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I. Abstract

In the first year (1984) study of this project (Project #: 1IBM Peel Test,
UL account #1-5-37119), an analytic method has been developed to analyze the
elasto-plastic deformation of thin films in peeling processe With the analytic
method, we could extract the adhesion bond energy from the peel?test values of
thin (1 pm ~ 1 mn) metallic films. The validity of the analysis was verified
by numerical and experimental analysis. The experimental analysis has been
carried out by Dr. Jeo 1. Kim of IBM independently. These studies extended the
applicability of peel test from elastic peeling to elasto—-plastic peeling. In
particular, the analytic result strongly supports the validity of peel test
with large amount of ductility (plasticity) that is inevitable in peel test of
thin metallic films with strong adhesion. In particular, universal peel
diagram is jnvented in this studye On the single universal peel diagram,
interrelations of peel strength and adhesion energy can be readily read for
all combinations of the material properties and the geometry (thickness of the
adherend) of the specimen. In addition, the peel strength can be easily
converted to pull strength using this diagram. The theory and the analytic
results agree excellently with experimental results. (The experimental

information was provided by Drs. L. Lee, P. Geldermans and J. Kim of IBM.)



IT. Introduction

The peel test has long been used to characterize the strength of adhesion
[1-5]. However, recent studies showed that the peel strength is a direct
measure of adhesion energy only under a condition [6,7]. The condition is
6EP/0§ <t , where E , dy » t are elastic (Young's) modulus, yield stress,
thickness of the adherend and P 1is the measured peel strengthe. This
condition is too strong to be satisfied for practical peel test of thin film
adhesion in computer industries. For example, the thickness of copper
adherend has to be in the order of 1 cm or more to satisfy the condition with
typical adhesion strength of modern products. On the other hand, the
thickness of the adherend of interest is in the order of 0.1 ~ 1000 Km
This is the reason why we initiated this project last year to extend the
applicability of peel test to practical range of adherend-thickness and
adhesion~strength.

In this report; a new analytic method has been developed to extract the
adhesion energy from the peel strength of a very thin metallic film (down to
10 pm thickness with strong adhesion). The analytic method allows plastic
deformation of the adherend. With this analytic method, various aspects of
peeling process in practical peel test have been investigated. The analysis
includes theoretical formulations and solution methods, finite element method
(FEM) analysis. These analyses are supported by experimental investigations

carried out independently by Dr. J. I. Kim at IBM. These analyses extended

P EP
the applicability of peel test to the range of E—E—-< t < 9—5-. Here &g
y f g

indicates failure strain (ductility of the adherend, e.g., gf 0.55 for
pure copper)s The new adherend-thickness range spans ! pm < t < 1 em for
copper adherend with usual adhesion strength. This range covers most of the

adherend-thickness currently employed for packaging in computer industries.



When the thickness is less than P/Oyef , peel test can not be made because
the adherend itself breaks. For the test of such an ultra-thin adherend, a
new experimental method has to be developed.

With the analytic method, the framework of the analysis of elasto-plastic
peeling has been completed. The theoretical formulations and the
corresponding solutions are obtained for elastic-perfect plastic, elastic-
linear harnening, elastic—2 parameter power-—law-hardening models of the
adherend. In addition, kinematic-hardening [8] and isotropic-hardening [9]
rules are employed for the change of yield surfaces. The 2 parameter power-—
law hardening can give fairly accurate description of stress=-strain relation
of copper up to 30% plastic strain. The analysis shows the roles of the
properties of adherend, e.g., elastic modulus, yield stress, hardening
parameters, thickness, etc., in extracting the adhesion energy from the peel
strength. Also, it is found that the elastic property of the substrate plays
important role for the determination of adhesion energy.

The theoretical analysis carried out in the first year period covers two
stages (the first and third) among the three stages of peeling process. The
first stage is the deformation process up to onset of peel propagation: the
second stage is the transient state of peel propagation: the third stage is
the steady state peel propagation. In this analysis it is found that there
are four different states of deformation pattern in the first stage, depending
on the stréngth of adhesion for a given thickneés of the adherend. The four
states include elastic—bending, elasto-plastic-bending, unloading—-and-
localized—active—bending, reverse—-plastic—bending states just prior to peel
propagation. These initial states determine the subsequent drop or increase
of peel force at the initiation of peel propagation. For the third stage, Dr.

Jeo I. Kim found, experimentally, that the frequency and amplitude of peel-



force fluctuation is a function of adherend thickness. The fluctuation is
caused by stick-slip behavior of peel propagation. The stick-slip behavior
becomes more significant for thinner adherends. The stick-slip peel
propagation is believed to be one of the key mechanisms of debonding process
for very thin metallic films. Therefore, it is worth studying 1n more detail.
The theoretical study could predict the profile of the adherend and peel~—
force-stroke curve. The prediction was made for the first three deformation
states of the first stage, and for the third stage of the peel process. These
analytic results have been favorably compared with numerical and experimental
results. The numerical results gave details of the stress distribution in
both adherend and substrate. The numerical analysis was also able to check
the practical local-debonding criteria, such as critical crack opening
displacement (COD) [10], critical strain energy density [11], etc., in the
second (transient) stage of peel propagation. It is found that the transient
behavior of peel propagation is very sensitive to choice of debonding
criteria. Therefore it is believed that the detail study of transient stage
of peel propagation would provide practical local-debonding-criteria. 1In
addition, the inter-relation between pull stress and peel force has been
investigated. Details of all rthe analytic results are reported in Chapter IX.

In addition to the detail analysis, as a summary, a universal peel

diagram (pt diagram) is proposed. The diagram has been constructed for copper
adherend on silicon and polyimide substrates. From this diagram, the adhesion
energy, Y , can be readily read, knowing the peel force, p , and

thickness, t . (If‘you know any two of [p,t,y], then you can read the other
value from the diagram.) This diagram is extremely valuable, not only for the
engineers and designers, but also for the physicists and chemists. For the

engineers, this diagram paves the way to predict (or prevent) other modes of



failure with the peel test. Knowing the adhesion energy, Y , designers can
choose proper thickness for an éxpected peel value. The scientists can tell
the state of interfacial bonding from the peel test values using this

diagrame. Also the method of constructing this diagram with experimental tests

is provided in this reporte.



