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FIRST-PRINCIPLES MODELING
OF PHASE EQUILIBRIA

Axel van de Walle and Mark Asta
Northwestern University, Evanston, IL, USA

First-principles approaches to the modeling of phase equilibria rely on the
integration of accurate quantum-mechanical total-energy calculations and
statistical-mechanical modeling. This combination of methods makes possible
parameter-free predictions of the finite-temperature thermodynamic prop-
erties governing a material’s phase stability. First-principles, computational-
thermodynamic approaches have found increasing applications in phase
diagram studies of a wide range of semiconductor, ceramic and metallic systems.
These methods are particularly advantageous in the consideration of previously
unexplored materials, where they can be used to ascertain the thermodynamic
stabilityofnewmaterialsbefore theyaresynthesized,and insituationswheredir-
ect experimental thermodynamic measurements are difficult due to constraints
imposedbykineticsormetastability.

1. First-Principles Calculations of Thermodynamic
Properties: Overview

At finite temperature (T ) and pressure (P) thermodynamic stability is gov-
erned by the magnitude of the Gibbs free energy (G):

G = E − T S + PV (1)

where E , S and V denote energy, entropy and volume, respectively. In prin-
ciple, the formal statistical-mechanical procedure for calculating G from first-
principles is well defined. Quantum-mechanical calculations can be performed
to compute the energy E(s) of different microscopic states (s) of a system,
which then must be summed up in the form of a partition function (Z ):

Z =
∑

s

exp[−E(s)/kBT ] (2)
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from which the free energy is derived as F = E − T S = −kBT ln Z , where kB

is Boltzman’s constant.
Figure 1(a) illustrates, for the case of a disordered crystalline binary alloy,

the nature of the disorder characterizing a representative finite-temperature
atomic structure. This disorder can be characterized in terms of the configu-
rational arrangement of the elemental species over the sites of the underlying
parent lattice, coupled with the displacements characterizing positional disor-
der. In principle, the sum in Eq. (2) extends over all configurational and dis-
placive states accessible to the system, a phase space that is astronomically
large for a realistic system size. In practice, the methodologies of atomic-
scale molecular dynamics (MD) and Monte Carlo (MC) simulations, coupled
with thermodynamic integration techniques (Kofke and Frenkel, de Koning,
Chapter 2), reduce the complexity of a free energy calculation to a more
tractable problem of sampling on the order of several to tens of thousands
of representative states.

Electronic density-functional theory (DFT) provides an accurate quantum-
mechanical framework for calculating the relative energetics of competing
atomic structures in solids, liquids and molecules for a wide range of materials
classes (Kaxiras, Chapter 1). Due to the rapid increase in computational cost
with system size, however, DFT calculations are typically limited to structures
containing fewer than ≈1000 atoms, while ab initio MD simulations (Schef-
fler, Chapter 1) are practically limited to time scales of less than ≈1 ns. For
liquids or compositionally ordered solids, where the time scales for structural
rearrangements (displacive in the latter case, configurational and displacive

(b)(a)

Figure 1. (a) Disordered crystalline alloy. The state of the alloy is characterized both by the
atomic displacements vi and the occupation of each lattice site. (b) Mapping of the real alloy
onto a lattice model characterized by occupation variables σi describing the identity of atoms
on each of the lattice sites.
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in the former) are sufficiently fast, and the size of periodic cells required to
accurately model the atomic structure are relatively small, DFT-based MD
methods have found direct applications in the calculation of finite-temperature
thermodynamic properties [1, 2]. For crystalline solids containing both posi-
tional and concentrated compositional disorder, however, direct applications
of DFT to the calculation of free energies remains intractable; the time scales
for configurational rearrangements are set by solid-state diffusion, ruling out
direct application of MD, and the necessary system sizes required to accu-
rately model configurational disorder are too large to permit direct application
of DFT as the basis for MC simulations. Effective strategies have nonethe-
less been developed for bridging the size and time-scale limitations imposed
by DFT in the first-principles computation of thermodynamic properties for
disordered solids. The approach involves exploitation of DFT methods as a
framework for parameterizing classical potentials and coarse-grained statisti-
cal models. These models serve as efficient “effective Hamiltonians” in
direct simulation-based calculations of thermodynamic properties; they can
also function as useful reference systems for thermodynamic-integration
calculations.

