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Abstract

During the diversification of living organisms, novel adaptive traits usually evolve through the co-option of preexisting genes.

However, most enzymes are encoded by gene families, whose members vary in their expression and catalytic properties. Each

may therefore differ in its suitability for recruitment into a novel function. In this work, we test for the presence of such a gene

recruitment bias using the example of C4 photosynthesis, a complex trait that evolved recurrently in flowering plants as a response to

atmospheric CO2 depletion. We combined the analysis of complete nuclear genomes and high-throughput transcriptome data for

three grass species that evolved the C4 trait independently. For five of the seven enzymes analyzed, the same gene lineage was

recruited across the independent C4 origins, despite the existence of multiple copies. The analysis of a closely related C3 grass

confirmed that C4 expression patterns were not present in the C3 ancestors but were acquired during the evolutionary transition

to C4 photosynthesis. The significant bias in gene recruitment indicates that some genes are more suitable for a novel function,

probably because the mutations they accumulated brought them closer to the characteristics required for the new function.
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Introduction

The adaptation of organisms to changing environmental con-

ditions often requires the evolution of novel traits, sometimes

of impressive complexity. In many instances, the novel trait

results from multiple genes, which are responsible for different

morphological alterations, distinct steps in a novel biochemical

cascade, or a combination of both. Genes usually do not

appear de novo in a genome and the evolution of novel

traits involves the co-option of preexisting genes, with alter-

ation of their expression patterns and/or the catalytic proper-

ties of the encoded enzymes (True and Carroll 2002; Monteiro

and Podlaha 2009; Tomoyasu et al. 2009). However, factors

affecting the suitability of different genes for the evolution of

novel traits are poorly understood.

The evolution of a given trait may require a specific enzy-

matic reaction, so that only genes encoding a given class of

enzymes are suitable. Most enzymes are encoded by multi-

gene families (Nei and Rooney 2005), whose members have

evolved independently, in some cases for a long time. As a

consequence, they have accumulated different mutations,

which can affect the expression and catalytic properties of

the encoded enzymes (Xu et al. 2009; Hoffmann et al.

2010; Storz et al. 2013). It could be that only certain gene

lineages are suitable for a specific function during the evolu-

tion of a novel trait under the appropriate selective pressures,

as suggested by the recurrent co-option of the same gene

lineage for the evolution of novel adaptations (Woods et al.

2006; Zakon et al. 2006; Arnegard et al. 2010). As gene

members are recurrently lost during the course of evolution

(Nei and Rooney 2005), they might not be present in all

species of a specific group, and their distribution might

consequently affect the evolvability of a complex trait.

The diversity of evolutionary trajectories to novel traits can

be investigated experimentally in a few model organisms

(Weinreich et al. 2006; Blount et al. 2012; Gerstein et al.

2012). However, an experimental approach is not suitable

for long-lived organisms, such as plants, where multigene

families are frequent (Flagel and Wendel 2009; Guo 2013).

In such instances, traits that were repeatedly acquired dur-

ing evolution offer an outstanding study system (Zakon

GBE
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et al. 2006; Arnegard et al. 2010; Christin, Weinreich et al.

2010). C4 photosynthesis is one such trait that represents an

excellent model system to address these questions. It consists

of both morphological adaptations and the assembly of a

novel biochemical cascade, which together concentrate

CO2 before its use by the ancestral C3 photosynthetic appa-

ratus, providing an advantage to plants living in a low CO2

atmosphere and open, warm, and dry conditions (Hatch

1987; Sage et al. 2012). Despite the involvement of multiple

genes, it has evolved more than 62 times in flowering plants

(Sage et al. 2011) and is especially prevalent in grasses,

where it arose at least 23 times independently within the

PACMAD clade (GPWGII 2012). Although genes responsible

for C4-specific leaf anatomy, the transport of metabolites, and

the cell signaling and regulation required for optimal function-

ing have not been precisely identified, the main enzymatic

steps have long been known (Hatch and Slack 1968;

Johnson and Hatch 1970; Hatch 1987; Kanai and Edwards

1999).

In C4 plants, atmospheric CO2 is first fixed into organic

acids by a combination of b-carbonic anhydrase (b-CA) and

phosphoenolpyruvate carboxylase (PEPC) in leaf mesophyll

cells (fig. 1 and supplementary fig. S1, Supplementary

Material online). The resulting four-carbon compound is trans-

formed and transported to bundle sheath cells (fig. 1 and

supplementary fig. S1, Supplementary Material online), via

various combinations of several different biochemical cas-

cades (Kanai and Edwards 1999; Furbank 2011; Pick et al.

2011). There, CO2 is released by one or more of three possible

decarboxylating enzymes (NAD-malic enzyme [NAD-ME],

NADP-malic enzyme [NADP-ME], and phosphoenolpyruvate

carboxykinase [PCK]) to feed the C3 photosynthetic pathway

(photosynthetic carbon reduction cycle), which, in C4 plants, is

confined to the bundle sheath cells (fig. 1). Transcript levels for

all of the enzymes involved in this pathway are high during the

day and are consequently easily identifiable through RNA se-

quencing (Brautigam et al. 2011; Gowik et al. 2011; Pick et al.

2011).

In this work, we use the convergent evolution of C4 pho-

tosynthesis in grasses as a model system, testing for preexist-

ing differences in the suitability of gene family members for

recruitment into a novel function within a complex biochem-

ical pathway. Using phylogenetic analyses of whole nuclear

genomes available for five grass species, we evaluate the size

of C4-related gene families as well as the diversification of

gene lineages in different subcellular compartments. We

then use published and newly produced high-throughput

RNA sequencing data from three grasses that evolved the

C4 trait independently to identify and compare genes that

have been independently recruited to the C4 pathway. The

inclusion of a closely related C3 species for one of the C4

species sheds new light on the factors that might predispose

particular gene lineages for a novel function.

