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Abstract. We introduce the concept of multi-directional width-bounded
geometric separator and get improved separator for the grid graph, which
improves exact algorithm for the protein folding problem in the HP-
model. For a grid graph G with n grid points P , there exists a separator
A ⊆ P such that A has less than or equal to 1.02074

√
n points, and

G − A has two disconnected subgraphs with less than or equal to 2
3
n

nodes on each of them. We also derive 0.7555
√

n lower bound for such a
separator on grid graph. The previous upper bound record for the grid
graph 2

3
-separator is 1.129

√
n [6].

1 Introduction

Lipton and Tarjan [11] showed that every n vertices planar graph has at most√
8n vertices whose removal separates the graph into two disconnected parts of

size at most 2
3n. Their 2

3 -separator was improved by a series of papers [4, 8, 1, 5]
with best record 1.97

√
n by Djidjev and Venkatesan [5]. Spielman and Teng [14]

found a 3
4 -separator with size 1.82

√
n for planar graphs. Some other forms of

the geometric separators were studied by Miller, Teng, Thurston, and Vavasis
[12] and by Smith and Wormald [13]. If each of n input points is covered by at
most k regular geometric object such as circles, rectangles, etc, then there exist
O(
√

k · n) size separators [12, 13]. In particular, Smith and Wormald obtained
the separator of size 4

√
n for the case k = 1. The lower bounds 1.555

√
n and

1.581
√

n for the 2
3 -separator for the planar graph were proven by Djidev [5], and

by Smith and Wormald [13], respectively.
Each edge in a grid graph connects two grid points of distance 1 in the

set of vertices. Thus a grid graph is a special planar graph. Fu and Wang [6]
developed a method for deriving sharper upper bound separator for grid graphs
by controlling the distance to the separator line. Their separator is determined
by a straight line on the plane and the set of grid points with distance less than or
equal to 1

2 to the line. They proved that for an n vertices grid graph on the plane,
there is a separator that has less than or equal to 1.129

√
n grid points and each
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of two disconnected subgraphs has at most 2
3n grid points. Using this separator

and their approximation to the separator line, they obtained the first nO(n
1− 1

d )-
time exact algorithm for the d-dimensional protein folding problem of the HP-
model. The method of Fu and Wang [6] was further developed and generalized
by Fu [7]. The notion of width-bounded geometric separator was introduced by
Fu [7]. For a positive constant a and a set of points Q on the plane, an a-wide
separator is the region between two parallel lines of distance a that partitions
Q into Q1 (on the left side of the separator’s region), S (inside the separator’s
region), and Q2 (on the right side of the separator’s region). The width-bounded
geometric separators were applied to many other problems, which include the
disk covering problem on the plane, the maximum independent set problem, the
vertex covering problem, and dominating set problem on disk graphs. Fu [7]
derived 2O(

√
n)-time exact algorithms for all of them, whose previous algorithms

need nO(
√

n) time.
This paper introduces the concept of a multi-directional width-bounded sepa-

rator. For a set of points P on the plane and two vectors v1 and v2, the (a, b)-wide
separator (along the directions v1 and v2) is the region of points that have dis-
tance less than or equal to a to L along v1 or distance less than or equal to
b to L along v2, where L is a straight line (separator line) on the plane. The
separator size is measured by the number of points from P in the region and the
line L partitions the set P into two balanced subsets. In this paper we use this
new method to improve the separator for the grid graph. The multi-directional
width approach is different from that used in [6, 7], which only controls the reg-
ular distance to the middle line in the separator area. Pursuing smaller and
more balanced separator is an interesting problem in combinatorics and also
gives more efficient algorithms for the divide and conquer applications. For a
grid graph G with n grid points P , there exists a separator subset A ⊆ P such
that A has up to 1.02074

√
n points, and G−A has two disconnected subgraphs

with up to 2
3n nodes on each of them. This improves the previous 1.129

√
n size

separator for the grid graph [6]. We also prove a 0.7555
√

n lower bound for the
size of the separators for grid graphs. Our lower bound is based on a result that
the shortest curve partitioning an unit circle into two areas with ratio 1 : 2 is a
circle arc. Its length is less than that of the straight line partitioning the circle
with the same ratio.