2. Thermodynamics of Compositionally
Ordered Solids

In an ordered solid thermal fluctuations take the form of electronic excita-
tions and lattice vibrations and, accordingly, the free energy can be written as
F = E0 + Felec + Fvib, where E0 is the absolute zero total energy while Felec and
Fvib denote electronic and vibrational free energy contributions, respectively.
This section is devoted to the calculation of the electronic and vibrational con-
tributions most commonly considered in phase-diagram calculations under the
assumption that electron–phonon interactions are negligible (i.e., Felec and Fvib

are simply additive).
To account for electronic excitations, electronic DFT (Kaxiras, Chapter 1)

can be extended to nonzero temperatures by allowing for partial occupations
of the electronic states [3]. Within this framework, the electronic contribution
to the free energy Felec(T ) at temperature T can be decomposed as∗

Felec(T ) = Eelec(T ) − Eelec(0) − T Selec(T ) (3)

*Equations (3)–(5) also assume that both the electronic charge density and the electronic density of states
can be considered temperature-independent.
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where the electronic band energy Eelec(T ) and the electronic entropy Selec(T )
are respectively given by

Eelec(T ) =
∫

fµ,T (ε)εg(ε) dε (4)

Selec(T ) = −kB

∫
( fµ,T (ε) ln fµ,T (ε) + (1 − fµ,T (ε))

ln(1 − fµ,T (ε)))g(ε) dε (5)

where g(ε) is the electronic density of states obtained from a density-functional
calculation, while fµ,T (ε) is the Fermi distribution when the electronic
chemical potential is equal to µ,

fµ,T (ε) =
(

1 + exp
(

ε − µ

kBT

))−1

. (6)

The chemical potential µ is the solution to
∫

fµ,  T (ε)  g(ε)  dε = nε  ,  where
nε is the total number of electrons. Under the assumption that the electronic
density of states near the Fermi level is slowly varying relative to fµ,T (ε), the
equations for the electronic free energy reduce to the well-known Sommerfeld
model, an expansion in powers of T whose lowest order term is

Felec(T ) = −π2

6
k2

B T 2 g(ε  F) (7)

where g(ε  F) is the zero-temperature value of the electronic density of states
at the Fermi level (εF ).

The quantum treatment of lattice vibrations in the harmonic approximation
provides a reliable description of thermal vibrations in many solids for low to
moderately high temperatures [4]. To describe this theory, consider an infinite
periodic system with n atoms per unit cell and let u

(l
i

)
for i = 1, . . . , n denote

the displacement of atom i in cell l away from its equilibrium position and
let Mi be the mass of atom i . Within the harmonic approximation, the poten-
tial energy U of this system is entirely determined by: (i) the potential energy
(per unit cell) of the system at its equilibrium position E0 and (ii) the force
constants tensors �

(l l ′
i j

)
whose components are given, for α, β = 1, 2, 3, by

�αβ

(
l l ′

i j

)
=

∂  2 U

∂uα

(l
i

)
∂uβ

(l ′
j

) (8)

evaluated at u
(l

i

)
= 0 for all l, i . Such a harmonic approximation to the

Hamiltonian of a solid is often referred to as a Born–von Kármán model.
The thermodynamic properties of a harmonic system are entirely deter-

mined by the frequencies of its normal modes of oscillations, which can be
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obtained by finding the eigenvalues of the so-called 3n ×3n dynamical matrix
of the system:

D(k) =
∑

l

ei2π(k·l)




�(0 l
1 1)√

M1 M1
· · · �(0 l

1 n)√
M1 Mn

...
. . .

