector with respect to the mass center, and � an
infinitesimal rotation vector of PG. Then, the force balance
F�m�−m�L�ge3=0 and the moment balance M�m�=0 determine
the equilibrium position and rotation of x�0� and �. Here,
m�L� is the mass of levitation, g the gravitational acceleration,
and e3 the vertical upward unit vector. The components of
the translational spring constant tensor kij

�m� and the angular
spring constant tensor �ij

�m�, for i and j=1, 2, or 3, can be
evaluated with the following differentiations at the equilib-
rium point:

kij
�m� =

�Fi
�m�

�x�0� , �15a�

TABLE I. Values of susceptibility � for various diamagnetic materials �in SI
units�.

Material � ��10−6�

Water −8.8
Gold −34

Bismuth metal −170
Graphite rod −160

Pyrolytic graphite � −450
Pyrolytic graphite 
 −85
j
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�ij
�m� =

�Mi
�m�

�� j
. �15b�

Since the moment is defined with respect to the mass center,
the translational and the angular spring constant tensors are
decoupled.

An effective design of a diamagnetic levitation load cell
system is illustrated in Fig. 2. In this design a square sheet of
pyrolytic graphite is levitated in the magnetic field of four
permanent magnets arranged as shown in the figure. The
material of interest for the AFM friction test, e.g., a mica
sheet, is mounted on the top surface of the PG sheet. In this
arrangement the principal axes of the spring constant tensors
can be aligned closely with �y1 ,y2 ,y3� axes shown in the
figure. Adjusting the gap distance d between the magnets for
a given ratio of l2 / l1, we can control the ratios between the
principal values of the spring constants. For example, it is
desirable to have the calibration of the AFM lateral force
constants under the conditions of kI�kII�kIII and �I��II

��III, which can be achieved by choosing l1 / l2��2 and
d / l1�1. Then, the spring displacement should be within a
range of ±d. By adjusting the shape of the PG sheet and the
gap distance d, we can create a magnetic levitation spring
system to calibrate not only the lateral AFM force constant
	ll, but also the normal constant 	n and the crosstalk con-
stant 	ln simultaneously. This nearly friction-free system cre-
ates an ideal load cell for calibrating an AFM cantilever-tip
assembly. With four 4.76 mm cubic Nickel-plated neody-
mium iron boron �NdFeB� magnets of grade N38 �BHmax

=38 MG Oe� we could make a lateral force load cell operat-
ing in a range from a few nanonewtons to a few micronew-
tons, with the spring displacement range well within
±100 �m approximately. Once the lateral spring constant of
this levitation system is determined, a direct correlation be-
tween the applied lateral force and the resulting output volt-
age signals from the AFM PSPD can be established without

FIG. 2. Diamagnetic levitation load cell of the D-LFC: �x1 ,x2 ,x3� are the
magnet coordinates, �y1 ,y2 ,y3� the levitated-mass coordinates, and � the
rotation vector of the levitated mass.
ambiguity. The details of the vibration characteristics and the
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compliances of the system will be discussed in the next sub-
section.

B. Free vibration characteristics and the spring
constants of the levitation system

Typically, spring constants of a system can be evaluated
by measuring the natural vibration frequencies of the system.
General vibration characteristics of the diamagnetic levita-
tion system are provided in Appendix B. As discussed in the
Appendix, there are six eigenfrequencies of levitation-
vibration. However, as we mentioned in the previous section,
we designed the levitation system to have the principal di-
rections aligned with �y1 ,y2 ,y3� axes. We also use a laser
displacement tracer system only sensitive to the displace-
ment in a lateral, say, x1, direction. Then, the equation of free
vibration in the x1 direction can be reduced from �B2a� to

ẍ1 + 2��nẋ1 + �n
2x1 = 0, �16�

where �=c11/ �2�m�L�k11� and �n=�k11/m�L�. The general so-
lution of the equation is

x1�t� = e−��nt�a1 sin �dt + a2 cos �dt� , �17�

where �d=�n
�1−�2, with coefficients a1 and a2 to satisfy

the initial conditions. Thus, the spring constant k11 can be
evaluated by

k11 = m�L��n
2 = m�L��d

2/�1 − �2� . �18�

Figure 3�a� shows a typical measurement of the free vi-
bration amplitude as a function of time for the diamagnetic
levitation system for the sample listed as PG-1 in Table II.
Data analyses �see Table II� show that the diamagnetic levi-
tation spring system has the damping parameter � on the
order of 10−2 and 
��n