Protein structure prediction with computational technology is one of the most
significant problems in bioinformatics. A simplified representation of proteins is
a lattice conformation, which is a self-avoiding sequence in Z3. An important
representative of lattice models is the HP-model, which was introduced by Lau
and Dill [9, 10]. In this model, the 20 amino acids are reduced to a two letter
alphabet by H and P, where H represents hydrophobic amino acids, and P, po-
lar or hydrophilic amino acids. Two monomers form a contact in some specific
conformation if they are not consecutive, but occupy neighboring positions in
the conformation (i.e., the distance vector between their positions in the confor-
mation is a unit vector). A conformation with minimal energy is a conformation
with the maximal number of contacts between non-consecutive H-monomers (see



Figure 3). The folding problem in the HP-model is to find the conformation for
any HP-sequence with minimal energy. This problem was proved to be NP-hard
in both 2D and 3D [2, 3]. We will apply our new separator to the protein fold-
ing problem in the 2D HP model to get an O(n5.563

√
n) time exact algorithm,

improving the previous O(n6.145
√

n)-time algorithm [6].

2 Separators upper bound for grid graphs

We first give a series of notations. For a set A, |A| denotes the number of elements
in A. For two points p1, p2 in the d-dimensional space (Rd), dist(p1, p2) is the
Euclidean distance. For a set A ⊆ Rd, dist(p1, A) = minq∈A dist(p1, q). The
integer set is represented by Z = {· · · ,−2,−1, 0, 1, 2, · · ·}. For integers x1 and
x2, (x1, x2) is a grid point. A grid square is an 1 × 1 square that has four grid
points as its four corner points. For a set V of grid points on the plane, let EV

be the set of edges (vi, vj) (straight line segments) such that vi, vj ∈ V and
dist(vi, vj) = 1. Define G = (V, EV ) as the grid graph. For 0 < α < 1, an α-
separator for a grid graph G = (V,EV ) is a subset A ⊆ V such that G−A has two
disconnected areas G1 = (V1, EV1) and G2 = (V2, EV2) with |V1|, |V2| ≤ α|V |.
Define C(o, r) = {(x, y)|dist((x, y), o) ≤ r}, which is the disc area with center at
point o and radius r. For r > 0, define D(r) to be the union region of 4 discs
C((0,−r), r) ∪C((0, r), r) ∪C((−r, 0), r) ∪C((r, 0), r) (see the left of Figure 1).
For a region R on the plane, define G(R) to be the set of all grid points in the
region R. For a 2D vector v, a line L in R2 through a fixed point p0 ∈ R2 along
the direction v corresponds to the equation p = p0 + tv that characterizes all the
points p on L, where the parameter t ∈ (−∞, +∞). For a point p0 and a line L,
the distance of p0 to L along direction v is dist(p0, q), where q is the intersection
between p = p0 + tv and L. Let v1, v2, · · · , vk be k fixed vectors. A point p has
distance ≤ (a1, · · · , ak) to L along directions v1, v2, · · · , vk if p has distance ≤ ai

along direction vi for some i = 1, · · · , k.

Definition 1. Let P be a set of points in R2, v1, · · · , vm be 2D vectors, and
w1, · · · , wm be positive real numbers. A (w1, · · · , wm)-wide separator for the set
P along the directions v1, · · · , vm is a region R determined by a line L. The
region R consists all points with distance ≤ (w1, · · · , wm) along v1, · · · , vm. The
separator size is measured by the number of points of P in the region R. Its
balance number is the least number α such that each side of L has at most α|P |
points from P .

In the rest of this paper, we use two vectors v1 = (1, 0) an v2 = (0, 1) to
represent the horizontal and vertical directions, respectively. If a point p has
distance ≤ (a, a) from a line L, it means that the point p has distance ≤ a from
L along either direction (1, 0) or (0, 1) in the rest of this paper.