...
�(0 l

n 1)√
Mn M1

· · · �(0 l
n n)√

Mn Mn


 (9)

for all vectors k in the first Brillouin zone. The resulting eigenvalues λb(k) for
b = 1, . . . , 3n, provide the frequencies of the normal modes through νb(k) =
1/2π

(√
λb(k)

)
. This information for all k is conveniently summarized by

g(ν), the phonon density of states (DOS), which specifies the number of modes
of oscillation having a frequency lying in the infinitesimal interval [ν, ν + dν].
The vibrational free energy (per unit cell) Fvib is then given by

Fvib = kB T

∞∫
0

ln
(

2 sinh
(

hν

2kB T

))
g(ν) dν (10)

where h is Planck’s constant and kB is Boltzman’s constant. The associated
vibrational entropy Svib of the system can be obtained from the well-known
thermodynamic relationship Svib = −∂ Fvib/∂T . The high temperature limit
(which is also the classical limit) of Eq. (10) is often a good approxima-
tion over the range of temperature of interest in solid-state phase diagram
calculations

Fvib = kB T

∞∫
0

ln
(

hν

kB T

)
g(ν) dν.

The high temperature limit of the vibrational entropy difference between two
phases is often used as measure of the magnitude of the effect of lattice vibra-
tions on phase stability. It has the advantage of being temperature-independent,
thus allowing a unique number to be reported as a measure of vibrational
effects. Figure 2 (from [5]) illustrates the use of the above formalism to assess
the relative phase stability of the θ and θ ′ phases responsible for precipitation
hardening in the Al–Cu system. Interestingly, accounting for lattice vibrations
is crucial in order for the calculations to agree with the experimentally observed
fact that the θ phase is stable at typical processing temperatures (T > 475 K).

A simple improvement over the harmonic approximation, called the quasi-
harmonic approximation, is obtained by employing volume-dependent force
constant tensors. This approach maintains all the computational advantages of
the harmonic approximation while permitting the modeling of thermal exp-
ansion. The volume dependence of the phonon frequencies induced by the
volume dependence of the force constants is traditionally described by the
Grüneisen parameter γkb = −∂ ln νb(k)/∂ ln V . However, for the purpose of
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Figure 2. Temperature-dependence of the free energy of the θ and θ ′ phases of the Al2Cu
compound. Insets show the crystal structures of each phase and the corresponding phonon
density of states. Dashed lines indicate region of metastability and the θ phase is seen to become
stable above about 475 K. (Adapted from Ref. [5] with the permission of the authors.)

modeling thermal expansion, it is more convenient to directly parametrize
the volume-dependence of the free energy itself. This dependence has two
sources: the change in entropy due to the change in the phonon frequencies
and the elastic energy change due to the expansion of the lattice:

F(T, V ) = E0(V ) + Fvib(T, V ) (11)

where E0(V ) is the energy of a motionless lattice whose unit cell is constrained
to remain at volume V, while Fvib(T, V ) is the vibrational free energy of a har-
monic system constrained to remain with a unit cell volume V at temperature
T . The equilibrium volume V ∗(T ) at temperature T is obtained by minimiz-
ing F(T, V ) with respect to V . The resulting free energy F(T ) at tempera-
ture T is then given by F(T, V ∗(T )). The quasiharmonic approximation has
been shown to provide a reliable description of thermal expansion of numerous
elements up to their melting points, as illustrated in Fig. 3.

First-principles calculations can be used to provide the necessary input par-
ameters for the above formalism. The so-called direct force method proceeds
by calculating, from first principles, the forces experienced by the atoms in
response to various imposed displacements and by determining the value of
the force constant tensors that match these forces through a least-squares fit.
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Figure 3. Thermal expansion of selected metals calculated within the quasiharmonic approx-
imation. (Reproduced from Ref. [6] with the permission of the authors.)

Note that the simultaneous displacements of the periodic images of each dis-
placed atom due to the periodic boundary conditions used in most ab initio
methods typically requires the use of a supercell geometry, in order to be
able to sample all the displacements needed to determine the force constants.
While the number of force constants to be determined is in principle infinite,
in practice, it can be reduced to a manageable finite number by noting that
the force constant tensor associated with two atoms that lie farther than a few
nearest neighbor shells can be accurately neglected for many systems. Alter-
natively, linear response theory (Rabe, Chapter 1) can be used to calculate
the dynamical matrix D(k) directly using second-order perturbation theory,
thus circumventing the need for supercell calculations. Linear response theory
is also particularly useful when a system is characterized by non-negligible
long-range force-constants, as in the presence of Fermi-surface instabilities or
long-ranged electrostatic contributions.

