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Abstract. The paper constructs a gen- 
eralized version of universal traversing 
sequences. The generalization preserves 
the features of the universal travers- 
ing sequences that make them attractive 
for applications to derandomizations and 
space-bounded computation. For every 
n, a sequence is constructed that is used 
by a finite-automaton with 0(1) states 
in order to  traverse all the n-vertex la- 
beled undirected graphs. The automa- 
ton walks on the graph; when it is at 
a certain vertex, it uses the edge labels 
and the sequence in order to decide which 
edge to follow. When walking on an 
edge, the automaton can see the edge la- 
beling. The generalized sequences have 
size 2°(8(")) and traverse all the n-vertex 
undirected graphs G satisfying 

Diam(G) * log(A(G)) 5 a(n), 
where Diam(G) is the diameter of G, 
and A(G) is the maximum degree of G. 
As a corollary we obtain polynomial 
size generalized universal traversing se- 
quences construcible in DSpace(1ogn) 
for the following classes of graphs, where 
a ( n )  = O(1ogn): expanders of constant 
degree, random graphs, butterfly net- 
works, shuffle-exchange networks, cube- 
connected-cycles networks, de Bruijn 
networks, cliques. 
For other classes of graphs, the con- 
struction gives better traversing bounds 
than the universal traversing se- 
quences constructed by Nisan [ll] for ar- 
bitrary undirected graphs; for example in 
the case of the hypercubes, our sequences 
have size n0(lo9'ogn). 
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The only known class of graphs where 
universal traversing sequences of polyno- 
mial size can be constructed is the class 
of graphs of maximum degree 2 [9]. 

The construction of universal travers- 
ing sequences (in their standard or 
generalized form) for arbitrary undi- 
rected graphs in DSpace(1ogn) will have 
strong consequences in complexity the- 
ory. What we may call 

The Undirected Graph Connectivity 
Conjecture: 
UNDIRECTED CONNECTIVITY is in 
DSpace(1ogn) 

will be established by such a construc- 
tion. As UNDIRECTED CONNEC- 
TIVITY is complete for the complexity 
class SymmetricSpace(logn), it will fol- 
low that 

DSpace(logn) = SymmetricSpace(1ogn) 

and therefore a variety of fundamental 
computational problems - such as pla- 
narity testing, minimum spanning forests 
- will be solvable in DSpace(logn). 

1 History of the prob- 
lem and previous 
construct ions 

S. Cook introduced the concept of uni- 
versal traversing sequence and asked the 
question of the existence of short, i.e., 
polynomial size, such sequences. R. 

Aleliunas (1978) (11 showed that such se- 
quences of size O(nS) exist for 2-regular 
graphs. (The result was re-obtained 
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with a different method by A. Cobham 
[SI). R. Aleliunas, R. Karp, R. Lipton, 
L.Lovasz, C. Rackoff (1979) [2] proved 
that universal traversing sequences of 
size O(dznslogn) exist for n-vertex d- 
regular graphs. The above results use 
the probabilistic method, which is inher- 
ently non-constructive. The result in 12) 
implied that UNDIRECTED CONNEC- 
TIVITY is in RandomSpace(1og n). 
There are few constructions in the liter- 
ature for universal traversing sequences. 
For graphs of maximal degree 2, there is 
a log-space construction of universal se- 
quences of size O(n4.’6] (91. For general 
undirected graphs, Nisan [ll] gives a con- 
struction of size nO(logn) improving over 
the previous 2z0(G) construction from 
[3]. The constructive bound was 
obtained previously for particular classes 
of graphs: the maximum degree 2 graphs 
(51, [4], and the cliques [IO]. 

2 The polynomial con- 
struction for the cy- 
cles: graph compres- 
sion and colliding se- 
quences 

The idea of the construction used in [9] 
was to  compress the labeled cycle w to a 
another cycle w‘ while preserving a trans- 
fer relationship from the traversing se- 

quences of w’ to  the ones of w .  In or- 
der to  do so, labeling patterns and walk- 
ing patterns of a fixed sequence were 
classified, and some repetitions were re- 
garded as redundancies and therefore re- 
moved. The information contained in the 
removed patterns can be retrieved by ex- 
panding a traversing sequence of w’ in 
a uniform way such that the result is a 
traversing sequence for w .  The recur- 
sive construction is dependent on the fact 
that after removal of the redundant pat- 
terns what is left is a well defined labeled 
cycle of (possibly) smaller size. In Figure 
l a  we present an example of cycle com- 
pression. For details of the construction 
see [9]. 