Materials and Methods

Identification of Grass Gene Lineages

Phylogenetic data sets were assembled from predicted cDNA

(only first transcript model for each gene) extracted from the

published, complete nuclear genomes of five grasses

(Brachypodium distachyon, Oryza sativa, Sorghum bicolor,

Setaria italica, and Zea mays) as well as three distantly related

eudicots with well-annotated genomes (Populus trichocarpa,

Arabidopsis thaliana, and Glycine max). We first compiled a list

of all enzymes and membrane-bound transporters with a

known or putative function in C4 photosynthesis (Kanai and

Edwards 1999; Brautigam et al. 2008; Brautigam et al. 2011).

Different C4 subtypes are described in the older literature,

which use different series of enzymes (Hatch et al. 1975;

Kanai and Edwards 1999). However, accumulating evidence

suggests that the classical subtypes do not represent distinct

entities but can co-exist in various combinations in C4 plants

(Shieh et al. 1982; Wingler et al. 1999; Ueno and Sentoku

2006; Muhaidat et al. 2007; Furbank 2011; Pick et al. 2011).

We consequently decided to adopt a conservative approach,

by considering all of the enzymes and transporters that have

been associated with C4 photosynthesis. For each of the

FIG. 1.—Schematic of the C4 cycle. Black arrows show the main re-

actions enabling the fixation of atmospheric CO2 into organic compounds

in mesophyll cells until its release in bundle sheath cells, where it feeds the

photosynthetic carbon reduction (PCR) cycle. Dashed arrows show the

reactions allowing the regeneration of the carbon acceptors. Boxes indi-

cate the enzymes. Those that were recruited in parallel across the three C4

origins are in red. Note that PCK is encoded by only a single gene lineage,

which was recruited across two C4 origins. A more detailed schematic of

the C4 pathway is shown in supplementary figure S1, Supplementary

Material online. ALA, alanine; ALA-AT, alanine aminotransferase; ASP,

aspartate; ASP-AT, aspartate aminotransferase; b-CA, b-carbonic anhy-

drase; MA, malate; NAD(P)-MDH, NAD(P)-malate dehydrogenase;

NADP-ME, NADP-malic enzyme; OAA, oxaloacetate; PA, pyruvate; PCK,

PEP carboxykinase; PCR cycle, C3 photosynthetic carbon reduction cycle;

PEP, phosphoenolpyruvate; PEPC, PEP carboxylase; PPDK, pyruvate, phos-

phate dikinase.
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proteins used in the C4 pathway, all homologous gene se-

quences from Arabidopsis were retrieved from the GenBank

database using gene annotation. Arabidopsis was selected as

the starting point of the analyses because it has the genome

with the most complete annotation of genes, especially re-

garding the putative function of the encoded enzymes.

In addition, starting with a distant reference increased the

likelihood of sampling divergent copies from grasses. The

Arabidopsis sequences formed the initial data set and were

used as the query of a Blast search based on nucleotides with a

minimal e-value of 0.00001 against one of the published com-

plete nuclear genomes. Positive matches were retrieved and

added to the data set, which was then used as the query for a

Blast search against the next genome. This process was iter-

ated until all complete genomes (including Arabidopsis) had

been successively screened.

Each final data set was translated into amino acids and

aligned using ClustalW (Thompson et al. 1994). The alignment

was manually inspected, and sequences that corresponded to

partial cDNA or that were clearly not homologous to the

Arabidopsis reference (false positives) were removed. A gene

family phylogenetic tree was then inferred from the recovered

nucleotide sequences under maximum likelihood, as imple-

mented in PhyML (Guindon and Gascuel 2003), under a gen-

eral time reversible (GTR) substitution model with a gamma

shape parameter. Statistical support was evaluated with 100

bootstraps. The resulting phylogenetic tree was manually in-

spected and groups of orthologous genes were identified as

well-supported clades of grass genes, for which relationships

were compatible with the species relationships based on other

markers (GPWGII 2012).

For each predicted cDNA extracted from complete ge-

nomes, the presence of a putative chloroplast transit peptide,

directing the pre-protein to the chloroplast, was tested using

the chloroP prediction software 1.1 (Emanuelsson et al. 1999).

Sampling Design

High-throughput RNA sequencing data has been published

for leaves of two C4 grass species for which a complete nu-

clear genome is available, S. italica and Z. mays (Li et al. 2010;

Bennetzen et al. 2012). Both species belong to the same grass

subfamily (Panicoideae) but evolved C4 photosynthesis inde-

pendently (GPWGII 2012; fig. 2). A third C4 taxon, namely

Alloteropsis semialata subsp. semialata, for which there

were no existing genomic or transcriptomic data sets, was

also included in the analysis. This taxon also belongs to

Panicoideae but represents an additional C4 origin in this hot-

spot of C4 evolution (Christin et al. 2012; GPWGII 2012;

fig. 2). These three species use the C4 biochemical pathway

based on the decarboxylating enzyme NADP-ME (Gutierrez

et al. 1974; Ueno and Sentoku 2006). In the case of Zea

and Alloteropsis, this pathway is complemented by a shuttle

based on the enzyme PCK, which in the latter can represent

the majority of carbon flux through the C4 pathway

(Prendergast et al. 1987; Wingler et al. 1999; Ueno and

Sentoku 2006; Pick et al. 2011).

In addition to these three C4 taxa, the C3 taxon Alloteropsis

semialata subsp. eckloniana was analyzed. This taxon is closely

related to the C4 Alloteropsis, with a divergence time esti-

mated at ~3 Ma (Ibrahim et al. 2009; Christin et al. 2012;

fig. 2). The transcriptomes of the C3 and C4 Alloteropsis have

been analyzed previously for a different purpose (Christin et al.

2012), but additional data were produced for this study.

Sequencing and Assembly of Alloteropsis Transcriptomes

Seeds of C4 Alloteropsis semialata (R.Br.) Hitchc. subsp. semi-

alata and C3 Alloteropsis semialata (R.Br.) Hitchc. subsp. eck-

loniana (Nees) Gibbs Russell were collected from plants that

had been open pollinated in South Africa. Seeds were ob-

tained from a wild population of the C3 Alloteropsis growing

near Grahamstown (Port Elizabeth, Eastern Cape), and from a

common garden population of the C4 Alloteropsis growing in

the same area, but originally collected from a wild population

near Middelburg (Pretoria, Mpumalanga).