Lemma 1. ([15]) For an n-element set P in a d-dimensional space, there is a
point q with the property that any half-space that does not contain q covers at
most d

d+1n elements of P . (Such a point q is called a centerpoint of P ).
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Fig. 1. Left: Area of grid points with maximal expectation. Right: Probability analysis

Lemma 2. Let P be a set of grid points on the plane and (0, 0) 6∈ P . The sum∑
p=(x,y)∈P max( |x|

x2+y2 , |y|
x2+y2 ) is maximal when P ⊆ G(D(R)), where R is the

least radius with |G(D(R))| ≥ |P |.
Proof. Let L be the line segment connecting o = (0, 0) and p = (x, y). If p′ =
(x′, y′) is another point between o and p on the line L, we have max(|x|,|y|)

dist(o,p) =
max(|x′|,|y′|)

dist(o,p′) . Since dist(o, p) > dist(o, p′), we have max(|x|,|y|)
dist(o,p)2 < max(|x′|,|y′|)

dist(o,p′)2 . For

the constant c, let |x|
x2+y2 = c or |y|

x2+y2 = c. We have x2 + y2 − 1
c |x| = 0 or

x2 + y2− 1
c |y| = 0. The two equations characterize the four circles of D( 1

2c ). All
points on the external boundary D(r) have the same value max(|x|,|y|)

dist(o,p)2 . 2

Let a be a constant > 0, p and o be two points on the plane, and P be
a set of points on the plane. We define the function fp,o,a(L) = 1 if p has
≤ (a, a) distance to the line L and L is through o; and 0 otherwise. Define
FP,o,a(L) =

∑
p∈P fp,o,a(L), which is the number of points of P with ≤ (a, a)

distance to L for the line L through o. The expectation E(FP,o,a) is the expected
number of points in P with distance ≤ (a, a) to the random line L through o.

Lemma 3. Let a > 0 be a constant and δ > 0 be a small constant. Let P
be a set of n grid points on the plane and o be a point on the plane. Then
E(FP,o,a) ≤ (4π+8)(1+δ)a

√
n

π
√

4+2π
.

Proof. Without loss generality, we assume that o = (0, 0) (Notice that FP,o,a is
invariant under translation). Let ε > 0 be a small constant that will be fixed later.
Let us consider a grid point p = (x, y) ∈ P on the plane and let p1 = (x, y − a)
and p2 = (x, y+a). The angle between the two lines op1 and op2 will be estimated
(Figure 1). Let d = dist(o, p), d1 = dist(o, p1) and d2 = dist(o, p2). Define the
angles θ1 = 6 pop1, θ2 = 6 pop2 and α = 6 op2p.

From a
sin θ2

= d
sin α , we have sin θ2 = a

d · sinα = a
d · |x|d2

= a|x|
dd2

. Similarly,

sin θ1 = a|x|
dd1

. If d > a, then a|x|
d(d+a) ≤ sin θ1, sin θ2 ≤ a|x|

d(d−a) .

Let β1 = 6 poq1 (β2 = 6 poq2) be the angle between the line segments op
and oq1 (oq2 respectively), where q1 = (x − a, y) and q2 = (x + a, y). If d > a,



then we also have a|y|
d(d+a) ≤ sin β1, sin β2 ≤ a|y|

d(d−a) . There is a constant d0 such

that if d > d0, then we have the following inequalities: (i) a|y|
d2 (1− ε) ≤ β1, β2 ≤

a|y|
d2 (1 + ε), (ii) a|x|

d2 (1 − ε) ≤ θ1, θ2 ≤ a|x|
d2 (1 + ε), and (iii) (1−ε)a max(|x′|,|y′|)

d′2 <
a max(|x|,|y|)

d2 < (1+ε)a max(|x′|,|y′|)
d′2 for any (x′, y′) with dist((x, y), (x′, y′)) ≤ √

2,
where d′ = dist((x′, y′), o).

Let Pr(o, p, a) be the probability that the point p has distance ≤ (a, a)
to a random line L through o. If d ≤ d0, then Pr(o, p, a) ≤ 1. Otherwise,
Pr(o, p, a) ≤ max(2 max(β1,β2),2 max(θ1,θ2))

π ≤ 2
π max

(
a|y|
d2 , a|x|

d2

)
(1 + ε). The num-

ber of grid points with distance ≤ d0 to o is ≤ π(d0 +
√

2)2. Then E(FP,o,a) =∑
p∈P E(fo,p,a) =

∑
p∈P Pr(o, p, a) ≤ ∑

p∈P and dist(p,o)>d0
Pr(o, p, a) +

∑
p∈P and dist(p,o)≤d0

Pr(o, p, a) ≤ 2(1+ε)
π

∑
p∈P and dist(p,o)>d0

max
(
|x|
d2 , |y|d2

)
+

π(d0 +
√

2)2.

We only consider the case to make
∑

p∈P and d>d0
max( |x|d2 , |y|d2 ) maximal. By

Lemma 2, it is maximal when the points of P are in the area D(R) with the
smallest R.