ITI. Energy Balance in Peeling

Peel test has been widely used to characterize the adhesion of a thin
layer attached to a substrate. The major advantage of peel test is that
experiment is relatively simple and that the peel strength and the interfacial
bond strength have a conceptually simple relationship. The conceptually
simple reltionship is the energy balance in peeling. In general a part of the
work done by the peel force is used to break the interfacial bonding. The
other part of the work is, in part, dissipated in the form of heat through
“plastic deformation and the rest is stored as elastic strain energy of the
residual stress.

For an elastic peeling, the plastic work dissipation is excluded. The

mechanism (plasticity) of producing residual stress is also excluded.

kTherefore all the work done by the peel force is used to create the
interfacial fracture surface. This is true if the configuration (shape) of
the adherend and the substrate does not change near the interfacial crack tip.
This condition can be satisfied if the length-wise dimension of the specimen
’is much greater than the thickness of the adherend. Suppose that the
conditions are satisfied to have perfect elastic peeling. Then, as shown in
’Fig. III—l, the interfacial fracture energy per unit area, I'y, can be

expressed as

r,=F d&/wdk = F/w = p. (ITI-1)

"Here, F is the total peeling force and w 1s the width of the adherend and
dt 1is the virtual advance of the peel-crack. p 1is defined as the peel force
(per unit width). The interfacial fracture energy, I', , can be considered as

atomic bond energy x number of atomic bonding per unit area. Eqne. III-1 tells




us that the peel force itself is the measure of the interfacial fracture
(surface) energys
In order to see details of how the energy is expended for peel
propagation, consider the J integral [12] along a contour I' around the crack
tip as shown in Fig. 11I-2. The J integral is defined as
ou
J=[ @n -1 5) ds (111-2)
T 1
where @ 1is the strain energy density per unit undeformed configurational
volume and njp 1is the x3 component of the normal vector n to the contour T
énd T 1is the nominal traction vector (inner product of lst Piola—Kiréhhoff
stress and n) and u is the displacement and s is the arc length along the
contour TI'. For this type of configuration, J is path independent if the
material remains to be elastic everywhere. Also J is identical to energy
release rate (energy expenditure per unit advance of the crack tip) in this

case. If we take I along the boundary of the specimen, that is far away

from the crack tip, J becomes

_ 2
Jfar =P + P7/(2Et). (I111I-3)

However, in general, p >> pz/(ZEt) so that Jg, . = P, On the other hand if we

take I' just around the crack tip, then J Dbecomes
=[ o, a6 =o0__ 8. (I11-4)
b

Here 6t is the crack tip opening displacement and b 1is the unstretched
atomic distance, and Opg is the interfacial bonding stress (interatomic

force x number of atoms per unit area). s is an average bond stress.

Then, because the J integral is path independent, Jg,, is equal to Jnear and

consequently from eqs; (11I-3) and (III-4),
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cbs 6t. (I1I-5)

Fig. I1I-3, two possibilities of the copfiguration of debonding process
are shown. Those are the cohesive and interfacial debonding. For
hesive debonding, the peel force, p, is a lower bound of the intefacial
nding energy per unit area. In this case, peel force is the measure of the
ecture energy of either substrate or adherend.

If plastic deformation undergoes with peeling, we have to account for the

astic work rate in the energy balance relation. However it is somewhat

mplicated to estimate the plastic work rate. The plastic work rate becomes

portant when n(= 6EP/G§ t) is greater than unity, in 90° peel test. The
1stic deformation is considered to be contributed by two major sources. One
the plastic deformation caused by near tip stress (or strain)

ncentration.. The other is the plastic deformation caused by bending mode of

e adherend. For most of thin film peeling, however, the plastic work rate

due to the bending mode is predominant. Throughout this report, the plastic
&brk rate of bending mode is considered as the only energy-dissipation source.

this approximation, the difference between the actual work rate of the

herend and the work rate of bending mode is considered to be very small

eOmparing to the actual work rate. Then,
p=y+¢ L4 (111-6)
shere ¢ 1is the work expenditure rate, per unit advance of the peel

sropagation, caused by the plastic deformation in the adherend and vy 1is the

idhesion energy; substate is assumed to remain elastic. The work expenditure

rate ¢ is composed of two parts,

e e (I11-7)
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P
where %%— 1s the plastic work dissipation rate per unit advance of peeling,
in local continuum sense, and g%- is the residual-strain energy production

rate per unit advance of peeling. In this report, this energy balance concept

is used to develop the convenient universal peel diagram.
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Fig,

ITI-1
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IV. Analysis Up to Onset of Peeling

A. Governing Equations of Adherend Deformation

As mentioned in the previous chapter, we assume that the bending is the
predominant deformation mode of the adherend. Therefore we extend the one-
dimensional slender beam theory [13] to the deformation of general elasto-
plastic adherend. This may be called "plastica problem”.

Consider the deformed configuration of the adherend as shown in Fig. IV-
1« Let u and v be the local coordinate composed of tangential and normal
directions. Then the local equilibrium (force balance) in u and Vv

direction gives the equilibrium equations as,

dT

E—KN=O (Iv-1)
dN = -
E+KT 0 (IV-2)

where T is the tensile force (per unit width) along the adherend, N is the
shar force normal to the adherend and s 1is the arc length along the
adherend. K indicates the local curvature defined by K = %%-, where © 1is
the angle betweén the tangential line to the adherend and the’horizontal base
line. BResides these two force—balance equilibrium equations, there is a

QOent—balance equilibrium equation,
—— 4+ N =20 (IV-3)

where M is the bending moment of the adherend. Other than these 3
equilibrium equationé, we need another equation for 4 unknowns, T,N,M, and X.
It is the moment~curvature relation. In simple beam bending theory, we assume

that the plane sections perpendicular to neutral axis remain to be planes and

that the neutral axis coincide with central axis. The first assumption, turns
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ut to be a reasonable approximation even for the high curvature gradient

long the adherend. This is verified later by finite element analysis in

apter V. The second assumption is also a good approximation provided the

final radius of curvature is not less than four or five times the thickness of

the adherend. Throughout our study, the maximum curvature in peel test of
¢6pper adherend satisfies the condition. When the maximum curvature violates
ondition, the general theory of sheet bending (see Mathematical Theory of
Piasticity by R. Hill [14]) has to be applied for the particular case. Then
the assumption imposes that strain, € = - K v (see the geometry of bending in

ig. 1v-2). The relation give the bending moment as

t/2 t/2
M=- | ofle)vav=- [ of-kv} vadv (1V-4)
-t/2 -t/2

_where o{e} 1is the stress dependent upon the history of straine.