Seeds were germinated under sterile conditions on 1.2%

plant agar containing 50 mg/l gibberellic acid in order to

achieve rapid and uniform germination. Plants were grown

in 600 ml pots containing a 1:1 mix of M3 compost:perlite

designed to provide a free-draining, high nutrient medium

(LBS Horticulture, Colne, Lancs, UK) and placed within a cli-

mate controlled plant growth cabinet (Fitotron PG660,

Gallenkamp, Loughborough, UK) under a 16:8 h day:night

cycle, a mean daytime photon flux density of

550mmol m�2s�1, day:night temperatures of 25:20 �C, and

70% humidity. Plants were watered twice weekly and

FIG. 2.—Simplified phylogeny of grasses showing the relationships

between the sampled taxa. The phylogenetic tree was retrieved from

Grass Phylogeny Working Group II (2012). Subfamilies are compressed,

with the exception of the Panicoideae containing Zea, Setaria, and

Alloteropsis, for which groups not containing these taxa are compressed.

The photosynthetic types of taxa present in each group are indicated near

the tip; white¼ all C3, black¼ all C4, gray¼ both C3 and C4.
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fertilized using Long Ashton solution at increasing strength

and frequency as the plants grew larger (to a maximum of

full-strength solution applied weekly). Plants were raised

under these conditions for 8 weeks, before the day:night

cycle was changed to 12:12 h for a further 5 weeks prior to

sampling. The youngest fully expanded leaf was sampled from

randomized biological quadruplicates every 4 h over the

12:12 h light:dark cycle starting immediately after the lights

came on at “dawn,” snap-freezing samples in liquid nitrogen

and storing them at �80 �C until processing them for total

RNA isolation. Each replicate at each time point was taken

from a different plant, so that a total of 24 plants of each

subspecies were sampled over the diurnal cycle.

Frozen leaf samples were ground in liquid nitrogen using a

mortar and pestle. Total RNA was isolated from the frozen

ground leaf tissue using the Qiagen RNeasy kit following the

manufacturer’s protocol but using 450ml of the kit’s RLC ex-

traction buffer modified with the addition of 4.5ml b-mercap-

toethanol and 13.5ml 50 mg/ml polyethylene glycol 20,000

per sample. Part of the RNA was saved for semi-quantitative

polymerase chain reaction (discussed later). Prior to the gen-

eration of full-length double-stranded cDNA for 454 library

production, the rest of the total RNAs were pooled in equi-

molar amounts giving equal weight to each sampling point to

generate four pools of Alloteropsis total RNA, namely C3 dark,

C3 light, C4 dark, and C4 light. After thorough mixing, each

pool of total RNA was used for oligo-dT primed synthesis of

full-length double-stranded cDNA using the SMARTer cDNA

synthesis kit (Clontech, Mountain View, CA). Each sample of

full-length cDNA was then used for Roche 454 sequencing

library production using the manufacturer’s recommended

procedures. Each library was initially sequenced on a quarter

of a Titanium plate using the Roche 454 GS-FLX sequencer

(table 1). Extra sequencing was performed for the C4 samples

in order to achieve superior assemblies and to compensate for

the poor initial run of the C4 dark sample, which had only

produced 32,874 reads (see table 1).

De novo transcriptome assemblies based on the 454 data

were undertaken separately for the C3 and C4 Alloteropsis.

The reads produced by the 454 Titanium sequencing were

each trimmed for poly-A/T tails and 454 and SMARTer adapter

sequences (in-house tool, based on a multi-pass Blast and

heuristics), with reads trimmed to less than 50 bp removed.

Trimming reduced the number of C3 reads to 253,682

(68,253,971 bp) and the number of C4 reads to 538,682

(155,267,063 bp). The trimmed C3 and C4 reads were then

assembled with MIRA (Chevreux et al. 2004) using the default

parameters implied by the settings “–job¼denovo,est,accu-

rate.” The resulting C3 and C4 assemblies produced 15,892

contigs (7,375,929 bp) and 39,549 contigs (22,259,361 bp),

using 191,136 and 400,726 reads, respectively, with N50

(>200 bp) of 504 and 449 bp.

Reads per contig were counted using the .ace file produced

by the assemblies and then normalized to reads per kilobase

of contig length per million reads (rpkm) values to account for

the variation in number of C3 and C4 reads. The contigs were

then mapped to the Arabidopsis peptide reference (TAIR10,

http://www.arabidopsis.org/, last accessed November 4,

2013) using Blast (E¼1�5).

Diurnal Regulation of the Transcript Abundance of
C4-Related Genes in Alloteropsis

Putative C4-specific contigs of Alloteropsis were identified in

silico as contigs with a higher 454 read abundance in the C4

sample relative to the C3 sample. Of these, contigs with a

differential transcript abundance between the light and dark

reads in the C4 subspecies were selected for more detailed

analysis with semi-quantitative RT-polymerase chain reaction.

cDNA was synthesized from the total RNA extracted from

different individuals at different times using the Qiagen

Quantitect RT kit which uses an optimized blend of oligo-dT

and random primers to promote high cDNA yields, even from

50 regions. The Quantitect RT kit also includes a genomic DNA

wipeout buffer for the removal of contaminating genomic

DNA from total RNA prior to reverse transcription. The result-

ing cDNA was diluted 1:5 with molecular biology grade water

prior to use for semi-quantitative PCR.