The above discussion has centered around the application of harmonic (or
quasiharmonic) approximations to the statistical modeling of vibrational con-
tributions to free energies of solids. While harmonic theory is known to be
highly accurate for a wide class of materials, important cases exist where this
approximation breaks down due to large anharmonic effects. Examples include
the modeling of ferroelectric and martensitic phase transformations where
the high-temperature phases are often dynamically unstable at zero temper-
ature, i.e., their phonon spectra are characterized by unstable modes. In such
cases, effective Hamiltonian methods have been developed to model structural
phase transitions from first principles (Rabe, Chapter 1). Alternatively, direct
application of ab initio molecular-dynamics offers a general framework for
modeling thermodynamic properties of anharmonic solids [1, 2].
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3. Thermodynamics of Compositionally
Disordered Solids

We now relax the main assumption made in the previous section, by allow-
ing atoms to exit the neighborhood of their local equilibrium position. This
is accomplished by considering every possible way to arrange the atoms on a
given lattice. As illustrated in Fig. 1(b), the state of order of an alloy can be
described by occupation variables σi specifying the chemical identity of the
atom associated with lattice site i . In the case of a binary alloy, the occupa-
tions are traditionally chosen to take the values +1 or −1, depending on the
chemical identity of the atom.

Returning to Eq. (2), all the thermodynamic information of a system is con-
tained in its partition function Z and in the case of a crystalline alloy system,
the sum over all possible states of the system can be conveniently factored as
follows:

Z =
∑
σ

∑
v∈σ

∑
e∈v

exp[−βE(σ, v, e)] (12)

where β = (kB T )−1 and where

• σ denotes a configuration (i.e., the vector of all occupation variables);
• v denotes the displacement of each atom away from its local equilibrium

position;
• e is a particular electronic state when the nuclei are constrained to be in a

state described by σ and v ; and
• E(σ, v, e) is the energy of the alloy in a state characterized by σ , v and e.

Each summation defines an increasingly coarser level of hierarchy in the set
of microscopic states. For instance, the sum over v includes all displacements
such that the atoms remain close to the undistorded configuration σ . Equation
(12) implies that the free energy of the system can be written as

F(T ) = −kBT ln

(∑
σ

exp[−βF(σ, T )]

)
(13)

where F(σ, T ) is nothing but the free energy of an alloy with a fixed atomic
configuration, as obtained in the previous section

F(σ, T ) = −kBT ln

(∑
v∈σ

∑
e∈v

exp[−βE(σ, v, e)]

)
(14)

The so-called “coarse graining” of the partition function illustrated by
Eq. (13) enables, in principle, an exact mapping of a real alloy onto a simple
lattice model characterized by the occupation variables σ and a temperature-
dependent Hamiltonian F(σ, T ) [7, 8].
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Although we have reduced the problem of modeling the thermodynamic
properties of configurationally disordered solids to a more tractable calcula-
tion for a lattice model, the above formalism would still require the calculation
of the free energy for every possible configuration σ , which is computationally
intractable. Fortunately, the configurational dependence of the free energy can
often be parametrized using a convenient expansion known as a cluster expan-
sion [7, 9]. This expansion takes the form of a polynomial in the occupation
variables

F(σ, T ) = J∅ +∑
i

Jiσi +∑
i, j

Ji jσiσ j +∑
i, j,k

Ji jkσiσ jσk + · · ·

where the so-called effective cluster interactions (ECI) J∅, Ji , Ji j , . . . , need
to be determined. The cluster expansion can be recast into a form which
exploits the symmetry of the lattice by regrouping the terms as follows

F (σ, T ) =
∑
α

ma Ja

〈∏
i∈α′

σi

〉

where α is a cluster (i.e., a set of lattice sites) and where the summation is
taken over all clusters that are symmetrically distinct while the average 〈. . .〉
is taken over all clusters α′ that are symmetrically equivalent to α. The multi-
plicity mα weight each term by the number of symmetrically equivalent clus-
ters in a given reference volume (e.g., a unit cell). While the cluster expansion
is presented here in the context of binary alloys, an extension to multicom-
ponent alloys (where σi can take more than two different values) is straight-
forward [9].

