

**BM Research** 

#### www.research.ibm.com/FunGen

#### Functional Genomics and Systems Biology Group and at IBM

Gus StolovitzkyJorge LepreRich MushlinJeremy RiceKeith DuggarYLan MaJohn WagnerAaron Kershenbaum

<u>Accomplices</u> Gyan Bhanot Yuhai Tu: Phys. Sci Glenn Held: Phys. Sci.

**Computational Biology Center Thomas J. Watson Research Center gustavo@us.ibm.com** 

#### Start from a known Network Topology



≤ 518 actual connections - 423 nodes

#### Simulate a dynamic behavior



≤ 518 actual connections - 423 nodes

simulated dynamics using known topology

$$\frac{d}{dt}u_{i} = -\lambda_{i}u_{i} + \frac{\alpha_{i} + \sum_{j \in \mathcal{A}_{i}} u_{j}^{\gamma_{ij}}}{1 + \sum_{j \in \mathcal{A}_{i}} u_{j}^{\gamma_{ij}} + \sum_{k \in \mathcal{R}_{i}} u_{k}^{\beta_{ik}}}$$
  
for  $i = 1, 2, ..., N$ ,

Produce a simulated gene expression Dataset:

|          | Exp 1           | Exp 2           | <br>Exp N       |
|----------|-----------------|-----------------|-----------------|
| Gene 1   | u <sub>11</sub> | u <sub>12</sub> | U <sub>1N</sub> |
| Gene 2   | u <sub>21</sub> | u <sub>22</sub> | U <sub>2N</sub> |
| • • • •  |                 |                 |                 |
| Gene 423 |                 |                 |                 |

## Reverse Engineer this

|          | Exp 1           | Exp 2           | <br>Exp N       |
|----------|-----------------|-----------------|-----------------|
| Gene 1   | u <sub>11</sub> | u <sub>12</sub> | U <sub>1N</sub> |
| Gene 2   | u <sub>21</sub> | u <sub>22</sub> | U <sub>2N</sub> |
| • • • •  |                 |                 |                 |
| Gene 423 |                 |                 |                 |

Reconstructed Network



Using your favorite algorithm, reconstructed original network from gene expression data

## Use some metrics to compare inferred to original



518 actual connections - 423 nodes
495 connections correctly predicted
85 connections wrongly predicted



Rice, Tu and Stolovitzky, "Reconstructing synthetic biological network", Bioinformatics, 21(6):765-73 (2005)

# Inference of Biological Networks





- Network topology
- synthetic dynamics

$$\frac{d}{dt}u_i = -\lambda_i u_i + \frac{\alpha_i + \sum_{j \in \mathcal{A}_i} u_j^{\gamma_{ij}}}{1 + \sum_{j \in \mathcal{A}_i} u_j^{\gamma_{ij}} + \sum_{k \in \mathcal{R}_i} u_k^{\beta_{ik}}}$$

for i = 1, 2, ..., N,

protocols representing actual experimental assays conditional correlation

algorithms (blind to original network)

Reconstructed network

**Rice, Tu and Stolovitzky**, "Reconstructing synthetic biological network", Bioinformatics, 21(6):765-73 (2005) Rice and Stolovitzky, Making the most of it: Pathway reconstruction and integrative simulation using the data at hand, Biosilico 2(2):70-7 (2004).

Basso, Margolin, Nemenman, Klein, Wiggins, Stolovitzky, Dalla Favera, and Califano, Reverse engineering of regulatory networks in human B cells, 37(4):382-90 (2005).

## Standardized Datasets for Tool Development

#### Critical Assessment of Techniques for Protein Structure Prediction (CASP)

GSMLISHSDMNQQLKSAGIGFNATELHGFLSGLLCGGLKDQSWLPLLYQFSNDNHA YPTGLVQPVTELYEQISQTLSDVEGFTFELGLTEDENVFTQADSLSDWANQFLLGIG LAQPELAKEKGEIGEAVDDLQDICQLGYDEDDNEEELAEALEEIIEYVRTIAMLFYS HFNEGEIESKPVLH

DREAM: A Dialogue on Reverse Engineering Assessment and Methods





Columbia University (Andrea Califano) & IBM Computational Biology Center (G. Stolovitzky)

http://www.nyas.org/dream2

# Motif Discovery in Biological Networks

• Biological Networks have an architecture yet to be understood...



External source - 37 nodes Internal source - 29 nodes Intermediary - 21 nodes Internal sink – 94 nodes External sink - 208 nodes

• ...and functional modules. We designed algorithms for discovery of network motifs using sub-graph isomorphism algorithms.



In *E. coli*, some functional modules are composed out of smaller motifs, such as in the flagella formation pathway.

**Combination of Motifs** 



**Rice, Kershenbaum and Stolovitzky**. Analyzing and reconstructing gene regulatory networks. "Specialist review", The Encyclopedia of Genetics, Genomics, Proteomics and Bioinformatics, John Wiley & Sons, Ltd:Chichester (2005).

Rice, Kershenbaum and Stolovitzky, Lasting impressions: Motifs in protein-protein maps may provide

# Digital response of tumor suppressor p53 to IR





**Ma, Wagner, Rice, Hu, Levine and Stolovitzky**, A plausible model for the digital response of p53 to DNA damage, Proc. Natl. Acad. Sci. U S A. 102, 14266 (2005).

Wagner; Ma; Rice; Hu; Levine; Stolovitzky, p53-Mdm2 loop controlled by a balance of its feedback strength and effective dampening using ATM and delayed feedback, IEE PROCEEDINGS SYSTEMS BIOLOGY, 152, 3, 109-118 (2005). Lahav *et al.*, Nature Genetics 2004

800

1,000

400 600 Time (min)

200

## Predictions

Figures 4 and 8 from Ma, Wagner et al.,





**Figure 4** (From Ma, Wagner et.al.) - Diagram of the p53-Mdm2 oscillator. p53 is translated from *p53* mRNA and inactive for induction of its targets. Phosphorylated by ATM\*, p53 becomes active (p53\*), and able to transcribe (after a time delay) *Mdm2* which also has a basal transcription rate. Mdm2 protein promotes a fast degradation of p53 and a slow degradation of p53\*. In addition to a basal self-degradation, Mdm2 is degraded by a mechanism stimulated by ATM\*.

**Figure 8** (From Ma, Wagner, et. al.) - Onedimensional bifurcation diagrams of steady-state p53 versus single parameter variation of *Mdm2* basal transcription rate (A) or *p53* basal transcription rate (B). The stable equilibrium is represented by solid line. The lower and upper bounds of stable oscillation are represented by paired dotted lines.

# Validation of Predictions



**Hu, Feng, Ma, Wagner, Rice, Stolovitzky, Levine.** "A single nucleotide polymorphism in the MDM2 gene disrupts the oscillation of p53 and MDM2 levels in cells." Cancer Res. 2007 Mar 15;67(6):2757-65.