The constitutive relations, ole], used in our study are elastic—perfect
plastic constitutive relation and parameter power law hardening constitutive
relation. The schematic drawing of the relation is shown in Fig. (IV-3). o,
in the figure indicates the flow stress. The bending moment—curvature
(felation is, then, obtained by Eqns (IV-4). Normalizing the moment and

curvature by ultimate limit bending moment, M, , and elastic limit curvature,

K as

e

m=M/M: M =0t/ (1V-5)
(o] (o] Q

b
s

k = K/K_; K_ = 20 /Et, (1V-6)

we get the following expressions (Also see reference [15) and Fig. (IV-4).

(a) elastic stage (0-A)




16

m=%k; 0<¢k<l (IV-7)

(b) plastic loading stage (A-B)

m=1_.___12; 1<k <k , (1V-8)
3k

(¢) elastic unloading stage (B-E)

\m=%[3 - (_1__2_+2kB)+2k] (1v-9)

kg

(d) plastic reverse loading (E-I)

m:.é_[-—f}—_l.?+____8_._2] (IV—IO)
kB (kB - k)
(e) complete reverse plastic loading (I - - =)
1
m=-(1--—) (1v-11)
3k

Similarly, for a one—parameter power-law hardening material for which

oc==F ¢ ; e < Ey (Iv=12)

Q{Q

= (g__)n ;€ > e, 0<n<l (1v-13)
y y

we can get the moment—curvature relation. However in this case we have to use
yield stress Oy in place of flow stress o, for the normalization. ey

indicates the yield strain. The bending moment-curvature relation is obtained

as,
(A) elastic stage (0-A)

m=2k; 0<k<l (1V-14)

(B) plastic loading stage (A-B)
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2 2.1 2 .n .
m_(_3_ n+2);2—+_—n+2k ; 1.<k<kB (1IV=-15)
elastic unloading stage (B-E)
S22yl g2 ym 2l :
m= (35 T kg ty (kT kg) s
k
B
kE <k < kg (IV=16)

kp = kg = 2 for kinematic hardening and kg = kg = 2 kg for isotropic

k. -k 22
2 2.1 _ 2 .n_.,n 2_ 2 B, n-1
n-Gomp 7w s T M G S
k 2k
B B
- kB < k < kB - 2 (kinematic hardening) (1v-17)
E) complete reverse loading (I — - =)
2 2 1 _ 2 RS : I _ _
n=- G 27w 75 k< kg (1V-18)

owever in many cases, the one—parameter hardening model can not fit the

tual stress—strain relation in good approximation. Then we have to employ 2

g=TFe¢e ; e < Ey (1Iv-19)
S - (1-s) E) +s; €3 e, (1V-20)
g € v
y y
0 €<n €1,
0 <s <1,

For this type of 2-parameter power hardening material we have the following
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moment curvature relation.

() elastic loading (0-A)

m=§-k; 0 <k <1 (1v-21)
(B) plastic loading (A-B)
_ (2 _ snt2y 1 2(l1-s) . n .
=G Tt e T
1<k < ky (1v-22)

(y) elastic unloading (B-E)

_ 42 _ snt2{ 1 2(1-s) .n 2 _ . _
m= (-2 Stk s + g (k- k) (1v-23)
k
B
kB -2 < k < kB (kinematic hardening)

kp = 2{(1-s) kg + s} < k < ky (isotropic hardening)

(8) plastic reverse loading (E - —°)

(l—s)(l—n)kg

(2 _2(1-s)y 1 2(l-s) ,n 4 _
m= {5- n+2 } 2 n+2 kB + 3'{ n+2 s}
k
B
+2 2
k. ~k are k. —k L
B n-1 B n-1 i
N T U N P A RO L S
2(1~s)kB + 2s 2(1—s)kB + 28 kB
; no reverse hardening (approximation) (IV=24)

In Fig. IV-5 the nominal stress—engineering strain relation is given for
annealed copper. This relation is approximated by 2-parameter power-law
hardening as shown in dashed line in the Figure. The values used in equation

(IV=-20) are; o, = 60 MPa, s = 0.85, n = 0.57 and E = 124 GPa. The

y



19

corresponding bending moment-curvature relation of equations (IV=21 ~ 24) ig
lotted in Fig. IV-6. As the moment—curvature relations are expressed’in non-
mensionalized form, the equilibrium equations can be also expressed in non-
mensionalized form. Before we nondimensionalize the equations, we can also
educe the system of equations to a single equation by employing the global
force equilibrium relations. The relations T = p cos(¢ - 8) and N = p sin(¢p -
9) satisfies the Eqn.'s (IV-1) and (IV-2) readily, where ¢ 1is the peel

angle. And the Eqn.'s (IV~1) and (IV-3) provide the relation

dT dM
e —— I ° —
P K Is 0 (1Iv-25)

If M is a function of s only through K , then the relation can be

xpressed in the integral form as,

T+ KM - [ M dK = constant. (1v-26)

Then substituting T = p cos(¢ - 6) and normalizing K and M by Ko and M,, we

g-cos (6 -~ 8) + km - f m dk = const. (Iv=-27)

The new variable mn 1is a non-dimensionalized peel force defined by

n = k3§ = _gEE (Iv-28)
e o O’yt

Whenever M is a function of s but not through K, then Eqn. (IV-25) has to be
sed directly. For example, if the adherend deforms elastically from an

initial configuration of nonzero curvature and moment, then the governing

equation becomes
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_ dk (s) dm (s)
Qﬁéil + %-n sin (¢ = 8) = —2— - g' —. (1v-29)
ds ds ds

where kO(E) and mo(g) are the initial curvature and moment, and s = K, s

Although the governing equation 1s formulated for general peel angle ¢, our

interest is focused in the case of 90° peel test (¢ = =) throughout this

rof 2

report.

B. Analytic Results

In this section, the analysis is given for a elastic perfect plastic
adherend » If the adherend remains elastic, we can get the curvature

distribution as a function of 6 ~from equations (IV-7) and (IV-27) for

¢ = g—. The necessary boundary condition is

k =0 for O = g4. (1V-30)

Then, the curvature is given as
1
k= {n (1 - sinb)}”2 (1v-31)

The condition to have the adherend elastic everywhere is kKoax € 1, so that we

can get the relation from equation (IV~31)
n < 1/(1 - sindy), (1V-32)

where ©Op 1is the base angle of the adherend at the root of the cracke.