For a grid point p = (i, j), define grid1(p) = {(x, y)|i− 1
2 < x < i+ 1

2 and j−
1
2 < y < j + 1

2}, and grid2(p) = {(x, y)|i− 1
2 ≤ x ≤ i+ 1

2 and j− 1
2 ≤ y ≤ j + 1

2}.
If the grid point p 6∈ D(R), then grid1(p) ∩ D(R −

√
2

2 ) = ∅. The area size of
D(R) is 2πR2 + 4R2. Assume R is the minimal radius such that D(R) contains
at least n grid points. The region D(R − ε) contains < n grid points for every
ε > 0. This implies D(R − ε −

√
2

2 ) ⊆ ∪grid point p∈D(R−ε)grid2(p). Therefore,

2π(R−
√

2
2 −ε)2 +4(R−

√
2

2 −ε)2 ≤ n. Hence, R ≤
√

n√
4+2π

+
√

2
2 +ε <

√
n√

4+2π
+
√

2

(the constant ε will be ≤
√

2
2 ).

Let A1 = {p = (x, y) ∈ D(R)|the angle between op and x-axis is in [0, π
4 ]},

which is the 1
8 area of D(R). The probability that a point p(= (x, y)) has dis-

tance ≤ (a, a) to the random line L is ≤ 2(1+ε)ax
πd2 for p in A1 with dist(p, o) > d0.

The expectation of the number of points (with distance ≤ (a, a) to L and dis-
tance > d0 to o) of P in the area A1 is

∑
p∈A1∩P and dist(p,o)>d0

Pr(o, p, a) ≤
∑

p∈A1∩P and dist(p,o)>d0

2(1+ε)ax
πd2 ≤ ∫ ∫

A1

2(1+ε)2ax
πd2 dxdy =

2(1+ε)2a
π

∫ π
4

0

∫ 2R cos θ

0
r cos θ

r2 · rdrdθ = 2(1+ε)2a
π

∫ π
4

0

∫ 2R cos θ

0
cos θdrdθ =

2(1+ε)2aR
π

∫ π
4

0
2(cos θ)2dθ = 2(1+ε)2aR

π · (π
4 + 1

2 ) = (1+ε)2aR
π · (π

2 + 1).

Since R ≤
√

n√
4+2π

+
√

2, the total expectation is

E(FP,o,a) ≤ 8
∑

p∈A1∩P and dist(p,o)>d0
Pr(o, p, a)+π(d0+

√
2)2 ≤ 8(1+ε)2aR

π ·
(π

2 + 1) + π(d0 +
√

2)2 ≤ (4π+8)(1+3ε)a
√

n

π
√

4+2π
≤ (4π+8)(1+δ)a

√
n

π
√

4+2π
for all large n. We

assign to the constant ε the value min( δ
3 ,
√

2
2 ). 2

Theorem 1. Let a > 0 be a constant and P be a set of n grid points on the
plane. Let δ > 0 be a small constant. There is a line L such that the number of



points in P with ≤ (a, a) distance to L is ≤ (4π+8)(1+δ)a
√

n

π
√

4+2π
, and each half plane

has ≤ 2n
3 points from P for all large n.

Proof. Let o be the center point of set P (by Lemma 1). The theorem follows
from Lemma 3. 2

The following corollary shows that for each grid graph of n nodes, its 2
3 -

separator size is bounded by 1.02074
√

n. For two grid points of distance 1, if
they stay on different sides of separator line L, one of them has ≤ (1

2 , 1
2 ) distance

to L.

Corollary 1. Let P be a set of n grid points on the plane. There is a line L such
that the number of points in P with ≤ (1/2, 1/2) distance to L is ≤ 1.02074

√
n,

and each half plane has ≤ 2n
3 points from P .

Proof. By Theorem 1 with a = 1
2 , we have, 8(1+ε)

π
1
2 · (π

2 + 1) · 1√
4+2π

< 1.02074
when ε is small enough. 2

3 Separator lower bound for grid graphs

In this section we prove the existence of a lower bound of 0.7555
√

n for the grid
graph separator. We calculate the length of the shortest curve partitioning the
unit circle into two areas with ratio 1 : 2 (Theorem 2). A simple closed curve in
the plane does not cross itself. Jordan’s theorem states that every simple closed
curve divides the plane into two compartments, one inside the curve and one
outside of it, and that it is impossible to pass continuously from one to the other
without crossing the curve.