2 /�d
2�−1
�10−4. Thus, the approxima-

tion k11�m�L��d
2 has a relative error of the stiffness measure-

ment on the order of 10−4. Figure 3�b� exhibits the frequency
spectrum of free vibration signal of the sample PG-1, from
which we can read the dynamic frequency �d readily. The
frequency can be then converted to the spring constant k11

�m�L��d
2. The typical spring constant of our levitation sys-

tem is on the order of 10 pN/nm as shown in Table II. Fur-
ther details of our calibration system will be discussed in
Sec. III A. An additional remark for measuring the natural
frequency is that the x1 direction has to be aligned with the
direction of the lowest frequency mode of vibration if the
eigenfrequencies are quite distinct. Otherwise, the intermedi-
ate frequency mode is unstable and the frequency measure-
ment in the direction of the intermediate vibration mode can
be inaccurate.

C. Principles of the D-LFC

Once the spring constant k11 of the diamagnetic levita-
tion spring system is evaluated, it can be used to calibrate the
AFM lateral force constants 	ll and 	ln. A schematic of the
calibration setup is shown in Fig. 4�a�. In the setup, the dia-
magnetic levitation system is mounted on the stage of the
AFM base scanner, and a specimen of interest is glued on top
of the levitating pyrolytic graphite sheet as shown in the
figure. For the calibration, once the AFM tip is engaged on

the specimen surface, the magnets together with the AFM
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base are reciprocated by the lateral scanner, while the normal

load N̂ is held fixed by holding the normal PSPD output V̂�n�

constant through the feedback controller. Then, the lateral

PSPD output V̂�l� is recorded against the lateral base dis-

FIG. 3. �a� Time trace of the free vibration amplitude for PG-1. �b� Fre-
quency spectrum of the PG-1 vibration.

TABLE II. Characteristics of the pyrolytic graphite d

Specimen
Dimension

�mm�
Mass
�mg�

PG-1 5.57�5.54�0.35 15.052

PG-2 5.28�5.16�0.54 22.111

PG-3 4.13�4.15�0.47 11.470

PG-4 5.81�5.87�0.59 25.321

PG-5 5.21�5.20�0.51 21.061

PG-6 2.89�2.75�0.28 2.9110
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placement �x1
�b�. The displacement �x1

�b� is related to the lat-
eral force f by

f = k11�x1
�m� � k11�x1

�b�, �19�

where the base displacement can be decomposed, �x1
�b�

=�x1
�m�+�x1

�t�, into the displacements of the magnetic spring
�x1

�m� and the AFM tip �x1
�t�. The tip displacement �x1

�t� is
caused by the compliance of the tip contact and the cantile-
ver twist. It is typically within a few nanometers, while the
magnetic spring displacement is on the order of tens of mi-
crometers. Therefore, the tip displacement can be neglected
in �19�. In this calibration procedure, the maximum recipro-
cating displacement of the lateral base displacement �x1

�b� is
limited to induce a lateral force f well within the static fric-
tion force of the onset of slip. In contrast to the wedge
method the AFM tip does not slip in this direct method of
calibration.

Figure 4�b� shows an experimental measurement of the
lateral PSPD output against the lateral displacement of the
magnets on the AFM base reciprocated within ±25 �m for
contact between a mica specimen mounted on a levitated PG
sheet �PG-2 in Table II� and a spherical bead attached near
the end of an AFM cantilever �NCD in Table III�. The bead is
made of borosilicate glass coated with a 50 nm gold layer
and has a diameter of 15 �m. The experimental data show
that the response is linear and reversible within the thermal
and feedback noise bands for forward and backward scan-
ning of the base displacement. While further details of more
experimental results will be presented in Sec. III B, the prin-
ciples of the measurement of the AFM force constants 	ll

and 	ln are presented here as follows.
To simplify data processing, the AFM base displacement

in this setup is approximated as the lateral spring displace-
ment as discussed above. Then, it is multiplied by the spring
constant k11 and converted to the lateral force f , which is
marked on the horizontal axis at the top of Fig. 4�b�. Now,

we have a data set relating f̂ and V̂�l� for a fixed value of V̂�n�.

Recalling �9a� in a difference form, � f̂ =	ll�V̂�l�+	ln�V̂�n�,

gnetic levitation spring systems.