Polymerase chain reactions were performed using 1ml

of each cDNA sample in a reaction mixture (10ml) containing

1� Sigma REDTaq ReadyMix PCR reaction mix with MgCl2
(Boxall et al. 2005). The gene-specific primers used to

amplify each gene are listed in supplementary table S1,

Supplementary Material online. All primers produced amplifi-

cation products of the expected size based on the correspond-

ing 454 contig sequence. All PCR products were separated on

1% agarose gels in 1� Tris-acetate EDTA and stained in ethid-

ium bromide. Gels were visualized using a Geneflash gel doc-

umentation system and images captured electronically onto a

memory card. PCR product band intensities were quantified

using Metamorph software. A polyubiquitin gene orthologous

to the Arabidopsis polyubiquitin UBQ10 gene (AT4G05320)

was used as a reference gene for the PCR analysis. The quan-

tified PCR signals for each C4 gene were normalized to the

UBQ10 signal to correct for minor variations in the loading of

RNA into the RT reactions and/or the efficiency of the RT re-

actions. PCRs were performed on biological replicates, and the

quantitative data shown in the figure 3 and supplementary

figure S2, Supplementary Material online, represent the mean

of three biological reps.

Phylogenetic Annotation of Alloteropsis Contigs

In order to accurately assign the assembled transcripts of the

C3 and C4 Alloteropsis to groups of orthologs, each contig

homologous to any C4-related gene was successively placed in

a phylogeny with the corresponding reference data set

extracted from complete nuclear genomes. For each C4

enzyme, the reference data set was used as a query in a

Biased Gene Recruitment for C4 Photosynthesis GBE
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FIG. 3.—Diurnal regulation of enzymes of the C4 pathway. For six enzymes and three putative metabolite transporters of the C4 pathway, the

normalized transcript abundance is indicated over the course of a day, with time shown in hours after dawn. Values are comparable within each panel

but not among panels. For each sample point, standard errors were calculated from three replicates. Values measured in the C3 Alloteropsis are in blue and

those measured in the C4 Alloteropsis are in red. The gray bar at the bottom represents the light period and the black bar the dark period.

Table 1

Statistics for Alloteropsis semialata 454 Runs

RNA Sample/454

Library

454 Plate Scale Reads Total bp

Per Run

Total Combined bp

Per RNA Sample

Average Read

Length (bp)

C3 light Quarter plate 175,706 46,838,328 46,838,328 267

C3 dark Quarter plate 141,516 32,326,469 32,326,469 228

C4 light Quarter plate 179,678 38,885,333 92,876,291 260

C4 dark Quarter plate 32,874 2,790,964 83,333,222 289

C4 light Quarter plate 177,932 53,990,958

C4 dark Quarter plate 209,295 68,844,227

C4 dark Eighth plate 46,030 11,698,031

Christin et al. GBE

2178 Genome Biol. Evol. 5(11):2174–2187. doi:10.1093/gbe/evt168 Advance Access publication October 31, 2013

 at B
row

n U
niversity on N

ovem
ber 25, 2013

http://gbe.oxfordjournals.org/
D

ow
nloaded from

 

http://gbe.oxfordjournals.org/
http://gbe.oxfordjournals.org/


Blast search against the C3 and the C4 assembled transcrip-

tomes based on nucleotides with a maximal e-value of 0.001.

For each positive match, the longest matching sequence was

extracted from the Blast result. The Alloteropsis nucleotide

sequence was aligned with the reference data set using

MUSCLE (Edgar 2004), and a phylogenetic tree was inferred

using PhyML and a GTR model. The resulting phylogenetic

tree was inspected visually and the Alloteropsis contig was

assigned to one of the gene lineages defined based on com-

plete genomes when unambiguously nested in the clade. In

some cases, contigs were not assignable to any gene lineage

because they were too short or poorly aligned and were con-

sequently positioned outside the groups of orthologs based on

complete genomes. This problem concerned only a small

number of contigs associated with small rpkm values. These

were discarded. The relative transcript abundance for each

gene lineage was then assessed by summing the 454 rpkm

of all the contigs assigned to this lineage.

The phylogenetic annotation of contigs was not feasible for

some C4-related families of genes, which are composed of a

large number of closely related genes, hampering a confident

identification of gene lineages generated by ancient gene du-

plications. Of the known enzymes of the C4 pathway, only

phosphoenolpyruvate carboxylase kinase (PPCK) was not an-

alyzed phylogenetically because of a large number of related

genes. The phylogenetic annotation was also not applied to

several candidate transcription factors for the same reason

(discussed later).

Estimations of Transcript Abundance for Genes from
Setaria and Zea

Data from 11 Illumina runs reported for S. italica in a previous

study (Bennetzen et al. 2012) were retrieved from the NCBI

database. These include multiple replicates taken at 3 h into

the light (of a 12 h light cycle), at four different positions along

the leaf corresponding to different stages of a developmental

gradient (Li et al. 2010; Bennetzen et al. 2012). The paired-

end Illumina reads from each run were successively mapped

on Setaria predicted cDNA using Bowtie2 (Langmead and

Salzberg 2012). A mixed model was used, which allowed un-

paired alignments when paired alignments were not possible.

Only one best alignment was reported per read. The transcript

abundance for each predicted cDNA was estimated as the

number of times the cDNA was the reported match. After

correcting for the total number of mappable reads (in millions)

and the length of the predicted cDNA (in kilobases), this pro-

duced rpkm values for each predicted cDNA. When multiple

predicted cDNAs were assigned to the same gene lineage, the

rpkm values were summed. Values were averaged among

biological replicates.

The same procedure was used to estimate the transcript

abundance of each gene lineage in Z. mays. Two replicates

were previously sequenced along a similar development

gradient, for each of the four developmental stages

(Li et al. 2010). These were sequenced as single-end Illumina

reads and were consequently mapped as such against Zea

predicted cDNA using Bowtie2.

Identification of Gene Lineages Recruited in Each
C4 Origin

For each gene family, the groups of orthologs containing the

putative C4-specific gene was identified as the gene lineage

with a transcript abundance greater than 300 rpkm in the day

sample for the C4 Alloteropsis and in each of the C and D

segments in Setaria and Zea. For Alloteropsis, the C4 specificity

was confirmed by a higher transcript abundance in the C4

than in the C3 Alloteropsis and a higher abundance in the

C4 during the light than in the dark. For Zea and Setaria,

the C4 specificity was confirmed by an increase in transcript

levels during the development of mature leaves (such that the

average of segments C and D was greater than the average of

segments A and B).