It can be shown that when all clusters α are considered in the sum, the
cluster expansion is able to represent any function of configuration σ by an
appropriate selection of the values of Jα. However, the real advantage of the
cluster expansion is that, for many systems, it is found to converge rapidly. An
accuracy that is sufficient for phase diagram calculations can often be achieved
by keeping only clusters α that are relatively compact (e.g., short-range pairs
or small triplets, as illustrated in the left panel of Fig. 4). The unknown par-
ameters of the cluster expansion (the ECI Jα) can then determined by fitting
them to F(σ, T ) for a relatively small number of configurations σ obtained
from first-principles computations. Once the ECI have been determined, the
free energy of the alloy for any given configuration can be quickly calculated,
making it possible to explore a large number of configurations without recal-
culating their free energy from first principles for each of them.

In some applications the development of a converged cluster expansion
can be complicated by the presence of long-ranged interatomic interactions
mediated by electronic-structure (Fermi-surface), electrostatic and/or elastic
effects. Long-ranged interactions lead to an increase in the number of ECIs
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Figure 4. Typical choice of clusters (left) and structures (right) used for the construction of a
cluster expansion on the hcp lattice. Big circles, small circles and crosses represent consecutive
close-packed planes of the hcp lattice. Concentric circles represent two sites, one above the
other in the [0001] direction. The unit cell of the structures (right) along the (0001) plane is
indicated by lines while the third lattice vector, along [0001], is identical to the one of the hcp
primitive cell. (Adapted, with the permission of the authors, from Ref. [10], a first-principles
study of the metastable hcp phase diagram of the Ag–Al system.)

that must be computed, and a concomitant increase in the number of con-
figurations that must be sampled to derive them. For metals it has been
demonstrated how long-ranged electronic interactions can be derived from
perturbation theory using coherent-potential approximations to the electronic
structure of a configurationally disordered solid as a reference state [11].
Effective approaches to modeling long-ranged elastically mediated interac-
tions have also been formulated [12]. Such elastic effects are known to be par-
ticularly important in describing the thermodynamics of mixtures of species
with very large differences in atomic “size”.

The cluster expansion tremendously simplifies the search for the lowest
energy configuration at each composition of the alloy system. Determining
these ground states is important because they determine the general topology
of the alloy phase diagram. Each ground state is typically associated with one
of the stable phases of the alloy system. There are three main approaches to
identify the ground states of an alloy system.

With the enumeration method, all the configurations whose unit cell con-
tains less than a given number of atoms are enumerated and their energy



First-principles modeling of phase equilibria 11

is quickly calculated using the value of F(σ, 0) predicted from the cluster
expansion. The energy of each structure can then be plotted as a function of its
composition (see Fig. 5) and the points touching the lower portion of the con-
vex hull of all points indicate the ground states. While this method is approxi-
mate, as it ignores ground states with unit cell larger than the given threshold,
it is simple to implement and has been found to be quite reliable, thanks to the
fact that most ground states indeed have a small unit cell.

Simulated annealing offers another way to find the ground states. It pro-
ceeds by generating random configurations via MC simulations using the
Metropolis algorithm (G. Gilmer, Chapter 2) that mimic the ensemble sampled
in thermal equilibrium at a given temperature. As the temperature is lowered,
the simulation should converge to the ground state. Thermal fluctuations are
used as an effective means of preventing the system from getting trapped in
local minima of energy. While the constraints on the unit cell size are con-
siderably relaxed relative to the enumeration method, the main disadvantage
of this method is that, whenever the simulation cell size is not an exact mul-
tiple of the ground state unit cell, artificial defects will be introduced in the
simulation that need to be manually identified and removed. Also, the risk of
obtaining local rather than global minima of energy is not negligible and must
be controlled by adjusting the rate of decay of the simulation temperature.