Axis
�n

�rad/s� �
k11

�pN/nm�

x1 23.621 0.024 06 8.3983
x2 32.530 0.016 50 15.928

x1 35.946 0.015 82 28.570
x2 34.213 0.014 48 25.882

x1 44.491 0.016 40 22.704
x2 44.363 0.008 66 22.574

x1 28.343 0.018 75 20.341
x2 22.578 0.028 82 12.908

x1 35.748 0.014 36 26.914
x2 34.145 0.014 68 24.555

x1 50.739 0.013 93 7.4942
x2 60.437 0.010 77 10.633
iama
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the inverse slope, �f /�V̂�l�, of the data is the lateral force
constant 	ll. In addition, two response lines for two different

V̂�n�’s, for example, V̂�1�
�n� and V̂�2�

�n� shown in Fig. 4�b�, should

be parallel to each other as shown by a dashed line in the
figure. The inverse slope 	ll can also be represented by the
ratio between the horizontal offset f �2�− f �1� and the vertical

offset V̂�1�
�l� − V̂�2�

�l� of the two parallel lines, i.e., 	ll= �f �2�

− f �1�� / �V̂�1�
�l� − V̂�2�

�l� �, as shown in the figure. Furthermore, the

crosstalk lateral force constant 	ln is given by 	ln=�f /�V̂�n�

and the relationship becomes 	ln= �f �2�− f �1�� / �V̂�2�
�n�− V̂�1�

�n�� for

the linear system. Thus, experimental measurements of the

responses V̂�l�’s with respect to the lateral force �or spring

displacement� for two different V̂�n�’s can provide the values
of both 	ll and 	ln. In real calibrations the responses are

recorded for many different V̂�n�’s, and all data sets are used
to get 	ll and 	ln with a least squares fit, minimizing

��	ll,	ln, f̂0� = �
k=1

N

� f̂ k − �	llV̂k
�l� + 	lnV̂k

�n� + f̂0��2. �20�

Experimental values of the lateral force constants measured

FIG. 4. �a� A schematic of the D-LFC. �b� A diagram showing the D-LFC
principles for measuring the force constants 	ll and 	ln: the data set was
collected with the PG-2 diamagnetic spring for the NCD AFM cantilever-
bead assembly.
with this method are provided in Table III and discussed
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further in Sec. III C for various AFM cantilevers.

III. EXPERIMENTS

We have established the working principles of the
D-LFC in the previous section, and we present the experi-
mental results in this section. The experimental results in-
clude measurements of the D-LFC system spring constant,
calibration of the lateral force constants for various AFM
cantilever-tip and -bead assemblies, and comparisons be-
tween the lateral force constants measured by the D-LFC and
the W-LFC, respectively.

A. Spring-constant measurement of the diamagnetic
levitation system

The diamagnetic levitation calibrator system consists of
four, 4.76 mm cubic magnets described in Sec. II A and a
pyrolytic graphite sheet from scitoys.com. The pyrolytic
graphite sheets were cleaved and cut into different sizes us-
ing a razor blade, then each of them was glued to a thin sheet
of muscovite mica, obtained from SPI® supplies. Finally,
these mica sheets are cleaved in air and each composite sheet
of mica and PG was weighed by a microbalance �Mettler
Toledo® MX5�. The dimension was measured by a digital
Vernier caliper with an accuracy of 10 �m. The dimension
and mass measurements of six different PG specimens are
shown in Table II. The dimensions of the PG specimens span
from about 3�3�0.3 mm3 to 6�6�0.6 mm3 and the
masses of the specimens range from about 3 to 25 mg. The
PG specimen is then levitated in the magnetic field, and the
free vibrations of the PG specimens in the x1 and x2 direc-
tions are measured with a laser displacement detection sys-
tem. All of the following calibrations were done on an Au-
toCP AFM system from Park Scientific Instruments.

For the measurement of the free vibration amplitude, a
sheet of a 10 mW He–Ne laser light was partially blocked by
the edge of the PG vibrating in the x1 direction. Then, the
transmitted-light intensity was detected by a photodiode. The
time trace of the amplitude is shown in Fig. 3�a� for PG-1
vibrating in the x1 direction. The trace indicates that the light
intensity distribution in the cross section of the laser light
sheet seems to be slightly uneven, so that the measured am-
plitude of the photodetector output is slightly biased upward
for the large amplitude in the figure. Nevertheless, the linear

TABLE III. Force constants 	ll and 	ln measured by D-LFC for different
AFM cantilever types.