Theorem 2. The shortest curve that partitions an unit circle into two regions
with ratio 1 : 2 has length > 1.8937.

Proof. (Sketch) Using the standard method of variational calculus, the shortest
curve partitioning the unit circle with the fixed area ratio between two regions
is a circle arc. Using the numerical method, we can calculate the length of the
circle arc. 2

Definition 2. A graph is connected if there is a path between every two nodes
in the graph. For a connected grid graph G = (V,EV ), a contour of G is a
circular path C = v1v2 · · · vkv1 such that 1) (vi, vi+1) ∈ EV (i = 1, 2, · · · , k − 1)
and (vk, v1) ∈ EV ; 2) all points of V are in the one side of C; and 3) for any
i ≤ j, v1 · · · vi−1vj+1 · · · vkv1 does not satisfy both 1) and 2). A point v ∈ V is a
boundary point if d(v, u) = 1 for some grid point u 6∈ V . A contour C separates
w from all grid points V if every path from w to a node in V intersects C.

Example: Let V be the set of all dotted grid points in Figure 2.
C = v1v2v3v4v5v6v7v8v9v10v11v12v13v14v1 is a contour for V . The condition

3) prevents C ′ = v1v2v15v2v3v4v5v6v7v8v9v10v11v12v13v14v1 from being a con-
tour.



Lemma 4. Let G = (V, EV ) be a connected grid graph. If the grid point v ∈ V
and grid point w 6∈ V have the distance dist(v, w) = 1, then there is a contour
C such that C contains v and separates w from all grid points of V .

Proof. Imagine that a region starting from the grid point w grows until it touches
all of the reachable edges of G (but never crosses any of them). Since G is a
connected grid graph, the boundary forms a contour that consists of edges of G.
As dist(w, v) = 1, the vertex v should appear in the contour. 2

Lemma 5. Let G = (V,EV ) be a grid graph and C be a contour of G. Let
U = {u|u is a grid point not in V with dist(u, v) = 1 for some v ∈ V and
C separates u from V }. Then there is a list of grid points u1, u2, · · · , um+1 in U
such that um+1 = u1, dist(ui, ui+1) ≤

√
2 for i = 1, 2, · · · ,m and all points of P

are on one side of the circle path u1u2 · · ·um+1 (the edge connecting every two
consecutive points u1, u2 is straight line).

Proof. Walking along the contour C = v1 · · · vkv1, we assume that only the left
side has the points from V . A point vi on C is called special point if vi−1 = vi+1.
The point v9 is a special point at the contour v1v2 · · · v14v1 in Figure 2. For each
edge (vi, vi+1) in C, the grid square, which is on the right side of (vi, vi+1) and
contains (vi, vi+1) as one of the four boundary edges, has at least one point not
in V . Let S1, S2, · · · , Sk be those grid squares for (v1, v2), (v2, v3), · · · , (vk, v1),
respectively. For each special point vi on C, it has two special grid squares
S′i and S′′i that share the edge (vi, u) for some u ∈ U with dist(u, vi) = 1 and
dist(u, vi−1) = 2 (for example, S′9 and S′′9 on Figure 2). Insert S′i and S′′i between
Si and Si+1. We get a new list of grid squares H1,H2, · · · ,Hm. We claim that
for every two consecutive Hi and Hi+1, there are grid points ui ∈ Hi ∩ U and
ui+1 ∈ Hi+1 ∩ U with dist(ui, ui+1) ≤

√
2. The lemma is verified by checking

the following cases:
Case 1. Hi = Sj and Hi+1 = Sj+1 for some j < k.
Subcase 1.1. Sj and Sj+1 share one edge vj+1u. An example of this subcase

is the grid squares S1 and S2 on Figure 2. It is easy to see that u ∈ U since u is
on the right side when walking along the cycle path C.

Subcase 1.2. Sj = Sj+1. An example of this subcase is the grid squares S5

and S6 on Figure 2. This is a trivial case.
Subcase 1.3. Sj and Sj+1 only share the point vj+1. An example of this

subcase is the grid squares S11 and S12 on Figure 2. We have grid points u1 ∈
U and u2 ∈ U such that dist(u1, vj+1) = 1, dist(u2, vj+1) = 1. Furthermore,
dist(u1, u2) =

√
2.