Statistical Test for Randomness of Gene Recruitment

A total of 100,000 replicates were obtained by sampling three

times with replacement gene lineages from vectors corre-

sponding to the number of identified gene lineages in each

gene family. For each replicate, the number of enzymes for

which the same gene lineage was recruited in all species was

recorded. The distribution of the simulated number of conver-

gent recruitments was used to obtain the probability of ob-

taining by chance a value equal to or larger than the observed

value.

Comparison of Closely Related Duplicated Genes

For each identified C4-specific gene lineage of Setaria and Zea,

the presence of duplicated genes was inferred when multiple,

nonidentical, genes were assigned to the same lineage. This

approach was not applicable to Alloteropsis, because the in-

completeness of most contigs due to the limited size of the

454 transcriptome data set prevented pairwise comparisons.

For each group of identified C4-related recent duplicates, the

expression level of each gene was retrieved. The values for

two b-CA genes from Setaria were averaged because these

duplicates did not differ in their coding sequence. The ap-

proach might be partially biased because closely related dupli-

cates could be insufficiently different to confidently assign

reads, and reads of one of the duplicates might occasionally

be mapped to the other gene. However, the analysis should

still detect differential expression between recent duplicates.

Identification of Potential C4-Related Transcription Factors

In addition to genes encoding enzymes of the C4 biochemical

pathway, the comparison of transcript abundance in C3 and

C4 Alloteropsis identified seven transcription factors that are

Biased Gene Recruitment for C4 Photosynthesis GBE
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more highly expressed in the C4 plants. Semi-quantitative

polymerase chain reaction confirmed that the transcript abun-

dance of these genes in the C4 tissues varied diurnally and

peaked during the light phase (supplementary fig. S2,

Supplementary Material online). The peak was consistently

higher in the C4 Alloteropsis compared with the C3. The high-

est difference was found for BIN4, which is transcribed at a

relatively high level in the C4 leaves but was not detected in

the C3 transcriptome (supplementary table S2 and fig. S2,

Supplementary Material online). These transcription factors

represent candidates for a role in the C4-specific regulation.

Four of the identified transcription factors belong to large

gene families with a large number of members, with homol-

ogy sometimes limited to only certain parts of the sequence.

The size of these gene families prevented phylogenetic anal-

yses, which we limited to three genes. The transcription levels

of these three candidates along the developmental gradient in

Setaria and Zea did not suggest C4 function (supplementary

table S2, Supplementary Material online), which might mean

either that these genes have a C4-related function only in

Alloteropsis or that the detected diurnal upregulation in the

C4 Alloteropsis is not linked to C4 photosynthesis.

Results

Phylogenetics of Gene Families and Subcellular
Localization

We first obtained a well-resolved phylogenetic tree for each

gene family, using the genomes of five grasses and three

eudicots, for which complete or draft sequences are available

(supplementary figs. S3 and S4, Supplementary Material

online). In each case, it was possible to delimit groups of

orthologous genes for the grass genomes. Between one (for

PCK) and seven (for PEPC) gene lineages were identified.

For most gene families, some of the genes were predicted

to be chloroplast-specific, and many of the gene lineages in-

cluded mixtures of genes with and without chloroplast transit

peptides (supplementary figs. S3 and S4, Supplementary

Material online). In most cases, the subcellular localization pre-

dicted on the basis of sequences corresponded to the subcel-

lular localization reported in the literature. Exceptions included

the putative C4 aspartate aminotransferase (ASP-AT) of

Setaria and the putative C4 alanine aminotransferase (ALA-

AT) of Setaria, Zea, and Alloteropsis, which were predicted

to be chloroplast targeted, whereas the enzyme is reported

in some literature to act in the cytosol or the mitochondria of

C4 plants (e.g., Kanai and Edwards 1999; Furbank 2011).

However, a localization of ASP-AT in the chloroplasts was

proposed by earlier authors (e.g., Ku et al. 1981; Shieh et al.

1982) and supported recently for maize by transcriptomics

(Pick et al. 2011; Chang et al. 2012). In addition, one of

two Arabidopsis genes encoding PCK is predicted to be chlo-

roplast targeted, although both genes have previously been

assumed to encode cytosolic forms (Malone et al. 2007). This

discrepancy might result from errors in the prediction of transit

peptides or in the gene models. Alternatively, the prediction

might represent a real biological phenomenon. For instance,

some genes might encode both cytosolic and chloroplast

forms through different promoters, as is the case for some

genes encoding PPDK (supplementary fig. S3, Supplementary

Material online; Sheen 1991; Parsley and Hibberd 2006).

Identification of C4 Forms and Convergent Recruitment

For most of the major C4 enzymes, one of the genes was more

abundantly transcribed in the C4 accession of Alloteropsis

during the day than the others (supplementary table S2,

Supplementary Material online). This gene was expressed at

low levels in the C3 accession, with the exception of one gene

encoding b-CA, which was highly expressed in the C3 but at

comparatively lower levels than in the C4 (supplementary table

S2, Supplementary Material online). In addition, the same

gene was more abundant in the C4 Alloteropsis during the

light phase than during the dark, again with the exception of

one gene encoding b-CA, which was present at extremely

high abundance in both the light and dark periods. C4-specific

genes of Alloteropsis were identified for a total of eight en-

zymes (table 2). A second gene encoding ASP-AT had a rpkm

value above 300, but its transcript abundance was similar to

the C3 Alloteropsis and 20 times lower than another gene

encoding ASP-AT (supplementary table S2, Supplementary

Material online). One of the gene lineages for AK and PPa

was present at higher transcript abundance in the C4

Alloteropsis during the day, but the transcript abundance of

these genes also increased from night to day in the C3

Alloteropsis. None of the metabolite transporters expected

to be required for the C4 system to function efficiently in

Alloteropsis had high transcript abundance in the C4 com-

pared with the C3 Alloteropsis, preventing the identification

of C4-specific genes for these important steps in the hypoth-

esized pathway.