Because we have the relation (IV-6)

G _ w2
K=o =K k=K {n (1 - sin®)} (1Iv-33)

Then,
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Fig. IV-1

Fig. IV-2

T+dT/ds(ds)

N+ dN/ds(ds)

M+dm/ds (ds)
db

K= d6/ds

o

&

-a‘o

Fig. 1V-3
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- -1
ds = Re ¥ {n (1 - sin®)} /Zde, (1V=-34)
-1 - l/2
dx = Ke {n (1 - sinB)} cosB 46, (1IV=-35)
R | =15
dy = Ke = {n (1 - sin®)} sin® db. (1V-36)

When 3 > n (1 - sineB) > 1, plastic bending spreads out from the root of the
adherend. The curvature distribution can be obtained from equations (Iv-8)
and (IV-27), including the patching condition at the elastic-plastic boundary

k=1 and © be continuous. The curvature distribution is given as,
k = 2/{n (sin6 - 1) + 3}. (1v-37)

hen following the similar procedure as for elastic case,

ds = {n (sin® - 1) + 3} d6/(2 Ke), (IV-38)
dx = {n (sin® - 1) + 3} cosb dO6/(2 Ke), (1v-39)
dy = {n (sin® - 1) + 3} sin6 d8/(2 Ke). (1V-40)

e analysis of elastic case was also given by Drucker [16] for a finite
’ngth cantilever beam. Integrating equations (IV-35, 36 and 39, 40), we can
t the peel profile as
Elastic Peel Profile; for 0 < mn <1

‘ 1
X=K x=-2 {1 -(l - sin®)2} (Iv-41)

e P/-T]—

1 -
Yok y=2{1-@ +sn8)2+Lan 2 1)(/Z + YT ¥ sind

€ /m e Y1 - sind

)}.(IV—42)
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Elastic plastic peel profile; for 1 <m < 3:

1
<Plastically deformed part>, for sinf <1 - ﬁ';
n 6
L =K x =-- (sin® - 2 + =) sin® (IV~43)
e 4 n
| 6
Y = Ke y = K-{G - 5in® cos® - (2 - ﬁ) (1 - cos®)} (IV=44)
(Elastically remained part>, for sin® > 1 - %—;
1
x-1C-1Da-P = (L - (1 - sine)2} (1V-45)
n n /q Y
1 1
SN et - -a-Hd V2 o 28y 1 =L o - Y21 +
y=2lsinT (1 -9 - Q-9 5@ - DE-Q 2 {1 -5 (2n - D?]

2 =L Lo (/50T -0 (742 -5
/n 1 VZ "
1

- (1 + sinB}A2+-fé n (VZ - 1) (V2 + /1 + sine)] .

V2 Y1 — sin®

(IV-46)

The peel strip profile, for a non—propagating infinite strip, under increasing
loading condition is shown in Fige IV-7. The displacements are normalized by
the elastic limit curvature, K,. The figure shows a family of profiles for
the strip as the load increases, i.es N increases. The loading parameter,
n, is chosen such that the entire strip behaves elastically for m < le Aé the
loading parameter increases above 1.0, a portion of the strip plastically
deforms. The plastic zone extends from where the strip is attached to the
substrate out to a position called the elastic-plastic boundary. Beyond this
boundary, the strip deformation remains elastic. The length of the strip
which is plastically deformed continues to increase as the load increases.
However, when T becomes equal to 3, the bending moment applied to the strip
at the point of contact to the substrate becomes the plastic limit bending

moment, forming a plastic hinge. For loads of n > 3 it is anticipated that
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the strip will unload elastically leaving the only active plastic deformation
“confined to the plastic hinge.

Expressing © as a function of s 1in equation (IV-46) we can get the
‘relation between the vertical displacement of position X = K.S and force
applied. The relation is shown in Fig. IV-8, The end displacement is
normalized by the total physical length of the strip. The solid lines
represent the behavior if the material were to remaln totally elastic. The
’;dashed lines show the response when the plastic deformation is included.
Therefore, the effect of the plastic deformation on the gldbal response can be

séen immediatelye.
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V., Finite Element Analysis

A., Finite Element Procedure

As mentioned in the Introduction, large displacement finite element
analysis has been used to investigate the peel test. The ABAQUS general
purpose finite element program developed by Hibbitt, Karlsson and Sorensen
Inc., Providence, R.I., was used for the computationse

The geometry analyzed is shown schematically in Fig. V-1, The crack tip
was at point O (see Fig. V-1) and, in the actual geometry, the part OD of the
substrate was aligned to the adherend. The substrate was held fixed along
ABCD and the vertical displacement of point E of the adherend was prescribed.

The equilibrium equations were enforced through the virtual work

statement
= + i
é Oij 5Dij dav £ £y évi ds é b, évi av (v-1)

where V 1is the volume of the body and S 1its surface, ¢ is the Cauchy
stress, t is the traction vector, b 1is the body force per unit volume, by
is an arbitrary virtual velocity variation which vanishes where displacements

are prescribed and D 1is the deformation rate tensor defined as

1 Bvi bvj
= ame (e o =
Dij 2 (bx. 6x.) ’ (v-2)
J 1 )

%X being the current position of a material point. In equations (V-1) and
(V-2) and for the rest of the paper all tensor components are given with
respect to a fixed rectangular coordinate system.