Cantilever

	ll �nN/V� 	ln �nN/V�Type Contact Coating

NCDd Bead Au 320.68±2.19 −17.83±0.59
NCD Bead Au 333.04�2.28 Not measured
NCB1 Bead Al 97.68±0.15 Not measured
NCB2 Bead Al 69.52±0.18 Not measured
NCCd Tip Au 602.01±6.88 −96.51±1.36
NCC* Tip Au 591.92�0.25 Not measured
CTB* Tip None �Si� 49.61�0.13 Not measured
solution �17� fits the experimental data well for its frequency
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measurement and thus the spring constant. A fast Fourier
transform �FFT� was carried out for the signal and the result
is shown in Fig. 3�b�. Two major peaks are observed in the
frequency domain. One corresponds to the free vibration of
the PG sheet and the other the electric noise at 60 Hz. With
the same procedure, six different nearly square PG sheets
were tested and the vibration characteristics are reported in
Table II. For the signal processing a low-pass filter was uti-
lized to remove the 60 Hz noise before every signal is best
fitted to �16� to get the values of �n and � as reported in
Table II. It was noticed that, in general, vibration along one
diagonal direction is more stable than the other, and the
stable direction was used for subsequent calibration pro-
cesses. As mentioned earlier, the intermediate mode of vibra-
tion is unstable and the separation of the vibration modes in
x1 and x2 for the nearly square sheets of the specimens PG-1
and PG-4 may be caused by the asymmetric distribution of
pyrolytic graphite grain orientations and the slight asymme-
try of the sample shape. The lateral spring constants, k11, of
the diamagnetic levitation system with six differently sized
PG specimens ranged from 7.5 to 29 pN/nm.

B. D-LFC measurement of the AFM lateral force
constants

After the lateral magnetic spring constant k11 is obtained,
the rest of the calibration procedure is just like performing a
usual AFM friction measurement with a conventional sub-
strate replaced by the diamagnetic levitation calibrator sys-
tem. Details of the technical procedure follow the steps de-
scribed in Sec. II C. For the experiments, we used AFM
cantilever-bead as well as cantilever-tip assemblies. The
AFM cantilever-bead assembly is composed of a stiff non-
contact �NC� mode AFM cantilever purchased from Vecco
Inc. and a spherical borosilicate glass bead of 15 �m diam-
eter, attached near the end of the cantilever. The cantilever
types are further classified as A, B, C, and D types depending
on the width, length, and thickness of the cantilever. For
example, a noncontact mode C-type cantilever is denoted
NCC in Table III. Its nominal normal spring constant is
13 nN/nm. In contrast, the AFM cantilever-tip assembly
consists of an AFM cantilever of either a NC or a contact
�CT� mode type, and a usual AFM tip of a silicon apex made
by chemical etching. The contact mode cantilever is rela-
tively compliant. For example, the CTB cantilever has a
nominal normal spring constant of 0.4 N/m. The tips and
beads are either bare or coated with a 50 nm thin film layer
of gold or aluminum. The coating layer is also indicated in
Table III.

Figure 5�a� shows plots of the lateral PSPD output V̂�l�

against the variation of the lateral spring displacement x1 for

15 �m strokes for five different values of V̂�n� measured with
a cantilever-bead assembly on the PG-2 spring system. The
cantilever is listed as NCDd in Table III. The normal loads

were prescribed by five different fixed values of V̂�n� in equal
increments of −1.587 V corresponding to a nominal incre-

ment of 200 nN in N̂, using the feedback control of the AFM
normal loading. It is noticed that 	n in �9b� has a negative

value for our AFM system. The plotshows five parallel lines
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superposed with some noise. We believe that it is mainly
caused by thermal vibrations and the circuit noise of the
normal-loading feedback control. Small deviations of the
five lines from straightness are also observed near the left
end of the lines, 0�x1�1.5 �m. This anomaly is believed
to be an effect of a small nanometer scale bump either on the
surface of the gold coating or on the mica surface. Figure
5�b� exhibits similar plots of six lines for the cantilever-tip
assembly listed as NCCd in Table III. This measurement was
made for a spring-displacement stroke of only 5 �m on the

PG-2 spring system, with six different fixed values of V̂�n� in
equal increments of −1.282 V corresponding to a nominal

increment of 100 nN in N̂. This corresponds to applying lat-
eral forces of approximately ±70 nN on the AFM tip coated
with a 50 nm thick gold layer. The contact area of the tip on
the mica surface is relatively small compared to that of a
bead contact, and the maximum lateral force had to be small
enough to be below the static friction at the onset of slip.