Let us consider the case of 3-regular 
graphs. It will suffice to construct in 
DSpace(fogn) universal traversing se- 
quences (in their standard form, or in 
generalized form defined in this pa- 
per) for 3-regular graphs. These se- 
quences can be transformed into uni- 
versal traversing sequences for arbitrary 
undirected graphs. 

The analysis of labeling patterns and 
walking patterns for %regular graphs 
turns out to be more difficult. However, 
there is a way of interpreting the cycle 
construction such that the removal of re- 
dundancies is avoided. Presented in this 
way, it appears that the implicit paralel- 
lism in the construction, made now ex- 
plicit, is fully responsible for the speed- 
up in the computation. 

Figure l b  gives the alternate view of the 
construction from Figure la. Consider 

the original labeled cycle W O  as being a 
directed graph w6 with each undirected 
edge made out of two directed labeled 
semi-edges. Every vertex haq two semi- 
edges emerging from it. The three trans- 
formations we propose are analogues of 
the three contractions given in [9]. The 
analogue of the first contraction from [9] 
is described as a transformation given by 
the rules: 

0 + 000,1--+ 111 

We apply the transformation in parallel 
to  all the vertices of wh and obtain the 
new graph w i .  For each vertex of wh ap- 
ply the transformation to  the semi-edges 
of the vertex. Consider vertex 10. Walk 
in wh from vertex 10 the sequence 000. 
The walk ends-up in at vertex 3. Then 
in w; direct the @semi-edge of vertex 10 
to end-up in vertex 3. This transforma- 
tion is described by the first rule. Simi- 
larly we observe that the 1-semi-edge of 
vertex 10 ends up at  vertex 9 in w i .  We 
proceed in the same way for the other 
contractions from [9]. 
Let us observe that the intermediate di- 
rected graphs in the construction are no 
longer directed connected. Therefore as 
a natural notion to capture connectivity 
we propose the following one. A sequence 
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U is called a colliding sequence for a di- 
rected graph G if for every two vertices 
v1,vz from the same directed connected 
componnent, the walk of generated by U 

when started at vi meets the walk gen- 
erated by u when started at vz (not nec- 
essarily after the same number of steps). 

The construction in this paper is a gen- 
eralization of the above scenario for the 
graphs having small diameter. 

3 Generalized Univer- 
sal Traversing Se- 
quences 

Let us define now how a finite-automaton 
using a sequence can travel on a labeled 
graph. We restrict our attention to 3- 
regular graphs. Let G be such an undi- 
rected graph. G is labeled with threets 
on the edges. A threet is a label from 
the set T = {0,1,2}. (The term threet is 
an analogue of the term bit.) For every 
vertex of G the 3 adjacent edges are la- 
beled with 0, 1, and 2 in some random 
order. Therefore, every edge gets two la- 
bels, one for each endpoint vertex. 
Let us define a walking finite-automaton 
A that uses the sequence U E T+ in order 
to walk on a labeled 3-regular graph. 
Let A = (Q, T, 6, qo), where: 

1. Q is the set of states, Q = Q1 U (Qz x 
T) U (Qs x T), where all Qi are mu- 
tually disjoint. 

Ql is the set or regular states, Qz x 
T is the set of walking states, and 
Qs x T is the set of storing states. 
Let Q = Q - (Qz x T ) .  
When A is in a walking state (q,  t )  at 
vertex v it will walk to the adjacent 
vertex of v using the edge labeled t .  
When A is not in a walking state, at 
a vertex v, it will stay at vertex v .  

2. qo E Q1 is the initial state. Initially, 
the automaton in state qo is placed 
at a vertex in the graph. 

3. The transition function is 

6 : (Q x T )  U (Qz x T) + Q 

If A is in state q E Q, at vertex v, 
then the automaton consumes one 
threet from the sequence, changes 
state and remains at vertex U. If A 
is in state (q,  t )  E Qz x T at vertex 
v, then the automaton moves to the 
adjacent vertex v' and changes state 

Qs x T, and the edge (v,u') is la- 
beled .v&v'. This models the fact 
that the automaton when is walking 
on an edge can see the edge labels. 