Both the adhesive and the adherend were modeled as elastic—plastic
materials. The constitutive law used represents the Jyo flow theory and

accounts for rotation of the principal axes; its form is
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3 og!, o
_ E v _ 1 ij "KL
T T T B Ot T 85 B I IDy (v-3)
3 E
for plastic loading, and
- B (& + 85,.8..)D (V-4)
13 T “Tik gk T=2v Tij kR kR

for elastic loading or any unlbading, where E is Young's modulus, v is
Poisson's ratio, I 1is the Kirchoff stress defined by

1=Jg, (Vv-5)
where J is the ratio of volume in the current state to volume in the stress-

free state, 61j is the Kronecker delta,

35 T "1 "?l‘a'éij Yo T %Ti'j iy (V-6)
h 1is the slope of the uniaxial Kirchoff stress versus logarithmic plastic
étrain curve, and the superposed V denotes the Jaumann or co—rotational
stress-rate. In equations (V-3) and (V-4), %v is chosen rather tgan %
because the finite elément’formulation leads then to a symmetric stiffness
'matrix. The difference between the two formulations is, in any case, of order
stress divided by elastic modulus compared to unity [17],

Introducing the finite element interpolation, the equilibrium equations

obtained by discretizing the virtual work equation can be written symbolically

as
oW =0 (V-7)

- where Y is the nodal force component conjugate to the Nth nodal variable in
the problem and uM  is the value of the Mth nodal variable. The basic

problem 1s to solve the nonlinear equations (V-7) throughout the history of

interest.
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Since our problem was history dependent the solution was developed by a
series of increments and Newton's method was used to solve the equilibrium
equations at any time. The constitutive equations were integrated in time by
the backward Euler method which is unconditionally stable and produces a
symmetric material stiffness matrix for the Newton solution of the overall
equilibrium equations. More details on the solution procedure can be found in
reference [18].

The finite element mesh in the near crack tip region is shown in Fig. V-2
in its undeformed configuration. A total of 906 nodes and 149 plane strain 8-
noded elements with 4 integrations of the stiffness were used [19]. The
elements used had an independent interpolation for the dilatation rate in
order to avoid artificial constraints on incompressible modes [20].

Tn our calculations we modeled a peel test in which the adherend was made
of copper and polyimide was used as substrate. The constitutive behavior of

copper was described by E = 124 GPa, v = 0.3 and the T = eP

curve shown in
Fig. IV-5; in addition, isotropic hardening was used to describe the
constitutive behavior of the material. Polyimide was modeled by an elastic
perfectly-plastic material with E = 4 GPa, v = 0.3 and a tensile yield stress
Y = 65 MPa.

In our calculations'the thickness of the adherend was t = 50 pm, 100 pm,

and 200 upm; in addition the dimensions of the geometry analyzed were a = 100

mm, b = 15 mm, ¢ = 20 mm, and d = 20 wmm.
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B, Numerical Results

In Fig. V-3, the configuration of deformed meshes near the interfacial
crack tip is shown for purely elastic deformation. The adherend has Young's
modulus of 12.4 GPa and the substrate has the modulus of 4 GPa. In this case,
there is a stress singularity at the crack'tip. However, even for extreme
cases of stress intensity, the deformation of the adherend shows basically a
simple bending pattern. These results partly support the use of simple
bending assumption in one dimensional approximation of the goverening equation
of adherend deformation. In Fig. V-4, the successive configuration of near-
tip deformation for elastic perfect plastic adherend on an elastic substrate.
The configuration was calculated, controlling the end displacemént of the
adherend. For these two extreme cases of Fig. V-3 and 4, the Young's modulus
was artificially reduced to 1/10 of the modulus of copper in order to enhance
the deformation. In Fig. V-4, fully plastic deformation is already spread
across the thickness of the adherend in the third configuration. After the
plastic hinge is formed, the deformation pattern has a noticeable shear mode
on top of simple bending mode at very near the root of the crack.

In Fig. V-5 ~ 11, the counstitutive relation of the copper adherend was
modeled elastic and linear hardening material. Throughout the analysis in
this section, the yield surface is assumed to follow isotropic hardening
rules. For this linear hardening model, the yield stress was assumed 60 MPa
and the Young's modulus was 124 GPa. The linear hardening was assumed in
nominal stress and logarithmic strain axis for uniaxial stress test. The
slope of the linear hardening coefficient was determined by connecting yield
point and the point (0.55, 480 MPa) in the stress—strain plane. The profile
of the adherend is shown for 3 stages of loading (1), (2) and (3). The

correspnding elastic plastsic boundaries and the load levels are indicated in
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Fig. V-6. The whole plastic deformation part is shown for the stage (3) 1in

Fig. V=7, In Fig. V-8 and 9, the equivalent plastic strain and stress contour

is shown near the root of the crack. As shown in these figures, the

‘deformation mode 1is basically simple bending mode. 1In addition, the

penetration length of plastic deformation region into the bonded adherend is

bnly order of the thickness of the adherend. Therefore the process of bending

Is highly localized near the root of the crack. The interfacial normal stress

distribution is shown in Fig. V-10. The result shows that the interfacial

~normal stress changes from tension to compression at distance of approximately

half of the thickness from the root of the crack. As shown in this figure,

the force couple is generated basically within the distance of thickness. The

‘normal stress distribution becomes negligible beyond the distance of 6 times

of the thickness. 1In Fig. V-11, the peel force-peel stroke relation is

predicted up to onset of peel propagation. As shown in this figure, there 1is
a distinct kink at peel stroke of approximately 7.4 mm. Up to this kink the

peel force - peel stroke relation is almost linear. It is believed that, at

this point, the adherend becomes fully plastic across the thick near the crack

tip. Beyond the peel stroke of 35 mm, the geometric nonlinear deformation

~caused by large deflection makes the curve much steeper. This portion of the

curve is predominantly observed in strong adhesion peel test.
In Fig's, V 12~14, numerical result is given for real stress—strain

relation as shown in Fig. IV-5, The yield surface behavior was again assumed

to follow isotropic hardening rule. The thickness of the adherend is taken

50 pme The free adherend length is again set to be 40 mm. 1In Fige V-12 the

peel profile is shown for peel stroke A = 15, 30, 35.58 and 39.70 mme As

shown in this figure, the adherend shows more curvature than the configuration

shown in Fig. V-5, because the adherend is thinner. Furthermore the profile
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of stroke 39.70 mm shows the curvature inversion at about 3.8 mm away from the
root. This curvature inversion caused by large deflection preset the moment-
curvature distribution, along the adherend, similar to the distribution of
steadily propagating peel profile. The steady state peeling is discussed in
Chapter VI. This curvature inversion is believed to provide smooth transition
of peel force-stroke relation from the initiation of peel propagation to the
steady state. In Fig. V-13, the normal stress distribution at the interface
is shown. The stress changes from tension to compression at the distance of
approximately half of the thickness from the root of the crack. In Fig. V-l4,
shear stress distribution is given along the interface. As shown in this
figure, the shear stress distribution is similar in magnitude to the normal
stress distribution. This result shows that the 90° peel test provides mixed
mode failure at the interface. This indicates that the energy method
introduced in Chapter III deals with total energy release rate. Recent
experimental study on joint failure [21] shows that the total energy release
rate controls the interfacial fracture. Therefore the energy approach
introduced in this report is more relevant than debonding criteria based on

normal stress at the interface.
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VI. Analysis of Steady State Peeling

After the debonding begins to propagate in a 90° peel test, the peel
force approaches a steady—-state one. The’steady-state peel force is referred
to be the peel strength of the joint. Therefore the analysis of steady-state
peel propagation is important. An approximate analysis of steady-state peel
propagation for an elastic—plastic adherend was first made by Chen, et al
[22]. However, they assumed that if the plastically deformed adherend is
unloaded, the adherend recoils back to a circular arc of a comstant curvaturee.
However this assumption does not include the reverse-bending effect in the
analysis. In this chapter, the analysis of steady-state peel propagation
includes the effects of reverse bending and the analysis is applied to an
energy method of describing adhesion-~bond strength.