The C4-specific genes from Zea were identified for the

same eight enzymes (table 2). PCK is encoded by a single

Table 2

Summary of C4 Enzyme Recruitment

Enzyme Total Number of

Gene Lineages

Number of C4

Recruitment Events

Identified

Convergent

Recruitment

ALA-AT 5 3 Yes

ASP-AT 4 3 No

b-CA 3 3 Yes

NAD(P)-MDH 4 3 No

NADP-ME 4 3 Yes

PCK 1 2 NA

PEPC 7 3 Yes

PPDK 2 3 Yes
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gene lineage and was excluded from analyses. Of the remain-

ing seven cases, five of the C4-specific genes from Alloteropsis

and Zea belonged to the same gene lineages (table 2 and

fig. 4). Exceptions were ASP-AT and NAD(P)-MDH (table 2

and fig. 5). Different members of the NAD(P)-MDH gene

family encode either NADP-dependent MDH (NADP-MDH)

or NAD-dependent MDH (NAD-MDH). Previous work has

shown that Zea uses NADP-MDH for its C4 pathway (Sheen

and Bogorad 1987), whereas Alloteropsis uses NAD-MDH

(Ueno and Sentoku 2006), and this explains why the two

taxa recruited different genes, one of which (NAD-MDH) is

predicted to be cytosolic and the other (NADP-MDH) chloro-

plastic (supplementary fig. S3, Supplementary Material

online).

Finally, for six enzymes, the C4-specific genes used by

Setaria were unambiguously identified, but for ASP-AT two

different genes were present at high transcript abundance in

the leaves. One of them corresponded to the most highly

expressed gene lineage in the C4 Alloteropsis and the other

to the most highly expressed gene lineage in Zea. Multiple

forms of this enzyme might be used for C4 photosynthesis,

as proposed for other species (Taniguchi and Sugiyama 1990;

FIG. 4.—Multigene family encoding NADP-ME. Bootstrap values are indicated near branches. See supplementary figure S3, Supplementary Material

online, for gene accession numbers. Gene lineages are delimited on the right. Black circles indicate predicted chloroplastic targeting. For each gene lineage,

barplots on the right are proportional to the rpkm value in different species (Ass¼C4 Alloteropsis; Ase¼C3 Alloteropsis; Si¼ Setaria; Zm¼ Zea), different

conditions for Alloteropsis (black¼ day; gray¼night), and different stages of development for Setaria and Zea (A¼ base of the leaf; B¼ transitional;

C¼maturing; D¼mature). Abundances of putative C4-specific forms are in red. For this enzyme, the three C4 origins recruited the same gene lineage

number 4.
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Chang et al. 2012) or have one copy expressed at high levels

for a different reason. As Alloteropsis and Zea use different

gene lineages for this enzyme, the ambiguity in Setaria does

not affect the tally of convergent recruitment (table 2). Finally,

none of the genes encoding PCK were expressed at high levels

in the leaves of Setaria (table 2), which is consistent with the

hypothetical C4 “NADP-ME subtype” pathway of this species

that does not involve this decarboxylating enzyme (Gutierrez

et al. 1974; Kanai and Edwards 1999).

The same AK and PPa gene lineages increased in abun-

dance along the developmental gradient in Zea and Setaria

and were present at high transcript abundance in the C4

Alloteropsis, but these were also present at high transcript

abundance in the C3 Alloteropsis. Several metabolite transpor-

ters showed an increase of transcription along the develop-

mental gradient in Zea and Setaria (supplementary table S2,

Supplementary Material online). However, these were not

considered in the analysis of convergent recruitment because

no C4-specific transporter could be identified from

Alloteropsis transcriptomes. Our estimate of parallel gene

recruitment is therefore conservative.

In total, excluding PCK, the C4-specific gene lineages were

identified for seven enzymes that are common to the C4 path-

way of all three species (table 2). For five of these, the same

gene lineage was independently recruited in each of the three

C4 origins (e.g., fig. 4). Given the size of the gene families, five

cases of convergent recruitment are highly significantly

greater than expected by chance (P <0.00005; fig. 6). This

provides strong evidence for a bias in the recruitment of genes

for a C4-specific function.

Differential Expression of Closely Related Duplicated
Genes

For Setaria, duplicates within C4-specific gene lineages were

identified only for b-CA. In this case, only one of the duplicates

showed a very strong pattern of development-dependent

transcript abundance (table 3). The other duplicate was only

detected at low levels along the developmental gradient.

Duplicates were found within five C4-specific gene lineages

of Zea (table 3). In each case, one of the duplicates was

expressed at very high levels compared with the others.

  

FIG. 5.—Multigene family encoding NAD(P)-MDH. Bootstrap values are indicated near branches. See supplementary figure S3, Supplementary Material

online, for gene accession numbers. Gene lineages are delimited on the right. For each gene lineage, barplots on the right are proportional to the rpkm value

in different species (Ass¼C4 Alloteropsis; Ase¼C3 Alloteropsis; Si¼ Setaria; Zm¼ Zea), different conditions for Alloteropsis (black¼ day; gray¼ night), and

different stages of development for Setaria and Zea (A¼ base of the leaf; B¼ transitional; C¼maturing; D¼mature). Abundances of putative C4-specific

forms are in red. For this enzyme, the C4 ancestors of Setaria and Zea recruited the gene lineage 1 while the C4 Alloteropsis recruited the gene lineage 4.
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The other duplicate of NADP-ME showed a constant expres-

sion level along the developmental gradient, but for the four

other enzymes, the second duplicate also showed an increase

of expression along the developmental gradient. Whether the

increase of expression of the second duplicate is real or results

from the erroneous mapping of some reads is out of reach of

the present data set.

Diurnal Regulation of C4-Related Enzymes

In the C4 Alloteropsis, the steady-state transcript abundance

of a number of C4-related genes oscillated over the light–dark

cycle (fig. 3). In particular, transcript levels of several core C4

genes, including CA, PEPC, PPDK, PCK, and plastidic adenyl-

ate kinase (AK), displayed a broad transcript peak in phase

with the light period. PEPC and CA reached minimum levels in

the first half of the dark period. For CA, nocturnal transcript

levels were similar for both the C3 and C4 Alloteropsis, imply-

ing that the difference between them associated with C4 pho-

tosynthesis is an increased transcript level during the day.

