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Abstract. The paper constructs a gen-
eralized version of universal traversing
sequences. The generalization preserves
the features of the universal travers-
ing sequences that make them attractive
for applications to derandomizations and
space-bounded computation. For every
n, a sequence is constructed that is used
by a finite-automaton with O(1) states
in order to traverse all the n-vertex la-
beled undirected graphs. The automa-
ton walks on the graph; when it is at
a certain vertex, it uses the edge labels
and the sequence in order to decide which
edge to follow. When walking on an
edge, the automaton can see the edge la-
beling. The generalized sequences have
size 20(%(%)) and traverse all the n-vertex
undirected graphs G satisfying

Diam(G) * log(A(G)) < 8(n),

where Diam(G) is the diameter of G,
and A(G) is the maximum degree of G.
As a corollary we obtain polynomial
size generalized universal traversing se-
quences construcible in DSpace(logn)
for the following classes of graphs, where
8(n) = O(logn): expanders of constant
degree, random graphs, butterfly net-
works, shuffle-exchange networks, cube-
connected-cycles networks, de Bruijn
networks, cliques.

For other classes of graphs, the con-
struction gives better traversing bounds
than the n®(es) universal traversing se-
quences constructed by Nisan [11] for ar-
bitrary undirected graphs; for example in
the case of the hypercubes, our sequences
have size nClostorm),
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The only known class of graphs where
universal traversing sequences of polyno-
mial size can be constructed is the class
of graphs of maximum degree 2 [9].

The construction of universal travers-
ing sequences (in their standard or
generalized form) for arbitrary undi-
rected graphs in DSpace(logn) will have
strong consequences in complexity the-
ory. What we may call

The Undirected Graph Connectivity
Conjecture:

UNDIRECTED CONNECTIVITY is in
DSpace(logn)

will be established by such a construc-
tion. As UNDIRECTED CONNEC-
TIVITY is complete for the complexity
class SymmetricSpace(logn), it will fol-
low that

DSpace(logn) = SymmetricSpace(logn)

and therefore a variety of fundamental
computational problems - such as pla-
narity testing, minimum spanning forests
- will be solvable in DSpace(logn).

1 History of the prob-
lem and previous
constructions

S. Cook introduced the concept of uni-
versal traversing sequence and asked the
question of the existence of short, i.e.,
polynomial size, such sequences. R.

Aleliunas (1978) [1] showed that such se-
quences of size O(n®) exist for 2-regular
graphs. (The result was re-obtained



with a different method by A. Cobham
[6]). R. Aleliunas, R. Karp, R. Lipton,
L.Lovasz, C. Rackoff (1979) [2] proved
that universal traversing sequences of
size O(d’n®logn) exist for n-vertex d-
regular graphs. The above results use
the probabilistic method, which is inher-
ently non-constructive. The result in [2]
implied that UNDIRECTED CONNEC-
TIVITY is in RandomSpace(log n).
There are few constructions in the liter-
ature for universal traversing sequences.
For graphs of maximal degree 2, there is
a log-space construction of universal se-
quences of size O(n*"®) [9]. For general
undirected graphs, Nisan [11] gives a con-
struction of size n®U°) improving over
the previous 9200/ o nstruction from
[3]. The n°Ues™) constructive bound was
obtained previously for particular classes
of graphs: the maximum degree 2 graphs
(5], [4], and the cliques [10].

2 The polynomial con-
struction for the cy-
cles: graph compres-
sion and colliding se-
quences

The idea of the construction used in [9]
was to compress the labeled cycle w to a
another cycle w' while preserving a trans-
fer relationship from the traversing se-

quences of w' to the ones of w. In or-
der to do so, labeling patterns and walk-
ing patterns of a fixed sequence were
classified, and some repetitions were re-
garded as redundancies and therefore re-
moved. The information contained in the
removed patterns can be retrieved by ex-
panding a traversing sequence of w' in
a uniform way such that the result is a
traversing sequence for w. The recur-
sive construction is dependent on the fact
that after removal of the redundant pat-
terns what is left is a well defined labeled
cycle of (possibly) smaller size. In Figure
la we present an example of cycle com-
pression. For details of the construction
see [9].

Let us consider the case of 3-regular
graphs. It will suffice to construct in
DSpace(logn) universal traversing se-
quences (in their standard form, or in
generalized form defined in this pa-
per) for 3-regular graphs. These se-
quences can be transformed into uni-
versal traversing sequences for arbitrary
undirected graphs.

The analysis of labeling patterns and
walking patterns for 3-regular graphs
turns out to be more difficult. However,
there is a way of interpreting the cycle
construction such that the removal of re-
dundancies is avoided. Presented in this
way, it appears that the implicit paralel-
lism in the construction, made now ex-
plicit, is fully responsible for the speed-
up in the computation.