6((q, t ) )  = (q',t')l where (q',t') E 

Let us define 6(q0,u)~  the computation 
of the A using a sequence U, when A is 
placed initially at vertex v of G. The 
computation will produce a walk of the 
automaton on the graph. When the size 
of U is 1, 6(qo, U) is given in the definition 
of the A together with the corresponding 
walk of A. Inductively, if A is at vertex 
u1 and U = tlu',tl E T we put 

6 (q ,  t iu') = 6 (6  (q,  ti)  U') 

for q E 0, with A staying at VI; 

6 (( q,  t ) , tiu') = 6 ( (q', t ' )  I tlu') 

where (q , t )  E QzxTand6(q, t )  = (q',t '). 
In this case, A is moving at uz such that 
in G we have the labeled edge .v&.u~. 

We say that < A,u  > traverses G when 
started at v if the computation 6(qo, U) of 
A produces a walk of A visiting every ver- 
tex of G. We say that < A,u > traverses 
G if it traverses G when started at U, for 
every vertex v of G. We call < A , u  > 
a generalized n-universal traversing se- 
quence for a class 5 of connected graphs 
if < A,u > traverses every labeled n- 
vertex graph G E 5 .  
The standard universal traversing se- 
quence scenario. Given a labeled 3- 
regular graph, consider a sequence U E 
T + .  Starting from a given vertex U, the 
sequence U defines in a natural way a 
walk on the labeled graph: interpret the 
threets as instructions for following the 
corresponding edges. A sequence U is 
called n-universal traversing sequence for 
a class of graphs 5 if for every labeled n- 
vertex graph G E 5, and for every start- 
ing vertex, the walk defined by U visits 
at least once every vertex in G. A sim- 
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ilar definition can be done for a class of 
graphs under some restricted labelings. 

The standard definition of universal 
traversing sequences can be obtained as 
a particular case of our generalized sce- 
nario. We take A such that Q1 = 

{qo),Qz = { q ) , Q s  = {q') x T and 
6(q' ' , t)  = (q, t). Then < A, U > is a gen- 
eralized n-universal traversing sequence 
for $ iff U is an n-universal traversing 
sequence. 

4 Initial Reductions 
We construct for every labeled con- 
nected 3-regular graph Go a connected 
3-regular graph G1 with a special label- 
ing, called I-labeling, and Diam(G1) = 
Diam(G0) + 1. Then we show how a 
traversing sequence U of G1 can be used 
by a walking finite-automaton A to tra- 
verse Go. The automaton A is indepen- 
dent of the structure of the graph Go. 
Therefore, an n-universal traversing se- 
quence U for graphs with I-labelings and 
diamemter a ( n )  can be tranformed into 
a generalized n-universal traversing se- 
quence < A, U > for (arbitrarily) labeled 
graphs with diamemter a (n) .  

4.1 Reduction to 3-Regular 
Graphs 

A construction of Cook and Rackoff [7] 
(see also [4]) reduces the problem of con- 
structing universal sequences for arbi- 
trary undirected graphs to  that of con- 
structing universal sequences for graphs 
with maximum degree 3. The idea of 
the construction is the following. Let 
G be a n-vertex graph with maximum 
degree A(G) = d. A vertex of degree 
d' 5 d is replaced by a full binary tree 
having a t  least d' leaves; if two such ver- 
tices have an edge between them then 
just connect the corresponding leaves. 
Let G' be the resulting graph. Then G' 
has O(A(G)n) vertices, and Diam(G') 5 
Diam(G)  * log(A(G)). 
We can now make the next step reduc- 
ing the problem to the one of construct- 

ing universal traversing sequences for 3- 
regular graphs. Such a reduction was 
given in [q, and [5] .  Applying the re- 
duction to a n-vertex graph yields a 3- 
regular graph of size 2n. 

4.2 Reduction to 3-Regular 
Graphs with I-Labeling 

This is the part where we use the gen- 
eralized scenario. For every labeled n- 
vertex %regular graph Go we construct 
a %regular 8n-vertex graph G1 which 
is labeled with a special labeling, called 
I-labeling. In an I-labeling each edge 
is labeled with two Identical threets, 
i.e.,.@&, .U., .a2.. 
The graph G1 is obtained from two copies 
of Go by the transformation described in 
the Figure 2. The transformation is ap- 
plied to  every edge of Go. 