PPDK transcript levels displayed a broad light-period phase

peak declining to a trough at the end of the dark period.

PCK transcript levels peaked at dawn, were high for the first

half of the light period, reached their minimum at dusk, and

subsequently increased gradually through the dark period.

Light–dark oscillations in the transcript abundance of the

orthologous genes in the C3 Alloteropsis were either negligible

(PEPC, ASP-AT) or very small in amplitude relative to those of

the C4 subspecies (PCK, CA, PPDK, plastidic AK).

Discussion

Biased Recruitment Indicates Differences in C4 Suitability
among Genes

The phylogenomic analysis of sequences produced by high-

throughput sequencing methods indicates that the recruit-

ment of genes for the C4 pathway was not random (table 2

and fig. 6). The three species considered in this study belong

to the grass subfamily Panicoideae, but they are members of

different C4 lineages, which are separated in the phylogeny by

numerous C3 lineages and shared a last common ancestor

more than 25 Ma (Christin et al. 2008; Vicentini et al. 2008;

GPWGII 2012; fig. 2). Multiple lines of evidence, including

comparative analyses of foliar anatomies and C4 genes, sup-

port multiple C4 origins over an ancestrally C4 type with mul-

tiple losses in the C3 lineages (Christin, Freckleton et al. 2010).

It is striking that these three independent evolutionary transi-

tions from C3 to C4 photosynthetic types recruited the neces-

sary enzymes from the same ancestral gene lineages.

All enzymes of the C4 pathway already existed in the C3

ancestors, but they were responsible for different, generally

non-photosynthetic, functions (Monson 2003; Aubry et al.

2011). Their enzymatic reaction is, however, conserved be-

tween C3 and C4 plants and, theoretically, any of the different

forms might have been recruited into a C4 function. This is

disproved by the recurrent use of the same gene lineage out

of several available in grass genomes, which indicates that

Table 3

Expression of Closely Related Gene Duplicates

Enzyme Lineage Gene Aa Ba Ca Da

b-CA 3 Si003882 80 2,157 6,769 8,297

b-CA 3 Si002140/Si002148 2 22 15 6

b-CA 3 GRMZM2G121878 3 573 2,868 1,782

b-CA 3 GRMZM2G348512 6 300 1,308 792

b-CA 3 GRMZM2G094165 4 192 602 334

NADP-ME 4 GRMZM2G085019 5 501 1,810 1,963

NADP-ME 4 GRMZM2G122479 63 68 86 84

PCK 1 GRMZM2G001696 1 11 741 1,408

PCK 1 GRMZM5G870932 4 2 70 146

PPDK 2 GRMZM2G306345 64 6,106 18,544 16,386

PPDK 2 GRMZM2G097457 1 94 396 356

aExpression level (in rpkm) along four stages of a leaf developmental gradient, from A to D, which is the most mature stage.
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FIG. 6.—Simulated distribution of the number of convergent recruit-

ment events. The observed value is indicated by the black vertical bar.
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certain ancestral genes are predisposed to take on the

C4-specific function. The suitability of a particular gene for a

new function depends on a number of factors, including the

suitability of expression patterns and catalytic properties of the

encoded enzyme for its new function, or the capacity to

quickly acquire the required properties through a few key

mutations (Christin, Weinreich et al. 2010). In addition, the

availability of a gene can depend on its ancestral function,

which might prevent neofunctionalization if the fitness cost

of losing the ancestral function outweighs the fitness benefit

of its new function.

Suitability of Expression Patterns

Different forms of some C4-related enzymes have different

expression patterns, in terms of diurnal regulation and the

tissues, cells, and subcellular compartments in which the

enzyme is expressed (Maurino et al. 1997; Finnegan et al.

1999; Tausta et al. 2002; Alvarez et al. 2013). A function in

C4 photosynthesis requires light-induced high expression

levels in specific cell types of the leaf (Sheen 1999). The C3

Alloteropsis is the first C3 member of the PACMAD clade, the

group that encompasses all C4 grasses together with numer-

ous C3 taxa (GPWGII 2012), which has had its transcriptome

analyzed at this level of detail. None of the C4-related genes

shows diurnal variation in C3 Alloteropsis similar to that ob-

served in the C4 Alloteropsis (fig. 3 and supplementary table

S2, Supplementary Material online), indicating that the

C4-specific diurnal cycle did not predate the evolution of C4

photosynthesis but was acquired during the transition from C3

to C4 photosynthesis.

It is noteworthy that, for most C4-related enzymes, the

most abundantly transcribed gene lineage in the mature

leaves of C3 Alloteropsis is the one that has been recruited

in the C4 pathway (supplementary table S2, Supplementary

Material online). This observation is consistent with the hy-

pothesis that an ancestrally higher transcript level in leaves

increased the likelihood of these genes becoming C4-specific.

The evolution of C4-specific forms then occurred through a

strong increase of these leaf expression levels, together with

the strengthening of the diurnal cycle and often an altered

phasing of the daily transcript peak relative to dawn and dusk.

The gene encoding b-CA that is orthologous to the C4-specific

forms was detected at especially high transcript levels in leaves

of the C3 Alloteropsis (fig. 3 and supplementary table S2,

Supplementary Material online). High transcript abundance

of specific b-CA lineages has been observed in other C3

taxa, where it optimizes the relative concentration of CO2

for Rubisco (Badger and Price 1994; Ludwig 2011) and prob-

ably predisposed these b-CA lineages for a C4 function, which

evolved through a further increase in daytime transcript levels.