When the peeling is in steady state, the configuration maintains to be in
same shape. The configuration of the steady-state peeling 1s shown in Fige
Vi-1{a). As shown in the figure the adherend has various sections of bending
and unbending process. The boundaries of the various sections are denoted by
0,A,B,C,D,E, and F. The corresponding distribution of moment and curvature is
indicated in the moment-curvature diagram of Fig. Vi-1(b). As indicated in
these figures, the adherend is in elastic-bending stage in the section 0-A,
plastic~bending stage in A-B, elastic-unloading stage in B-D, plastic-reverse-
bending stage in D=E and the elastic-unloading-of-reverse—bending stage in E-
F.. If the adherend is set free of peel force, the adherend will recoil to
have curvature distribution as shown with the dashed line in Fig. VI-1(a).

The section B~D will recoil to have a constant curvature of C. The unloaded
section A-B and D-E will have gradually varying curvature distribution. The

gection E-F will be unloaded to have another constant curvature of F.
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Because the configuration maintalns same shape, a material point of the
adherend will experience the bending moment and curvature along 0-A-B-C-D-E-F.
Therefore, the intermal work expenditure of the adherend per unit advance of
peeling is My K, multiplied by the area enclosed by 0-A-B-C-D-E-F-0. In real
experiments, however, the length of section B-F changes as the peel
propagates; the moment—curvature distribution in the adherend will be slightly
changed. Therefore, it is more realistic to take the area 0-A-B-C-D-E-0 than
0-A-B-C-D-E-F-0. In this case it is assumed that the bending moment at E is
maintained constant to have steady—state configuration. In this energy
approach, the critical factor that determines the work expenditure is the
maximum curvature kB' Once kB is obtained, the work expenditure (Mo Ke x
‘area) can be easily calculated, because the moment-curvature relation is known
fér the adherend. The kg can be obtained from the equilibrium equation and
the inter—boundary matching conditions. These analysis of peeling is
analogous to those of asymptotic behavior of near tip plasticity of a crack
moving in quasi-static manner [23].

The close form solution is obtained for elastic-perfect plastic material
model in the following. The governing equilibrium equation is given for

general elasto—plastic bending, as

sin® + km - | m(k) dk = constant. (Vi-1)

w3

Then the curvature distribution of section B=D of elastic perfect adherend is
obtained by employing moment—curvature relation of equation (IV-9) and the

boundary condition, ® = Op and k = kg at B. Then,

2

k={kB

+ n(sineB - sin@)}l/z (VI-2)
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Similarly, applying the moment-curvature relation, equation (IV-10), and the
boundary condition 6 = %3 k = 0 at E, the curvature distribution is

obtained for section D-E as, for kg > 2,

1/2

k = {kg n(l-sine)}l/z/[Z Y2 + {kB N(1-sind)} ] (Vi-3)

Then, if the patching condition at D is employed as 6 = 0, k = kp = kg =2,

for kg » 2, the curvature ky becomes

Ky = 1+ L (1-siney) + ({1 + > (1-s1n8 )} - %1”2 (VI-4)

and
sin®_ = sinb_ + é-(k - 1) (VI-5)
D B 1 B °

Then, the maximum curvature and moment for the whole range of kB', becomes

For 0 € kp < 1; elastic loading and unloading,
B

ky = {n(1-s1n )}!/2 (VI-6)
n, =% [n(1-s1n0)}!/2 (VI-7)

For 1 € kg < 2; elasto plastic loading and elastic unloading,

kp = {n(l—sinGB)}l/z WQ’ (VI-8)
! - 1 -
mB B 3'{3 n(l—sineB)% (VI-9)

For 2 < kg; elastoplastic loading and unloading

G = 1+ (1-singy) + [(1 + D (1~sineB)}2 - % 1/2 (VI-10)
my =-§— (3 - 15) (VI-11)
kB
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These maximum curvature and moment are shown as a function of m in Fige VI-2.
Then the work expenditure, ¢ , per unit advance of peeling is by

¢ =M K [ m(k) dk (VI-12)

Lp 4

where A&p indicates loading path 0-A-B-C-D-E on moment-curvature plane (Fige.
yI-1(a)). In addition the residual strain energy production rate, %% , can
be obtained by calculating the complementary plastic work on the moment
curvature plane. In the bending of elastic-perfect plastic adherend, the
complementa;y plastic work caused by geometric hardening 1is identical to the
stoned residual strain energy. Therefore ¢ and %%: are given as following.

For O<kB<1,

¢ =0 (Vi-13)
%% = 0. (VI-14)

For 1 < kg < 2,

2
2 “p
b =M K, (“E§'+ — - 1) (VI-15)
k
av B 1
AL (V1-16)
For 2 < kg,
b =M K (2 Kk, -5 + o) (VI-17)
o e B SkB
d® 6 5 4
__d/Q. = MO Ke (2 E"“ + ~5 ""—4) (VI—18)

The normalized work expenditure ¢/p is shown as a function of m for various
g in Fig. VI-3. [¢ is expressed as a function of kg in equations (VI-I3 ~

18) and kp 1is a function of mn as shown in equations (VI-6 ~ 12). ]




it

p=1+7pb/p, Sy (VI-19)
/

where ; = p/Yoe

Introducing a normalized thickness of the adherend as

ok

t = —6_E—Y- s (VI-20)
we have the relation

n = —I;/-E . (Vvi-21)

Because ¢/p 1is a function of 7 , equation (VI-19) gives the relation
between ;' and t. The relation becomes as following, for elastic—perfect

plastic adherend;