In both Figs. 5�a� and 5�b� the data for the forward
strokes are plotted only. If plotted the backward strokes over-
lap the lines of the forward strokes within the noise band,
similar to those in Fig. 4�b�. Since we are using the data to fit

a difference form of �9a�, � f̂ =	ll�V̂�l�+	ln�V̂�n�, absolute
values of the coordinates are not meaningful in these plots.

FIG. 5. D-LFC data of the lateral PSPD output showing a linear dependence
on the lateral spring displacement under incremental normal loads �a� for the
NCDd cantilever-bead and �b� for the NCCd cantilever-tip assemblies.
All data sets of both forward and backward strokes were
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used to get the least squares fit values of 	ll and 	ln with
�20�. Errors of 	ll and 	ln are defined by the minimum value

of the function � in �20� divided by the span of V̂�l� and V̂�n�,
respectively. The lateral force constants of NCDd and NCCd

cantilevers were evaluated with the full least squares fit with
�20�. However, for other cantilever assemblies only the value

of 	ll was evaluated with a single value of V̂�n� for each
cantilever. Then, the least squares fit was made with �20� in

which the term of 	ln was neglected for �V̂�n�=0. The values
of 	ll for such tests are average values for forward and back-
ward stroke tests, and the errors are halves of the differences.
In Table III, the superscripts 1 and 2 indicate two different
cantilevers of the same type. The results for the NC mode
cantilevers show that the lateral force constant 	ll of the
NCCd cantilever with a tip is several times larger than that of
a cantilever with a bead. This is because the tip has a height
of 3–5 �m and the bead has a height larger than 15 �m. The
superscript “d” in Table III indicates the test results for the
same cantilever but with slightly different adjustments of the
AFM PSPD system. The superscript * indicates the test re-
sults compared with those evaluated by the wedge method in
the following subsection.

C. Comparison with the W-LFC measurement

We performed a side-by-side comparison of our test re-
sults with those of W-LFC, the popular wedge calibration
method.4 As mentioned earlier, the wedge method uses fric-
tional slip properties of single asperity contact. In the wedge
test the net force normal to the cantilever surface is held

fixed, i.e., V̂�n�=constant, while the contact point slides over
the surface forwards and backwards on the slopes of the
wedge faces. Then the lateral PSPD signal makes a loop.
Figure 6�a� shows such a loop made by a silicon tip of a CTB
cantilever sliding on a horizontal mica surface. Ever since
Mate et al. measured nanoscale friction with an AFM �Ref.
2� using a tungsten tip on a graphite surface, such a loop has

been analyzed with two major quantities ŵ and �̂ related to
the frictional slip. Here ŵ represents the width of the loop

and �̂ the center value of the loop as shown in Fig. 6�a�. In

the wedge test the two variables ŵ and �̂ are measured on the

two slopes of the wedge face for different values of V̂�n�,
which are multiplied by 	n to be converted to those of the

normal net force N̂. Figure 6�b� shows the plots of ŵ± and �̂±

measured on 
 slopes of the wedge with the CTB*

cantilever-tip assembly listed in Table III. A microfabricated
Si slope sample TGG01 from MikroMasch® Inc. was used
for the double-slope wedge calibration. The geometry and
the dimension of the Si slope sample are shown in the inset
of Fig. 6�b�. As shown in the figure, it is remarkable that both

TABLE IV. Force constants 	ll measured by W-LFC

Cantilever
ŵ+�

�V/nN�
ŵ−�

�V/nN�
�̂+�

�V/nN�

NCC* 0.001 66 0.001 69 0.001 92
CTB* 0.019 73 0.014 35 0.013 02
Downloaded 14 Jun 2006 to 128.148.123.23. Redistribution subject to
ŵ± and �̂± are linear with respect to N̂. The constant slopes

ŵ��dŵ /dN̂ and �̂��d�̂ /dN̂ indicate that the differential
friction coefficient f� is also constant within the range of the
test. Relationships between friction characteristics of an

AFM tip and ŵ� or �̂� are analyzed as per Ogletree et al.,4

but in more detail in Appendix A. The analyses derive the
values of f+�, f−�, �m, and 	l from the measurement values of

ŵ± and �̂±, provided that the tip radius is negligible, i.e., �
=0. From �6� and �12� we can also get 	ll=	l sec �m for �
=0.