The suitability of ancestral genes for a C4 function might

also depend on their subcellular localization. The integrity of

the C4 cascade requires some enzymes to work in the cytosol

while others must be active in particular organelles. In the case

of NADP-ME, chloroplast-targeting evolved only once, at the

base of one of the gene lineages (“grasses 4,” fig. 4 and

supplementary fig. S3, Supplementary Material online),

which was then recruited to the C4 pathway at least six

times independently (fig. 4; Maurino et al. 1997; Christin,

Samaritani et al. 2009). NADP-ME uses NADP+ as a co-

factor, which is abundantly produced in the chloroplasts.

The abundance of the co-factor as well as the vicinity of

CO2 release to Rubisco activity might predispose chloroplastic

forms of NADP-ME for a function in the C4 pathway, explain-

ing the observed recruitment bias (table 2; Christin, Samaritani

et al. 2009). The presence or absence of chloroplast transit

peptides might similarly have excluded some other genes from

a C4 function, but this mechanism alone is insufficient to

explain the observed convergent pattern, because multiple

genes with the required subcellular expression for C4 photo-

synthesis exist in all other gene families (supplementary fig. S3,

Supplementary Material online). However, it should be noted

that our analysis does not consider the expression in other

subcellular compartments (e.g., mitochondria), because

these are more difficult to predict with accuracy from

sequence data alone.

Finally, the suitability of genes for C4 photosynthesis might

be determined by their cell specificity. The expression of most

enzymes in either the mesophyll or the bundle sheath cells of

leaves is instrumental for the C4 pump (fig. 1; Sheen 1999;

Hibberd and Covshoff 2010). The expression analyses pre-

sented in this study are not able to differentiate these two

tissues, but other techniques can identify cell-specific expres-

sion. Elements determining bundle sheath-specific expression

are already present in some C4-related genes of C3 plants

(Brown et al. 2011; Kajala et al. 2012), but their distribution

among gene lineages is unknown. Depending on the distri-

bution of cell-specific regulatory motifs among gene lineages,

these could represent a key determinant of C4 suitability.

C4 Suitability as a Function of Catalytic Properties
and Gene Availability

In addition to expression patterns, the enzymes encoded by

different members of the same gene family also differ in their

catalytic properties (Ting and Osmond 1973; Tausta et al.

2002; Svensson et al. 2003; Alvarez et al. 2013). In several

of the C4-related genes, the evolution of C4-specific forms

involved adaptive mutations of the coding sequence, which

suggests catalytic modifications during the C3 to C4 transition

(PEPC [Christin et al. 2007; Wang et al. 2009]; PCK [Christin,

Petitpierre et al. 2009]; NADP-ME [Christin, Samaritani et al.

2009, Wang et al. 2009]; CA, PPDK, PPDK-RP [Wang et al.

2009]). The different members of gene families might have

possessed catalytic properties that made them differentially

distant from the C4 requirements, influencing their suitability

for a C4 function. Unfortunately, previous biochemical studies
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have generally characterized only a subset of the isoforms

encoded by a given gene family, whereas a comparison of

the catalytic properties of all gene lineages identified in the

genome of a given species would be required to understand

the impact of catalytic properties on C4 suitability.

Finally, the C4 suitability of genes has often been hypoth-

esized to depend on their redundancy, with gene duplications

removing the functional constraints on gene diversification

(Monson 2003; Sage 2004). This hypothesis is difficult to eval-

uate rigorously. Gene duplications linked to C4-specific genes

were detected for half of C4-related enzymes in the polyploid

Zea (table 3) but for only one in the diploid Setaria. In all cases,

only one of the duplicates was expressed at very high levels,

suggesting that the gene duplication preceded the modifica-

tion of expression levels. Previous phylogenetic studies have

shown that, in several instances, the evolution of C4-specific

genes for PCK quickly followed a gene duplication (Christin,

Petitpierre et al. 2009). However, the importance of gene du-

plication was not apparent in the origin of other C4 enzymes,

such as PEPC, where one paralog was recruited in the absence

of gene duplication other than those predating the diversifi-

cation of grasses tens of millions of years earlier (Christin et al.

2007). The requirement for gene duplication might depend

on the size of the gene families as well as the functional sim-

ilarity between different gene lineages. PCK is the only C4-

related enzyme present as a single gene lineage in grass ge-

nomes (supplementary fig. S3, Supplementary Material

online) and, strikingly, it is also the enzyme for which the

highest number of C4 origins were preceded by a gene dupli-

cation (Christin, Petitpierre et al. 2009). A complete under-

standing of the functional diversity present in the different

gene families would however require the functional charac-

terization of each gene lineage, because orthology is a poor

predictor of functional similarity (Studer and Robinson-Rechavi

2009).

Conclusions

Using phylogenetic analyses to compare the transcriptomes of

one C3 and three independently evolved C4 grasses, we

showed that the same members of five gene families have

been recurrently recruited for a function in the C4 pathway.

This unexpected result implies that some members of gene

families are more suitable than others for the evolution of

novel adaptations. The properties that make these genes

C4-suitable are not yet known and will be identified only

through an exhaustive description of the expression patterns

and catalytic properties of all members of several gene fami-

lies. None of the gene lineages in the C3 ancestors were pre-

optimized for the C4 pathway. Their expression levels and their

diurnal regulation had to be altered during C4 evolution. It is

also known that, in several cases, their catalytic properties

have been optimized through key amino acid changes.

Some gene lineages were, however, very likely closer to the

requirements for C4 photosynthesis, and their presence in

grass genomes would therefore have increased the evolvabil-

ity of the C4 trait itself. Different suitability of the members of

gene families for recruitment into novel traits also means that

the evolutionary loss of some gene duplicates might, in the

long term, limit future evolutionary trajectories. Orthologs of

C4-specific forms are available in C3 grasses, with the notable

exception of the PEPC gene lineage recurrently recruited

for the C4 pathway, which is absent from the rice genome

(supplementary table S2, Supplementary Material online).

However, similar genes might be absent from other large fam-

ilies, which despite similar growth forms and ecology lack C4

taxa, partially accounting for the restriction of C4 origins to

some groups of plants.

Supplementary Material

Supplementary tables S1 and S2 and figures S1–S4 are avail-

able at Genome Biology and Evolution online (http://www.

gbe.oxfordjournals.org/).
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