Case 2. Hi = S′′j and Hi+1 = Sj for some j < m. An example of this subcase
is the grid squares S′′9 and S9 on Figure 2. The two squares share the edge vju
for some u ∈ U .

Case 3. Hi = S′j and Hi+1 = S′′j . An example of this subcase is the grid
squares S′9 and S′′9 on Figure 2. The two squares share the edge uju for some
u ∈ U .

Case 4. Hi = Sj−1 and Hi = S′j . An example of this subcase is the grid
squares S8 and S′9 on Figure 2. The two squares share vju for some u ∈ U . 2
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Fig. 2. Contour C = v1v2 · · · v14v1. The node v9 is a special point. When walking along
v1 · · · v14v1, we see that each Si is the grid square on the right of vivi+1

Definition 3. For a region R on the plane, define A(R) to be the area size of
R. An unit circle has radius 1. For a region R in the unit circle, L(R) is the
length of the boundary of R inside the internal area of the unit circle. A region
R inside a unit circle is type 1 region if part of its boundary is from the unit
circle boundary. Otherwise, it is called type 2 region, which does not share any
boundary with the unit circle.

Lemma 6. Assume s > 0 is a constant and p1, p2 are two points on the plane.
We have 1) the area with the shortest boundary and area size s on the plane is
a circle with radius

√
s
π ; and 2) the shortest curve that is through both p1 and

p2, and forms an area of size s with the line segment p1p2 is a circle arc.

The proof of Lemma 6 can be found in regular variational calculus textbooks
(e.g. [16]). Let R be a type 1 region of area size s. Let C be the part of R
boundary that is an unit circle arc with p1 and p2 as two end points. Let C ′ be
the rest of the boundary of R. Let R′ be the region with the boundary C and
line segment p1p2. Assume the length of C ′ is minimal. If A(R) = A(R′), then
C ′ is the same as the line segment p1p2. If A(R) < A(R′), then C ′ is a circle arc
inside R′ (between C and p1p2). If A(R) > A(R′), then C ′ is also a circle arc
outside R′. Those facts above follow from Lemma 6.

Lemma 7. Let s ≤ π be a constant. Let R1, R2, · · · , Rk be k regions inside
an unit circle (they may have overlaps),

∑k
i=1 A(Ri) = s and

∑k
i=1 L(Ri) is

minimal. Then k = 1 and R1 is a type 1 region.

Proof. We consider the regions R1, · · · , Rk that satisfy
∑k

i=1 A(Ri) = s and∑k
i=1 L(Ri) is minimal for k ≥ 1. Each Ri(i = 1, · · · , k) is either type 1 or type

2 region. The part of boundary of Ri that is also the boundary of the unit circle
is called old boundary. Otherwise it is called type new boundary.

A type 2 region has to be a circle (by Lemma 6). For a type 1 region, its new
boundary inside the unit circle is also a circle arc (otherwise, its length is not
minimal by part 2 of Lemma 6). If we have both type 1 region R1 and type 2
region R2. Move R1 to R∗1 and R2 to R∗2 on the plane so that R∗1 and R∗2 have some



intersection (not a circle) at their new boundaries. Let R′2 be the circle with the
same area size as R∗1∩R∗2. The boundary length of R′2 is less than that of R∗1∩R∗2.
So, L(R1) + L(R2) reduces to L(R∗1 ∪ R∗2) + L(R′2) if R1 and R2 are replaced
by R∗1 ∪R∗2 and R′2 (Notice that A(R1) + A(R2) = A(R∗1 ∪R∗2) + A(R∗1 ∩R∗2) =
A(R∗1 ∪R∗2) + A(R′2)). This contradicts that

∑k
i=1 L(Ri) is minimal. Therefore,

there is no type 2 region. We only have type 1 regions left. Assume that R1 and
R2 are two type 1 regions. Let R1 and R2 have the unit circle arcs p1p2 and
p2p3 respectively. They can merge into another type 1 region R with the unit
circle arc p1p2p3 and the same area size A(R) = A(R1) + A(R2). Furthermore,
L(R) < L(R1) + L(R2). A contradiction again. Therefore, k = 1 and R1 is a
type 1 region. 2

Definition 4. Let q be a positive real number. Partition the plane into q × q
squares by the horizontal lines y = iq and vertical lines x = jq (i, j ∈ Z). Each
point (iq, jq) is a (q, q)-grid point, where i, j ∈ Z.