For O < kB < 1,
p=1, t =1/n. (VI-22)
For 1 < kB < 2,

? (t; GB) is a solution of

ie

3 (-0 + 2557 a(l-a) (FE-1) + 3 aBT-1D2 - 4T = 0 (VI-23)
where a =1 - sinfge. (VI-24)

For 2 < kB,
p (t; eB) is a solution of
52 (a-1) (5a-4) - 5 {3(5a - &) T - (%a - 8))

+4 (32 3T+ 1) = 0. (VI-25)
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The ;.(E} GB) is shown in Fig. VI-4. As shown in ﬁhis figure, small change
in GB changes the behavior of S’—'? relation drastically. This indicates
that the compliance of substrate plays important role in E-— t relation,
because the compliant substrate provides larger value of eB. The effect of

the substrate compliance is discussed in the following section.
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vil. Effects of Substrate Properties

In chapter V, it is shown that the substrate remains elastic for thin
film peel tests Therefore the elastic compliance of the substrate is the main
property of concern in this chapter. As jllustrated in chapter VI, the peel
force is a strong function of base angle Oge The one dimensional model of
adherend employed in the energy method has a governing equation"that is
coupled with the governing equation of substrate deformation only through Oge
1t is clear that bg is a function of substrate compliance and the applied
moment and force at the root of the adherend. 1f we neglect the contribution,
on Op , of plastic bending sector in the bonded section of the adherend, Og
is a linear function of applied moment and force at the root for linear
elastic substrate deformation. In order to see the effects of substrate
properties more systematically, a simple Winkler foundation model [24]) is
employed in this chapter. The schematic of the model is shown in Fig. VII-1.
As shown in the figure, the model has 3 sections; (A) elastic beam on elastic
foundation, (B) elasto-plastic beam on elastic foundation, (C) free adherend.
In principle, various realistic foundation models [25,26,27] can be employed
for section (A) and (B).

The governing equation of alastic beam on Winkler foundation is given as

d4 Es
ey 4 2y = -
& EIn y =0 (VII-1)

where y 1s the deflection of the beam, E, is the Young's modulus of the

substrate, E is the Young's modulus of adherend, I 1is the second moment of

inertia of the cross section of the adherend, i.e., t3/12, and h 1is the

thickness of the substratee Then the solution becomes

y = e * (A sin § x + B cos L x) (V11-2)
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where
2
A= - Ke/(2 Co) (VII-3)
3 2

B = N/(2 §” EI) + Ke/(Z c™) (VII~4)

& = {3 E_/(E h t3)}1/4 (VII-5)

o, =E (1) . (VII-6)

int s h

where 0. is the normal stress at the interface. As seen in this solution, i

int o

the stress (or deflection) distribution has a wave length of 2n/C. Also it
can be seen that for x = 2n/{ the amplitude decays to the value less than

0.2% of the maximum normal sStress.

For the elasto-plastic bending part, the governing equation becomes

2 E
g__M.(_Kl - KT + —i y = 0 . (VII‘?)
d32 h

However, this equation is nonlinear and the boundary of the elasto-plastic |

part is not known in a priori, so that some ad hoc approximation has to be

considered, retaining physical significance in the approximation. Because the

length, s, , of the elasto-plastic part is only order of the thickness of the

adherend, the variation of the curvature is assumed linear along the length of

the adherend. Then,

K = (KB - Ke) (s/so) + Ke (VII-8)
dé
and, because K = 9o Bp becomes
- 1 -
eB = eE + 5 (1%3 + Ke) S, (VII-9)
d2
Since K __%, , equation (VII-8) is integrated twice and the integration

o

s
constants and s, are determined by the force balance, moment balance of the
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section s and the patching conditions at the boundaries.

(o]

The patching

conditions are, the continuities of displacement, slope, and moment of the

adherend at the boundaries. Then, nondimensionalizing

we can get

ky = G (2,) + Cy () (n/m)

=L s

o}

(V1iI-10)

where o= C/Ke is a nondimensionalized relative stiffness of the substrate

and

ez ) = (=33 2% - 99 22 + 363z + 120 23+ 180 2z + 90)/c.(z )
1Yo o) o e} o} e} 370

o 5 4 3 2
CZ(ZO) = (=30 zo) + 30 z + 75 2] 45 z 45 zo)/c3(zo)

_ 6 o .5 _ 4 _ 2
c3(zo) = 22 z 2 z 12 z 90 z

+ 180 z_+ 90.
o o o

where z, is a solution of

6 {c (z,) + cp(z)) (/T = {e)(z)) + cy(z)) (/D)) x

[12 - n sin{B (z )/7 + Bz(zo)/ﬁz} +n] +8 =0,

{Al(zo) c,(z)) + AZ(ZO)},

"
o

Bl(zo)

By(z) = n Aj(zy) cplz),

]

2 - 2
Az ) =z (6=7 z + 12 zo)/{lz n(l -z + 2 zo)}

Ay(z) n/(4n) + 2 /(20) + L/n - {sz - T+ M) zi
+ (4o + 21) z }/{AEQ (1 - 242z )}
o o o'’
Then, ©Op becomes

OB = Al(zo) kp + AZ(Zo)°

(VII~-11)

(VII-12)

(VII-13)

(VIT-14)

(VII-15)

(VII-16)

(VII~-17)

(VII-18)

(VII-19)

9
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Employing this result in equations (VI-6,8,10) the ;-— t relation is
obtained. The relation is plotted in Fige VII-2 for T = 10 and 20. As shown
in this figure. Compliant (smaller 7) substrate reduces the peel value
substantially and shows the trends observed in experiments - the peel value
has a peak at a certain thickness of the adherend. In chapter VI and VII, we
have introduced the analytic method to get E-~ t relationship for elastic
and perfectly plastic adherend on an elastic substratee. For general
constitutive relations, the procedufe of obtaining ;'— © relationship is
indentical to the procedure discussed in these two chapters; only need more
laborious calculations. In the following chapter (VIII), the use of E-— Tt
reiation as a universal peel diagram will be discussed. Fig. VII-3 shows the
comparison between the theoretical prediction and the experimental
measurements. The theoretical prediction 1is based on 2-parameter power law
isotropic hardening of adherend. As an approximation procedure, the results
of chapter VI, equations (VI-22 - 25) is used by adjusting the effective yield
stress to account the hardening. The adjustment was made in a iterative
procedure to satisfy the following conditione.