Theorem 1 Let U be an  8n-universal 
traversing sequence for the class of I -  
labeled ,?-regular graphs having diameter 
a ( n ) .  Then there is a walking finite- 
automaton A having 0(1) states such 
that < A, U > is a generalized n-universal 
traversing sequence for the class of n-  
vertez $-regular graphs of diameter a ( n )  
under all labelings. 

Proof. Consider a sequence U that tra- 
verses G1. Let ( v , v ' )  be an edge of Go 
labelled . v o v ' .  Let ( V ~ , V ; ) ,  ( v ~ , v i )  be 
the corresponding edges in G I .  Suppose 
U starts at vl .  We construct a walking 
finite-automaton A. Suppose A is placed 
initially a t  v in Go, and U = Ou'. Then 

A can be instructed to walk to  U' and 
to  store the other label 1 from the edge. 
Then it generates a 1-move and comes 
back to  U. Now A knows the labels on 
the edge (u ,u ' ) .  
The graph from Figure 2b can be inter- 
preted as a finite-automaton Aol. In- 
deed, regard vertices as states and the 
semi-edges as labeled directed edges. We 
define A in state "01", meaning a "0" 
move was started on an edge labeled "0 
I", t o  act as Aol. If U reaches v i  or v i  
then A moves to U' .  If U comes back to U 
and uses a 1 or a 2 then the process stars 
again. The 1-edge or the  %edge is inves- 
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tigated. In this way A using U simulates 
in Go the walk of U in GI. All other cases 
are similar. A can be defined such that 
the number of moving steps on the graph 
to be no greater than the size of U. 0 

5 Constructing 
Polynomial Size Uni- 
versal Traversing Se- 
quences for I-labeled 
Graphs with Small 
Diameter 

We give two constructions of univer- 
sal traversing sequences for I-labeled 3- 
regular graphs. In the first subsection we 
present a simple construction perform- 
ing exhaustive search in a graph where 
every walk can be reversed. The remain- 
ing subsections are devoted to the second 
construction. It is developed by gener- 

alizing some of the key concepts of the 
polynomial construction for the 2-regular 
graphs. 

5.1 Exhaustive Search on I-  
labeled Graphs 

For every U E T+ let uR be the sequence 
U in reversed. Let U' = uuR. If GI 
has n vertices and diameter a(n) then 
let u1,u2, ..., uk be all the sequences of 
size a (n)  in T + .  Then U' = uiui ... U: 
is an n-universal traversing sequence for 
all n-vertex 3-regular graphs that are I- 
labeled and have diameter a(n).  Indeed, 
let G1 be such a graph and v a vertex of 
it. For every i , l  5 i 5 k the walk of U: 
ends up at v .  By the way we selected the 
ui it is clear that we visit all the vertices 
of G1. U' has size 2'('(")). 

5.2 Colliders and Attractors 
We start our second construction of uni- 
versal traversing sequences by transform- 
ing GI into a new graph with special 
properties. We will consider G1 both a 
labeled undirected graph, and a labeled 
directed graph as follows. Each labeled 
edge of G1 can be regarded as being made 

out of two directed semi-edges each one 
labeled by a threet. We will refer to the 
0- (1-, 2-) semi-edge of a vertex. 

Definition 1 A collider C ( A )  i s  a di- 
rected graph with the  following properties: 

E a c h  directed edge is called semi- 
edge, and i s  labeled wi th  a threet 

Every vertez has fan-out 3 and the 
labels of the  three out-going semi- 
edges are 0,1, and 2 
T h e  fan- in  of a vertez v in a graph 
with n vertices satisfies 0 5 f a n -  
i n ( v )  <_ 3n 
A is a special vertez of the  graph 
called the attractor and has the  
property that all of i ts  three out- 
going semi-edges end u p  in A (they 
are directed loops). 

This collider is the intermediate struc- 
ture that will be subject to our trans- 
formations. We start by constructing a 
collider from the graph GI. 
Definition 2 T h e  collider CO = Co(A) 
i s  obtained as follows. Pick one arbitrary 
vertez A f r o m  GI and redirect i t s  three 
semi-edges to come back t o  A. T h i s  ver- 
t e z  is  the attractor of CO. 