The calibrated values of f+�, f−�, �m, and 	l are summa-
rized in Table IV for two different cantilever assemblies,
NCC* and CTB*. The cantilever-tip assemblies used for this
comparison are the ultralever contact B tip �CTB*-tip with
nominal spring constant of 0.4 N/m� and noncontact C tip
coated with a 50 nm thick gold layer �NCC*-tip with nomi-
nal spring constant of 13 N/m� from Vecco Inc. Since the
wedge method gives 	ll only in terms of the normal force

FIG. 6. �a� A friction loop of a contact B tip sliding on a mica surface: ŵ and

�̂ denote the half-width and the central-value offset of the loop. �b� W-LFC

data of ŵ and �̂, which depend on the normal load for the NCC* tip sliding
on the two different slopes of a wedge.

he CTB*-tip and NCC*-tip assemldies.

�̂−�
/nN� f+� f−�

�m

�°�
	ll

�nN/V�

.005 27 0.2289 0.2322 38.0 689.80

.074 56 0.2148 0.1631 49.6 36.533
for t

�V

−0
−0
 AIP license or copyright, see http://rsi.aip.org/rsi/copyright.jsp



065105-11 Lateral force calibration of an AFM Rev. Sci. Instrum. 77, 065105 �2006�
constant of the cantilever, we had to measure or estimate the
normal force constant additionally. The same cantilever-tip
assemblies were also calibrated using our calibrator and the
results are shown in Table III. The stiff cantilever-tip assem-
bly NCC* was calibrated on the stiffest magnetic spring sys-
tem of PG-2, and the compliant cantilever-tip assembly
CTB* was calibrated on the most compliant magnetic spring
system of PG-6.

It is observed that f+� and f−� are practically the same for
the contacts between the gold coating and the silicon surface,
while they are distinctly different for the contacts between
the silicon tip and the silicon surface. This dissimilarity is
believed to be caused by different frictional properties of
different crystallographic surfaces of silicon for the nonsym-
metric contact friction made by nonvanishing �m. It is also
remarkable that the nominal misfit angles of the AFM tips,
�m, are very large, 38° for NCC* and 50° for CTB*. Here the
nominal misfit angle �m denotes the significance of the
crosstalk effect, which comes from both mechanical and op-

tical misalignments. We measured the ratios �V̂�l� /�V̂�n� as
0.03 for a cantilever vibrating in air predominantly in a bend-
ing mode and 0.15 for a cantilever under normal contact with
a substrate surface. These results indicate that the crosstalk
effect came mostly from the shear center misalignment for
the NCC* cantilever. While it is crucial for the W-LFC cali-
bration whether the crosstalk comes from the mechanical or
the optical misalignment, it does not matter for the D-LFC
calibration. This is a strong advantage of using D-LFC, over
W-LFC, in addition to many other reasons such as better
accuracy and simplicity.

Since the W-LFC requires the normal force constant to
evaluate the lateral force constant 	ll, at first we used the
vendor’s nominal normal spring constants for CTB* and
NCC* cantilevers. Then, the lateral force constant of CTB*

turned out to be 36.53 nN/V and it is about 26% smaller
than the D-LFC value of 49.61 nN/V. The W-LFC also gave
the lateral constant of NCC* as 469.25 nN/V, which is ap-
proximately 21% lower than the D-LFC value of
591.92 nN/V. As we noticed that the vendor’s nominal nor-
mal spring constant can be a major error source for the esti-
mation of the lateral force constant, we calibrated the normal
spring constant and the PSPD angle sensitivity constant of
the triangular cantilever NCC* independently. In this calibra-
tion we employed the method of Sader et al.,18 deflecting the
cantilever against another rectangular cantilever of known
stiffness19 and against a hard surface. Even if we carried out
this calibration, the lateral force constant 	ll of NCC* mea-
sured by the wedge method turned out to be 689.80 nN/V,
which is about 16.5% larger than the value measured by
D-LFC. The discrepancies between the W-LFC and D-LFC
values are believed to be coming mainly from two additional
sources of errors in the wedge method. One is from the as-
sumption of �=0 employed in the wedge method and the

other from uncertainties of reading ŵ� and �̂� off the friction
loop as described in Sec. II.