Lemma 8. Let V be the set of all (q, q) grid points in the unit circle C. Let G =
(V, EV ) be the grid graph on V , where EV = {(vi, vj)|dist(vi, vj) = 1 and vi, vj ∈
V }. Let t be a constant ≥ 1. Assume that l is a curve that partitions a unit circle
C into two regions U1 and U2 with A(U1)

A(U2)
= 1

t . If the minimal length of l is c0,

then every t
t+1 -separator for the grid graph G has a size ≥ (c0−o(1))(

√
n−√2π)√

2
√

π
.

Proof. Assume that the unit circle C area has n (q, q)-grid points. We have
π(1 + q

√
2)2 ≥ n · q2. It implies q ≤ 1√

n√
π
−√2

. Assume S ⊆ V is the smallest

separator for G = (V,EV ) such that G−S has two disconnected subgraphs G1 =
(V1, EV1) and G2 = (V2, EV2), which satisfy |V1|, |V2| ≤ tn

t+1 . By Corollary 1,
|S| ≤ 1.021

√
n. Let G1 have connected components F1, · · · , Fm. By Lemma 5,

each Fi is surrounded by a circular path Hi with grid points not from G1.
Actually, the grid points of Hi inside C are from the separator A. Let P1, · · · , Pk

be the parts of H1, · · · ,Hm inside the C. They consist of vertices in A and the
distance between every two consecutive vertices in each Pi is ≤ √

2q (by Lemma 5
and scaling (q, q) grid points to (1, 1) grid points).

The number of (q, q)-grid points with distance ≤ 2q to the unit circle bound-
ary is O(

√
n). For a (q, q)-grid point p = (iq, jq) and h > 0, define gridh(p) =

{(x, y)|iq − h
2 ≤ x ≤ iq + h

2 and jq − h
2 ≤ y ≤ jq + h

2 }. Let VH be the set of
all (q, q)-grid points in H1, · · · ,Hm and VP be the set of all (q, q)-grid points in
P1, · · · , Pk. Let S1 = ∪p∈V1gridq(p). Since |V1|+ |V2|+ |S| = n, |V1|, |V2| ≤ tn

t+1 ,
and |S| ≤ 1.021

√
n, we have tn

t+1q2 ≥ A(S1) ≥ ( n
t+1 − 1.021

√
n)q2.

Assume that P1, · · · , Pk together with the circle boundary partition the unit
circle into two parts X1 and X2, where X1 contains all grid points of V1 and X2

contains all grid points of V2. It is easy to see that S1−∪p∈VH
grid2q(p) ⊆ X1 ⊆

S1∪(∪p∈VH
grid2q(p)). Therefore, A(S1)−O(q2

√
n) ≤ A(X1) ≤ A(S1)+O(q2

√
n).

Thus, A(S1)−O( 1√
n
) ≤ A(X1) ≤ A(S1) + O( 1√

n
).

For the variable x ≤ π
2 , define the function g(x) to be the length of the short-

est curve that partitions the unit circle into regions Q1 and Q2 with A(Q1) = x.



Then g(x) is an increasing continuous function. For a small real number δ > 0,

let D be the disk of area size δ. Therefore, D has radius
√

δ
π . Put D into

the region Q2 and let D be tangent to the boundary of Q1. The length of the

boundary of Q1 ∪D inside the unit circle is g(x)+ 2π
√

δ
π = g(x)+ 2

√
δπ. Thus,

g(x + δ) ≤ g(x) + 2
√

δπ.
Assume that total length of P1, · · · , Pk is minimal, then k = 1 by Lemma 7.

The length of P1 is at least g( 1
3 ) − o(1) = c0 − o(1) by the analysis in the last

paragraph. Since every two consecutive grid points in P1 has distance ≤ √
2q,

there are at least c0−o(1)

q
√

2
≥ (c0−o(1))(

√
n√
π
−√2)

√
2

= (c0−o(1))(
√

n−√2π)√
2
√

π
grid points of

A along P1. 2

Theorem 3. There exists a grid graph G = (V,EV ) such that for any A ⊆ V

if G − A has two disconnected graphs G1 and G2, and Gi(i = 1, 2) has ≤ 2|V |
3

nodes, then |A| ≥ 0.7555
√

n when n is large.