Definition 3 Let D C o m p A ( C 0 )  be the  
subgraph of CO consisting of all the ver- 
tices connected by a directed path with A 
and the semi-edges between them.  

The following lemma presents the key 
property that will remain true for all the 
graphs in our sequence of graph transfor- 
mations. 

Lemma 1 T h e  collider Co(A) has the 
following property: 

T h e  vertez sets of the  t w o  graphs GI 
and DCOmpA(C0)  are equal. 

Proof. It is easy to see that every path 
in G1 between a vertex v and A can be 
transformed into a directed path in CO. 
0 

5.3 Collisions 
A collision is a set of semi-edges hav- 
ing identical threet that end up in the 
same vertex. If the semi-edges are la- 
beled with 0 (1,2), then we call it a 0- ( 
1-, 2-) collision. An I-labeling has no col- 
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lisions. When the attractor vertex is cre- 
ated, 3 collisions are introduced: two 0- 
semi-edges collide, two 1-semi-edges col- 
lide, and two 2-semi-edges collide. 

5.4 Contractions 

A contraction for a collider C is a pair 
K = ( M , n )  where 

0 M is a collider-shrinking transfor- 
mation that simultaneously changes 
of the semi-edges according to  a set 
of rules 

0 n is a sequence-ezpanding map that 
transforms a sequence of threets into 
another sequence of threets accord- 
ing to  a set of rules 

A collider Ci under a contraction K = 
(M,n) will be transformed into a new 
graph Ci+l = M ( C i )  having the same 
vertices, but the semi-edges may change 
their endpoint. 
Consider the contraction KO = (M0,no) 
given by the rules: 

0 0 -i 0 , 1 +  100,2 -+ 200 

Let C1 = &(CO) be the graph obtained 
from CO as follows. The vertices of C1 
are the same as those of Co. 

Informally, MO acts as follows. For every 
vertex v the 3 semi-edges going out from 
U will change their end-points as accord- 
ing to  the rules of KO. For example, the 
1-semi-edge from vertex v in C1 will end 
up in the vertex v1 such that the walk 100 
from U in CO ends up at  vl. Similarly for 
the other cases. 
As far as the sequence-expanding map 
is concerned the transformation is sim- 
ilar. For example, no when applied to  
the sequence 1102 gives as result the se- 
quence 1001000200. 

Given two contractions 
Ki = ( M i , n i ) , i  = 1,2 their composition 
is defined as KloKz = ( (M1oM, ,n1onz) .  

Lemma 2 Contractions are closed un- 
der composition. 

5.5 Universal Colliding Se- 
quences 

A sequence U E Ti is called a collision 
sequence for the labeled strongly con- 
nected graph G if for every two vertices 
vl,vz from the same connected camps 
nent of G the walk generated by U when 
started from v1 meets the walk generated 
by U when started from v2 (not neces- 
sarily after the same number of threets). 
A sequence is called n-universal colliding 
sequence for a class of graphs 5 if it is 
a colliding sequence for every n-vertex 
graph in 5. Similarly, the notion can 
be defined for graphs under special la- 
belings. Every universal traversing se- 
quence is a universal colliding sequence. 

The converse happens to be also LrUe 

with respect to our particular construc- 
tion. 

6 The Graph Compres- 
sion Construction 

In this section we construct our univer- 
sal colliding sequences for graphs with 
I-labelings. It will be shown to they 
are universal traversing sequences too. 
The construction starts with G1 which 
is transformed into a collider Co. Then 
CO is transformed by a series of contrac- 
tions. The resulting sequence of colliders 

ends up with a special collider where col- 
liding sequences are easy to  construct. 
The progress towards the special collider 
will be realized by increasing the number 
of collisions at  the attractor. The next 
lemma gives us a measure of progress and 
convergence for the collision process. 

Lemma 3 Let Diam(G1) be the undi- 
rected diameter of G1. Then for every 
vertez vo there ezists a directed subgraph 
Tu, such that 

1. Tu, i s  a binary tree with root 00, 

2. all edges of Tu, are directed towards 
vo, and 



9. the depth of T,,, viewed as a rooted 
undirected graph is no greater than 
Diam(G1). 