IV. DISCUSSIONS

As described in the previous sections, a direct calibration

apparatus, “diamagnetic lateral force calibrator �D-LFC�,”
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has been developed in this article to calibrate the full set of
the AFM lateral force constants with high accuracy. It is
designed to have an accuracy of calibration better than 0.1%.
Some possible operational error sources were also investi-
gated. One such source is the reciprocation rate effect of the
spring displacement in the diamagnetic levitation system
during the calibration process. It is noticed that the viscous
drag effect hardly plays a role in the calibration process as
shown in Table II. As a rough estimation, the typical value of
c11 is �10 �N s/m, the magnetic spring constant k11 has a
typical value of 10 pN/nm, and the spring displacement is
�20 �m at 0.5 Hz during the calibration. Then, the mag-
netic spring exerts a force of �200 nN while the maximum
total viscous drag force is �0.2 nN, which is about 0.1% of
the magnetic spring force. Moreover, during the calibration
process the graphite is stuck to the tip so that the air drag
force will be further reduced. Hence, in most cases, the vis-
cous drag effect is negligible. It was confirmed by experi-
ments that the calibrated force constants hardly depend on
the reciprocation rate of the 20 �m spring displacement from
0.25 to 4 Hz. In addition, dependence of the calibration on
the contact location of the AFM tip on the levitated PG-mica
composite sheet was tested as another possible operational
error source. Experiments show that, within a radial distance
of 1 mm from the center of the levitated PG-2 sheet, varia-
tion of the measured lateral force constant was less than
0.5%. Furthermore, experiments confirmed that the lateral
magnetic spring constant of the systems which we have
tested is insensitive to the normal load within the range that
a mircofabricated cantilever can achieve, i.e., up to a few
micronewtons. All these experiments prove that D-LFC is a
very reliable and robust method of calibration, which is rela-
tively easy to implement.

We summarize our conclusions as follows: �A� Deforma-
tion characteristics of AFM cantilever-tip and -bead assem-
blies have been analyzed for general radii of curvature of the
tips in frictional contact. The analysis has clarified various
difficulties in calibrating AFM lateral force constants, en-
countered in indirect and semidirect methods of calibration.
It has been found that the major difficulties come from the
location uncertainty of the shear center of the cantilever. The
analysis also has characterized the wedge method com-
pletely. �B� This analysis has introduced new AFM response
variables: the normal force constant 	n, the lateral force con-
stant 	ll, the crosstalk lateral force constant 	ln, and the ge-
neric lateral force constant 	l. Once 	ll, 	ln, 	n, and 	l are
measured, the intrinsic structural variables �m and � can be
evaluated from �10�. The analysis led to the development of
a direct method of AFM lateral force constants calibration,
D-LFC for AFM systems. �C� A magnetic-spring load cell
system was built by levitating a pyrolytic graphite sheet with
four NdFeB magnets. The system comprises the D-LFC for
an AFM system. Measurement of the levitated mass and the
free vibration natural frequency provided a spring constant
for the system on the order of 10 pN/nm. The spring con-
stant was measured with 10−4 accuracy and was used for
calibrating the AFM lateral constants ranging from a few
tens of nN/V to several hundreds of nN/V. �D� The calibra-

tion data exhibit remarkable linearity of the lateral PSPD
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output of the AFM, with respect to both lateral and normal
loads, as shown in Fig. 5. Because of the linearity, a simple
least squares fit data processing provides both the lateral
force and the cross talk lateral force constants with an accu-
racy on the order of 0.1% for AFM cantilever-tip and -bead
assemblies. Implementation of the calibration procedure and
the data processing was found to be robust and relatively
easy. �E� The lateral force constants, 	ll, of two different
AFM cantilever-tip systems were measured with the D-LFC
and compared with the values estimated by the W-LFC.
Analyses indicate that the wedge method is only applicable
to a sharp tip, if the shear center misalignment of the canti-
lever is properly treated, and the comparison shows that even
for sharp tips the wedge method estimated the value of 	ll

with errors more than 15% for two different cantilevers. In
contrast, the D-LFC could measure not only the 	ll but also
the crosstalk lateral force constant 	ln with better than 0.5%
accuracy without a complex interpretation of all those intrin-
sic quantities. �F� The new D-LFC capability for calibrating
simultaneously both 	ll and 	ln has made it possible to mea-
sure the absolute lateral forces experienced in nano- and mi-
crofriction experiments as well as in molecular and cellular
biomechanical testings. In particular, the capability of cali-
brating AFM cantilever-bead assemblies with large tip radii
will provide new opportunities in molecular and cellular bio-
mechanical testings. It is also noticed that because of its in
situ feature, the real sample can be immediately tested with-
out interruption and readjustment of the laser beam, which
can improve the accuracy of the measurement for most fore-
seeable experiments.
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APPENDIX A: ANALYSIS OF AFM RESPONSES FOR
A W-LFC MEASUREMENT