€
max 2

g de = 0 € - o~ /E (VII-20)

where € ax - KBt/z-

The prediction remarkably matches the experimental values. Also the
extraction of adhesion energy from the peel values was made by Y = p/gl A
simple prediction of Y by choosing the effective yield stress as (o, + Gy)/2
for elastic perfect plastic model gives increasing values as the thickness, as
shown in Fige VII-4. However, when the hardening and the substrate compliance

were properly accounted, the adhesion energy turns out to be constant
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regardless of the thickness of the adherend.

Throughout the analysis, it is shown systematically that the yield
stress, hardening coefficient of the adherend and the substrate compliance,
play important roles in determining the adhesion energy from the peel

strengthe
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VIII. Universal Peel Diagram

In this chapter, the inter-relation among the peel strength, p, and the
adhesion energy, Y , and the thickness, t, is expressed as a diagram. The
diagram is, of course, dependent upon various combinations of bulk properties

E, n, s of the adherend and the compliance of the substrate. Assuming

O'y,

either isotropic or kinematic hardening behavior of the adherend, the peel

strength can be expressed as a functional form as,

P = f(Ys t, Uya E) ES’ n, s, VY, VS)’ (VIII_I)

where Vv and vg represent the Poisson's ratio of the adherend and the

substrate respectively. n and s are hardening coefficients defined in
equation (IV-20). Then the fundamental relation can be reduced by a

dimensional analysis as

p/Y = g(G}z, t/6 Ey, ES/E, n, s, Vv, vs)- (VIII-2)

Therefore, for a given system of the adherend and substrate, the functional

relation becomes

p = g* (t5 BJ/E, n, s, v, V), (VIII-3)

where ES/E, n, s, vV, Vg are all constant. This indicates that there is a

simple and unique functional relationship between p and t for the given
system. The relationship, ;.— E-, expressed on a log-log scale is going to
be called "Universal Peel Diagram of the System.” The analytic method of
obtaining ; - t relation has been already discussed in chapter VI and VII.

On the peel diagram, a diagonal axis represents n—axis as shown in Fig. (VIII-

1), because
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log p = log t + log 1 (VIII-4)

from equation (VI-21). Therefore, if you get n from a peel’test data, the
cross—section point of m = constant and the universal curve represents the
state of adhesion on the diagram. Reading ; of the point on the vertical
axis, we can get Yy readily. Similarly, if we know the thickness E-, we can
read E or visa versa. The universal peel diagram can be constructed purely
by peel test experiment. Carrying out the peel test with various thickness of
the adherend for a same but unknown adhesion energy, we can plot 5-- t with
arbitrary constant value of y for the test data. Then, by translating the
group of the data points along 7 = constant lines on the diagram, we can

construct the universal curve of the system.
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IX. Relations Between Peel, Pull and Fracture Tests. (Conversion methods).

In the computer industries, the pull test is also widely used to
calibrate the state of adhesion. A schematic of the pull test is shown in
Fige IX-1l. Pull test is carried out by pulling a pin braized or epoxy-bonded
to a thin film disk that is attached to a substrate. Then the pull strength
is defined as the average stress of pulling at the interface at onset of
failure. Although this test gives certain measure of adhesion state, test
values are so much sensitive to loading alignment and microflaws that test
data scatters widely. However, provided the loading is satisfactorily aligned
and the diameter of the disk is very small (order of 1 ~ 2 mm), let's assume
that the debonding process is similar to the process at peeling crack front.
Then if the microflaw size (order of tens ~ hundreds of Angstrom) is much
smaller than the thickness of the film and is distributed randomly, we can
consider an effective debonding distance 6t , which is analogous to the crack
tip opening displacement of a steadily moving crack. Then from equation (III-

5)
= ¥ -
s = 3; * (IX-1)

The average bond strength at the interface can be considered as the pull
strengthe. 6t is constant for an interface of given combination of materials,

unless there is a relatively large flaw. For example, peel test and the

result of finite element analysis predict & . = 0.089 pum for copper and

polyimide joint. This &8, 1is estimated by 6t = — Y2 77 » because

+
Ceip * Teip)

there is mixed-mode loading at the crack tip. Therefore ét is the magnitude
of vectorial crack—-opening—displacement. One set of pull test data provided
by Dre L. Lee and T. Wray of Endicott IBM gives &, = 0.119 um for the copper-

polyimide joint. This is based on the average value of a set of pull test
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values of the same adhesion. Assuming &, (- 0.119 um) is the system constant,
peel-pull relation is predicted, for a given thickness (88 pm) of the

adherend, from equation (1X~-1),

5 _ Y(p,t; Gy9E9ES’nys»Vst)
bs 5

(1X-2)
t

Because y-p-t relation is given in the universal peel diagram, we can predict

Obs from the peel value through equation (IX-2). The prediction is shown in

Fig. IX-2 and it agrees well with experimental observations. It is believed
that if 6t obtained from peel test and FEM result is used, the predicted
pull strength will be an upper bound of observed pull values. This is because
of the effect of misalignment, flaws and stress concentration in pull test.

A

If there is a substantially large flaw of diameter ‘ag' in the interface the

pull strength will be governed by the flaw and it will become

1/2

Y E
O={_—e_f£}

af
where E_ gg 1is an effective modulus of the bimaterial system. The method of

stress analysis for pull configuration is well discussed in References

[28,29,301.
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X. Conclusion

In this report, energy balance concept has been employed to extract the
adhesion energy of thin metalic film joint. Mode of deformatlion at onset of
crack propagation has been analyzed by an approximation method and finite
element method. These analysis give information on adherend-deformation and
stress—distribution at interface at the loading stage. The analysis was
extended for steady state peel propagation. In this analysis the adhesion
energy could be extracted from peel strength. The peel strength and adhesion
energy relation is strongly dependent upon the bulk properties of the adherend
and substrate. It is strongly dependent upon the thickness of the adherend.
These inter-relations could be figured out by the analysis, and it 1is
expressed as a universal peel diagram. Through the use of this universal peel
diagram, we can get the adhesion energy readily from the peel strength and the
adhesion energy plays the central role to bridge the pull and peel test
values. This report gives the skeleton of the analysis of peel and pull
tests. Beyond this, we need the analysis of more sophisticated and realistic
situétions, such as the effect of residual stress, peeling rate, contamination

and imperfection at the interface.
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