Proof. Fix vo. Consider for every 
vertex v the shortest undirected path 
P(vo ,v)  viewed as a graph. Its length 
is no grather than Diam(G1). Let H = 
UvP(vo,v). The graph H contains all 
the vertices of G1. Consider a span- 
ning tree for H, say TH. It has depth 
no greater than Diam(G1). Let Tu, be 
the directed graph obtained from TH by 
reading each edge as a semi-edge directed 
toward the root V O .  Tu, is a binary tree 
by the 3-regularity of GI and has undi- 
rected depth no greater than Diam(G1). 
U 

Theorem 2 Let a(n) be a given func- 
tion and let 5 be the class of I-labeled n- 
vertez 9-regular graphs having the prop- 
erty that 

Diam(G) 5 a(n). 

Then n-universal traversing sequences of 
size 2°(s(")) can be constructed for the 
class 5 in  DSpace(a(n)). 

The proof of the theorem is contained in 
the next 3 Lemmas. 

The algorithm for constructing the 
n-universal colliding sequence 

1. Given G1 E 5 a graph with n ver- 
tices, construct Co(A) as described 
in section 5.3. 

2. Consider now the following 3 con- 
tractions: 
Contraction KO 

0 0 + 0 , 1 +  100,2 -t 200 

0 0 + 0 1 1 , 1 + 1 , 2 + 2 1 1  

Contraction K1 

Contraction Kz 

0 0 4 022, l  + 122,2 + 2 

3. Define a macro-step of the con- 
traction process to be K o i ~  = 
(MO129 I C O l Z ) ,  

Let Ci be M$?\C0),l 5 i 5 a(n) 
and C,,n = Mol; (CO). (Here MAlz is 
Molz composed with itself i times.) 

where U,," is the n-universal collid- 
ing sequence that we construct for 
the class $. 

Lemma 4 For every i , O  <_ i <_ a ( n )  the 
following hold: 

1. For every vertez v and every semi- 
edge s going out from v ,  the end 
point of s is either A,  or remains 
the same as in Co. 

2. Every vertez v of C; is connected b y  
a directed path to A. 

3. Consider TA given b y  lemma 9 for 
G1 (we choose vo = A). Let fi  
be the graph TA in its occurence in 
Ci. The directed graph has the 
same vertez set as TA, and the same 

semi-edges from each vertez; how- 
ever, the end-point of a semi-edge 
may b t  different from its end-point 
in TA. Then all the semi-edges of 
E at level i + 1 collide in  A. 

4. The vertez sets of G1 and 
DCompA(C;) are equal. 

5. For every colliding sequence U for 
Ci+1 the sequence K O ~ ~ ( U )  is a col- 
liding sequence for C,. 

Proof. It is easy to check that the 5 
facts are true for the collider CO. (The 
case 4 comes from Lemma 1.) Assume 
by induction that they are true for the 
collider Ci. We show that they are true 
for C;+1 as well. 

1. Consider a vertex v in Ci+l and its t- 
semi-edge. Suppose that the t-semi- 
edge of v in C; was ( v ,  U'), v' # A. 
Then the contraction KO might leave 
it the same t + t or transform it t -+ 
tt't'. In C;+l walking from v after a 
first t-step if we reach a completely 
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labeled edge .U then we end UP 
the way we started. If the edge is 
not completely labeled, by induction 
hypothesis one of the semi-edges is 
colliding in A.  This will imply that 
the semi-edge t of v after KO end UP 

in A.  Similar arguments holds for 
Kl and K2.  As a corollary, I holds 
true for C,+l. 

2. If v was connected by a directed 
path to A in Ci then by 1 it is still 
directed connected in to A in c,+i 
although by a shorter path. 

3. By induction hypothesis, in Ci all 
the semi-edges of at level a + 1 
collide in A while the other are in 
the same position as is TA or are col- 
lided in A .  Consider a semi-edge in 
Ti+' at  level i + 2, say t ,  that is not 
collided in A .  It ends up where a t'- 
semi-edge at level i t  1 begins. Then 
when the turn of the K,I contraction 
comes in the macro-step i + 1,  the t- 
semiedge of Ti+' will collide in A .  
Certainly this holds for all the semi- 
edges at the i + 2 level. 