Since W-LFC uses the slope information, i.e., the differ-
ential friction coefficient, of the friction law, it is convenient
to use the difference of �5� as

�N��1 − ��sin��* − �m� + sgn����f���1 − ��cos��*

− �m� + �� = 	l�V̂�, � = a or b , �A1�

where sgn���=1 for �=a and −1 for �=b. Dividing �A1�
with �N� and assuming that f�� =�f� /�N� is fairly constant,
respectively, with respect to the variation of N�, within the
range of the calibration test, �A1� can be reduced to

�1 − ��sin��* − �m� + sgn���f����1 − ��cos��* − �m� + ��
cos �* − sgn���f�� sin �*

= 	lV̂�� , �A2�
ˆ ˆ ˆ ˆ
where V�� =�V� /�N�, and �N� /�N�=cos �*
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−sgn���f�� sin �* was employed from the geometry in Fig. 1.
Subtracting �A2� of �=b from �A2� of �=a, and introducing
D= �1−��cos �m+� cos �*, we get

�fa� + fb��D
2�cos �* − fa� sin �*��cos �* + fb� sin �*�

= 	lŵ�. �A3�

If we add �A2� of �=a and �A2� of �=b, it can be reduced
to

− �1 − ��sin�m + sin�*��1 − ���1 + fa�fb��cos��* − �m� + �fa�fb�� + �D/2��fa� − fb��

�cos�* − fa� sin�*��cos�* + fb� sin�*�
= 	l�̂�.

�A4�

Here, ŵ indicates the width of the friction loop and �̂ the
offset of the loop center as shown in Fig. 6�a�. Ogletree et
al.4 used an assumption that �=0 to get the value of 	ll

=	l / cos �m. It is noticed in �A3� that ŵ+�= ŵ−� for symmetric
wedges, i.e., �* = ±�w, with a wedge angle value of �w. It is

also noticed that the quantity �̂+�− �̂−� derived from �A4� does
not depend on �m for symmetric wedges, but only if �=0.
Therefore, they could evaluate 	ll for �=0 without evaluat-
ing 	l and �m explicitly. However, the method cannot be
applied to cases of non-negligible tip radius, i.e., ��0.

APPENDIX B: DYNAMIC CHARACTERISTICS OF THE
LEVITATED MASS IN A D-LFC

The Lagrangian of the magnetic spring system of the
D-LFC is given by

L =
1

2 �
i,j=1

3

�m�L��ijẋi
�0�ẋj

�0� + Iij
�L��̇i�̇ j − kij

�m�xi
�0�xj

�0�

− �ij
�m��i� j� − m�L�gx3

�0�, �B1�

where �ij is the Kronecker delta and Iij
�L� the moment of in-

ertia of the levitating mass, and the dot on top of a variable
indicates the time derivative of the variable. Then, the Euler
equation becomes

m�L�ẍi
�0� + �

j=1

3

kij
�m�xj

�0� = − �
j=1

3

cijẋj
�0�, �B2a�

�
j=1

3

�Iij
�L��̈ j + �ij

�m�� j� = − �
j=1

3

dij�̇ j , �B2b�

for which we assumed that the viscous drag of the air and the
eddy current is linearly proportional to the velocity of the
motion. The drag is represented by cij for translational mo-
tion and by dij for rotational motion. Then, the vibration
characteristic equation of �17� turns out to be

det�m�L��2�ij + �cij + kij
�m�� = 0, �B3a�

det��2Iij
�L� + �dij + �ij

�m�� = 0. �B3b�

Therefore, we can have six complex conjugate pairs of �,
corresponding to the six dynamic eigenfrequencies of the
magnetic levitation spring system for underdamped oscilla-
tions. Since we are interested only in a principal vibration in

the x1 direction, �B2� is reduced to �16� in Sec. II B.
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