Proof. By Theorem 2, the length of the shortest curve partitioning the unit circle
into 1 : 2 ratio is ≥ 1.8937. By Lemma 8 with c0 = 1.8937 and k = 1, we have
|A| ≥ 0.7555

√
n. 2

dP tH

dP dP

tH tH

d
P

t
H

Fig. 3. The sequence PHPPHHPH is put on the 2 dimensional grid. There are 2 H-H
contacts marked by the dotted lines.

4 Application to protein folding in the HP-model

We have shown that there is a size O(
√

n) separator line to partition the folding
problem of n letters into 2 problems in a balanced way. The 2 smaller problems
are recursively solved and their solutions are merged to derive the solution to
the original problem. As the separator has only O(

√
n) letters, there are at most

nO(
√

n) cases to partition the problem. The major revision from the algorithm
in [6] is the approximation of the optimal separator line.

Theorem 4. There is a O(n5.563
√

n) time algorithm for the 2D protein folding
problem in the HP-model.

Proof. (Sketch) The algorithm is similar to that in [6]. We still use approximation
to the separator line. Lemma 3 shows that we can avoid the separator line that



is almost parallel or vertical to the x-axis. Let δ > 0 be a small constant. Let
a = 1

2 , c = 2
3 + δ and d = k0(a + δ), where k0 = (4π+8)(1+δ)

π
√

4+2π
such that k0a

√
n

is the upper bound for the number of grid points with ≤ (a, a) distance to the
separator line (by Theorem 1). With the reduced separator, its computational
time is (n

δ )O(log n)2O(
√

n)n
d( 1

1−√c
)
√

n = O(n5.563
√

n). 2

Acknowledgement: We are very grateful to Seth Pincus and Sansan Lin
for their valuable comments on the earlier version of this paper. We are also
grateful to the reviewers from ISAAC 2005 for their helpful comments.

References

1. N. Alon, P.Seymour, and R.Thomas, Planar Separator, SIAM J. Discr. Math.
7,2(1990) 184-193.

2. B. Berger and T. Leighton, Protein folding in the hydrophobic-hydrophilic (HP)
model is NP-complete, Journal of Computational Biology, 5(1998), 27-40.

3. P. Crescenzi and D. Goldman and C. Papadimitriou and A. Piccolboni and M.
Yannakakis,On the complexity of protein folding, Journal of computational biology,
5(1998), 423-465.

4. H.N. Djidjev, On the problem of partitioning planar graphs. SIAM Journal on
Discrete Mathematics, 3(2) June, 1982, pp. 229-240.

5. H. N. Djidjev and S. M. Venkatesan, Reduced constants for simple cycle graph
separation, Acta informatica, 34(1997), pp. 231-234.

6. B. Fu and W. Wang, A 2O(n1−1/d log n)-time algorithm for d-dimensional protein
folding in the HP-model, Proceedings of 31st International Colloquium on Au-
tomata, Languages and Programming, 2004, pp.630-644.

7. B. Fu, Theory and application of width bounded geometric separator, Electronic
Colloquium on Computational Complexity 2005, TR05-13.

8. H.Gazit, An improved algorithm for separating a planar graph, manuscript, USC,
1986.

9. K. F. Lau and K. A. Dill, A lattice statistical mechanics model of the conforma-
tional and sequence spaces of proteins, Macromolecules, 22(1989), 3986-3997.

10. K. F. Lau and K. A. Dill, Theory for protein mutability and biogenesis, Proc. Natl.
Acad. Sci, 87(1990), 638-642.

11. R. J. Lipton and R. Tarjan, A separator theorem for planar graph, SIAM J. Appl.
Math. 36(1979) 177-189.

12. G. L. Miller, S.-H. Teng, W. P. Thurston, S. A. Vavasis: Separators for sphere-
packings and nearest neighbor graphs. J. ACM 44(1): 1-29 (1997)

13. W. D. Smith and N. C. Wormald, Application of geometric separator theorems,
FOCS 1998, 232-243.

14. D. A. Spielman and S. H. Teng, Disk packings and planar separators, 12th Annual
ACM Symposium on Computational Geometry, 1996, pp.349-358.

15. J. Pach and P.K. Agarwal, Combinatorial Geometry, Wiley-Interscience Publica-
tion, 1995.

16. R. Weinstock, Calculus of variations, McGraw-Hill, 1952.