4. By 2 it follows that we do not dis- 
connect. 

5 .  For every sequence of threets U and 
every vertex v consider the walk of 
U in Ci+l starting from U .  Let U' be 
the end point of the walk. Then the 
walk of I C O ~ Z ( U )  in Ci starting from 
v ends up in U'. Indeed, if the first 
walk does not involve A then the tra- 
jectories of the two walks are iden- 
tical. If the first walk involves A ,  
then the second walk will also reach 
A .  Therefore if U is a colliding se- 
quence in Ci+l, 1 ~ 0 1 2  will be a collid- 
ing sequence in C,. 

0 
Figure 3 gives the sequence of contrac- 
tions for a collider. 

Lemma 5 The collider C,," has the 
property that all the semi-edges collide in 
A .  

Proof. By Lemma 4, C B ( ~ ) - ~  has the 
property that all the semi-edges from 

TAB(")-1 collided in A.  Some of the re- 
maining semi-edges of the collider might 
still end up at a different vertex than A.  

The last round however will complete the 
collision process. 
0 
Lemma 6 1. The sequence 

is an n-universal colliding sequence 
for the class 5. 

2. U*," is n-universal traversing se- 
quence for  the class $, has size 
3('"(")) and can be constructed in 
DSpace (a (n) ) .  

Proof. 

Because 0 is a colliding sequence for C,,,, 
it follows by Lemma 4 that U,," is a col- 
liding sequence for Co. Moreover, for 
every v of CO the walk of U,," from v 
visits A .  As our choice of A was ar- 
bitrary, the sequence U,,,, will visit an 
entire connected component of the undi- 
rected graph G1 with n vertices. We have 

It is not difficult to  see that the sequence 
can be constructed in DSpace (a (n) ) .  0 

I U*," I= 33*8(4. 

7 Constructing Poly- 
nomial Size General- 
ized 
Universal Traversing 
Sequences 

We return now to  arbitrary graphs hav- 
ing small diameter under arbitrary la- 
belings. We use the universal travers- 
ing sequences for the class of I-labeled 
3-regular graphs with small diameter in 
order to construct generalized univer- 
sal traversing sequence. Therefore, as 
a corollary to  Theorem 1 and 2 we ob- 
tained the following. 

Theorem 3 Let a ( n )  be a given func- 
tion and let 5 be the class of n-vertez 
graphs having the property that 
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Then n-universal traversing Sequences 
of size 3s'a(n) can be constucted in 
DSpace(a(n)). In particular, when 
a(n) = O(logn) the generalized uniuer- 
sal traversing sequences have polynomial 
size. 

8 Applications 

The following classes of graphs have 
the property that by choosing a proper 
a(n) = O(logn) every graph G in the 
class satisfies: Dzam(G) * log(A(G)) 5 
a[n). The classes are: expanders of 
constant degree, random graphs, but- 
terfly networks, shuffle-exchange net- 
works, cube-connected-cycles networks, 
de Bruijn networks, cliques. As a corol- 
lary, for them we can construct gener- 
alized universal traversing sequences of 
polynomial size. 
For other classes of graphs, the construc- 
tion gives better traversing bounds than 
the the O(nlogn) universal traversing se- 
quences of [ll]; for example in the case of 
the hypercubes, we construct traversing 
sequences of size O (nioglogn). 

9 Concluding Remarks 
We constructed a generalized version of 
universal traversing sequences. In this 
scenario, one sequence is used by a walk- 
ing finite-automaton for traversal of all 
the n-vertex undirected graphs under ev- 
ery labeling. For a given n, the same se- 
quence generates different sequences of 
moving steps (as opposed to the uni- 
versal traversing sequence scenario when 
all such sequences of moving steps were 
identical to the universal sequence). 
For the class of graphs with small diame- 
ter we constructed a log-space traversing 
algorithm. Using log space a Turing Ma- 
chine can traverse a graph with diameter 
c * logn by trying all the sequences of size 
c *logn. Our traversing algorithm is per- 
formed without reseting is a manner sim- 
ilar to the universal traversing sequences. 
We believe that graph compression and 
universal colliding sequences hold the key 
to the extention of the method presented 

in 191, and partially generalized in this 
paper, to capture the solution to the 
Undirected Graph Connectivity Conjec- 
ture. 
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