Figure 5. Ground state search using the enumeration method in the Scx -Vacancy1−x S system.
Diamonds represent the formation energies of about 3×106 structures, predicted from a cluster
expansion fitted to LDA energies. The ground states, indicated by open circles, are the structures
whose formation energy touches the convex hull (solid line) of all points. (Reproduced from
Ref. [13], with the permission of the authors.)
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Finally, there exists an exact, although computational demanding, algo-
rithm to identify the ground states [14]. This approach relies on the fact that
the cluster expansion is linear in the correlations σα ≡ 〈∏

i∈a′ σi
〉
. Moreover, it

can be shown that the set of correlations σα that correspond to “real” structures
can be defined by a set of linear inequalities. These inequalities are the result
of lattice-specific geometric constraints and there exists systematic methods
to generate them [14]. As an example of such constraints, consider the fact
that it is impossible to construct a binary configuration on a triangular lattice
where the nearest neighbor pair correlations take the value −1 (i.e., where all
nearest neighbors are between unlike atomic species). Since both the objective
function and the constraints are linear in the correlations, linear programming
techniques can be used to determine the ground states. The main difficulties
associated with this method is the fact that the resulting linear programming
problem involves a number of dimensions and a number of inequalities that
grows exponentially fast with the range of interactions included in the cluster
expansion.

Once the ground states have been identified, thermodynamic properties
at finite temperature must be obtained. Historically, the infinite summation
defining the alloy partition function has been approximated through various
mean-field methods [7, 14]. However, the difficulties associated with extend-
ing such methods to systems with medium to long-ranged interactions, and
the increase in available computational power enabling MC simulations to be
directly applied, have led to reduced reliance upon these techniques more
recently.

MC simulations readily provide thermodynamic quantities such as energy
or composition by making use of the fact that averages over an infinite ensem-
ble of microscopic states can be accurately approximated by averages over a
finite number of states generated by “importance” sampling. Moreover, quan-
tities such as the free energy, which cannot be written as ensemble averages,
can nevertheless be obtained via thermodynamic integration (Frenkel, Chap-
ter 2; de Koning, Chapter 2) using standard thermodynamic relationships to
rewrite the free energy in terms of integrals of quantities that can be obtained
via ensemble averages. For instance, since energy E(T ) and free energy F(T )
are related through E(T ) = ∂(F (T )/T )/∂(1/T ) we have

F(T )

T
− F(T0)

T0
=-

T∫
T0

E(T )

T 2
dT (15)

and free energy differences can therefore be obtained from MC simulations
providing E (T ). Figures 6 and 7 show two phase diagrams obtained by
combining first principles calculations, the cluster expansion formalism and
MC simulations, an approach which offers the advantage of handling, in a
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Figure 6. Calculated composition–temperature phase diagram for a metastable hcp Ag–Al
alloy. Note that the cluster expansion formalism enables a unified treatment of both solid
solutions and ordered compounds. (Reproduced from Ref. [10], with the permission of the
authors.)

Figure 7. Calculated composition–temperature solid-state phase diagram for a rocksalt-type
CaO–MgO alloy. The inclusion of lattice vibrations via the coarse-graining formalism is seen to
substantially improve in agreement with experimental observations (filled circles). (Reproduced
from Ref. [15], with the permission of the authors.)



14 A. van de Walle and M. Asta

unified framework, both ordered phases (with potential thermal defects) and
disordered phases (with potential short-range order).

4. Liquids and Melting Transitions

While first-principles thermodynamic methods have found the widest app-
lication in studies of solids, recent progress has been realized also in the devel-
opment and application of methods for ab initio calculations of solid–liquid
phase boundaries. This section provides a brief overview of such methods,
based upon the application of thermodynamic integration methods within the
framework of ab initio molecular dynamics simulations.

Consider the ab initio calculation of the melting point for an elemental
system, as was first demonstrated by Sugino and Car [1] in an application to
elemental Si. The approach is based on the use of thermodynamic-integration
methods to compute temperature-dependent free energies for bulk solid and
liquid phases. Let U1(r1, r2, . . . , rN ) denote the DFT potential energy for a
collection of ions at positions (r1, . . . , rN ), while U0(r1, r2, . . . , rN ) corre-
sponds to the energy of the same collection of ions described by a reference
classical-potential model. We suppose that the free energy of the reference
system, F0, has been accurately calculated, either analytically (as in the case
of an Einstein crystal) or using the atomistic simulation methods reviewed by
Kofke and Frenkel in Chapter 2. We proceed to calculate the difference F1−F0

between the DFT free energy (F1) and F0 employing the statistical-mechanical
relation:

F1 − F0 =

1∫
0

dλ

〈
dUλ

dλ

〉
λ

=

1∫
0

dλ〈U1 − U0〉λ (16)

where the brackets 〈· · · 〉λ denote an average over the ensemble generated by
the potential energy Uλ = λU1 + (1 − λ)U0. In practice, 〈· · · 〉λ can be calcu-
lated from a time average over an MD trajectory generated with forces derived
from the hybrid energy Uλ. The integral in Eq. (16) is evaluated from results
computed for a discrete set of λ values, or from a time average over a simula-
tion where λ is slowly “switched” on from zero to one. Practical applications
of this approach rely on the careful choice of the reference system to provide
energies that are sufficiently “close” to DFT to allow the ensemble averages
in Eq. (16) to be precisely calculated from relatively short MD simulations.
It should be emphasized that the approach outlined in this paragraph, when
applied to the solid phase, provides a framework for accurately calculating
anharmonic contributions to the vibrational free energy.

Figure 8 shows results derived from the above procedure by Sugino and Car
[1] in an application to elemental Si (using the Stillinger–Weber potential as
a reference system). Temperature-dependent chemical potentials for solid and
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Figure 8. Calculated chemical potential of solid and liquid silicon. Full lines correspond to
theory and dashed lines to experiments. (Reproduced from Ref. [1], with the permission of the
authors.)

liquid phases (referenced to the zero-temperature free energy of the crystal)
are plotted with symbols and are compared to experimental data represented
by the dashed lines. It can be seen that the temperature-dependence of the solid
and liquid free energies (i.e., the slopes of the curves in Fig. 8) are accurately
predicted. Relative to the solid, the liquid chemical potentials are approxi-
mately 0.1 eV/atom lower than experiment, leading to a calculated melting
temperature that is approximately 300 K lower than the measured value. Com-
parable and even somewhat higher accuracies have been demonstrated in more
recent applications of this approach to the calculation of melting temperatures
in elemental metal systems (see, e.g., the references cited in [2]).

The above formalism has been extended as a basis for calculating solid
and liquid chemical potentials in binary mixtures [2]. In this application, ther-
modynamic integration for the liquid phase is used to compute the change
in free energy accompanying the continuous interconversion of atoms from
solute to solvent species. Such calculations form the basis for extracting sol-
ute and solvent atom chemical potentials. For the solid phase the vibrational
free energy of formation of substitutional impurities is extracted either within
the harmonic approximation (along the lines described above) and/or from
thermodynamic integration to derive anharmonic contributions. In applications
to Fe-based systems relevant to studies of the Earth’s core, the approach has
been used to compute the equilibrium partitioning of solute atoms between
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solid and liquid phases in binary mixtures at pressures that are beyond the
range of direct experimental measurements.

5. Outlook

The techniques described in this article provide a framework for comput-
ing the thermodynamic properties of elements and alloys from first princi-
ples, i.e., requiring, in principle, only the atomic numbers of the elemental
constituents as input. In the most favorable cases, these methods have been
demonstrated to yield finite-temperature thermodynamic properties with an
accuracy that is limited only by the approximations inherent in electronic DFT.
For a growing number of metallic alloy systems, such accuracy can be compa-
rable to that achievable in direct measurements of thermodynamic properties.
In such cases, ab initio methods have found applications as a framework for
augmenting the experimental databases that form the basis of “computational-
thermodynamics” modeling in the design of alloy microstructure. First-
principles methods offer the advantage of being able to provide estimates of
thermodynamic properties in situations where direct experimental measure-
ments are difficult due to constraints imposed by sluggish kinetics, metastabil-
ity or extreme conditions (e.g., high pressures or temperatures). In the
development of new materials, first-principles methods can be employed as
a framework for rapidly assessing the thermodynamic stability of hypothetical
structures before they are synthesized. With the continuing increase in compu-
tational power and improvements in the accuracy of first-principles electronic-
structure methods, it is anticipated that ab initio techniques will find
growing applications in predictive studies of phase stability for a wide range of
materials systems.
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