Figure 1b gives the alternate view of the
construction from Figure la. Consider

the original labeled cycle w, as being a
directed graph w( with each undirected
edge made out of two directed labeled
semi-edges. Every vertex has two semi-
edges emerging from it. The three trans-
formations we propose are analogues of
the three contractions given in [9]. The
analogue of the first contraction from (9]
is described as a transformation given by
the rules:

0 — 000,1 — 111

We apply the transformation in parallel
to all the vertices of wj and obtain the
new graph w}. For each vertex of w{ ap-
ply the transformation to the semi-edges
of the vertex. Consider vertex 10. Walk
in w) from vertex 10 the sequence 000.
The walk ends-up in at vertex 3. Then
in w} direct the O-semi-edge of vertex 10
to end-up in vertex 3. This transforma-
tion is described by the first rule. Simi-
larly we observe that the 1-semi-edge of
vertex 10 ends up at vertex 9 in w}. We
proceed in the same way for the other
contractions from [9].

Let us observe that the intermediate di-
rected graphs in the construction are no
longer directed connected. Therefore as
a natural notion to capture connectivity
we propose the following one. A sequence



u is called a colliding sequence for a di-
rected graph G if for every two vertices
v1,v; from the same directed connected
componnent, the walk of generated by u
when started at v, meets the walk gen-
erated by u when started at v; (not nec-

essarily after the same number of steps).

The construction in this paper is a gen-
eralization of the above scenario for the
graphs having small diameter.

3 Generalized Univer-
sal Traversing Se-
quences

Let us define now how a finite-automaton
using a sequence can travel on a labeled
graph. We restrict our attention to 3-
regular graphs. Let G be such an undi-
rected graph. G is labeled with threets
on the edges. A threet is a label from
the set T = {0,1,2}. (The term threet is
an analogue of the term bst.) For every
vertex of G the 3 adjacent edges are la-
beled with 0, 1, and 2 in some random
order. Therefore, every edge gets two la-
bels, one for each endpoint vertex.

Let us define a walking finite-automaton
A that uses the sequence u € T in order
to walk on a labeled 3-regular graph.
Let A =(Q,T,6,q), where:

1. Q is the set of states, @ = Q,U(Q2 X
T) U (Qs x T), where all Q; are mu-
tually disjoint.

Q; is the set or regular states, @, X
T is the set of walking states, and
Qs x T is the set of storing states.
Let Q=Q—(Q:xT).

When A is in a walking state (g,t) at
vertex v it will walk to the adjacent
vertex of v using the edge labeled .
When A is not in a walking state, at
a vertex v, it will stay at vertex v.

2. ¢o € @1 is the initial state. Initially,
the automaton in state go is placed
at a vertex in the graph.

3. The transition function is

§:(QxT)u(Q:xT)—Q
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If A is in state ¢ € @, at vertex v,
then the automaton consumes one
threet from the sequence, changes
state and remains at vertex v. If A
is in state (g,t) € Q2 x T at vertex
v, then the automaton moves to the
adjacent vertex v' and changes state
6((g,t)) = (¢',t"), where (¢',t)) €
Qs x T, and the edge (v,v') is la-
beled (vt t,v'. This models the fact
that the automaton when is walking
on an edge can see the edge labels.

Let us define 6(go,u), the computation
of the A using a sequence u, when Ais
placed initially at vertex v of G. The
computation will produce a walk of the
automaton on the graph. When the size
of u is 1, 6{go, u) is given in the definition
of the A together with the corresponding
walk of A. Inductively, if A is at vertex
v; and u = ', ¢y € T we put

(g tav') = 6(8(g, 1), %)
for g € §, with A staying at v1;
6((qvt)vtlul) = 6((q'7t’)1tlu’)’

where (g,t) € Q:xT and 6(g,t) = (¢',?').
In this case, A is moving at vz such that
in G we have the labeled edge .v1tt',vs.

We say that < A,u > traverses G when
started at v if the computation 6(go, u) of
A produces a walk of A visiting every ver-
tex of G. We say that < A,u > traverses
G if it traverses G when started at v, for
every vertex v of G. We call < A,u >
a generalized n-universal traversing se-
quence for a class § of connected graphs
if < A,u > traverses every labeled n-
vertex graph G € §.

The standard universal traversing se-
quence scenario. Given a labeled 3-
regular graph, consider a sequence u €
T+*. Starting from a given vertex v, the
sequence u defines in a natural way a
walk on the labeled graph: interpret the
threets as instructions for following the
corresponding edges. A sequence u is
called n-universal traversing sequence for
a class of graphs § if for every labeled n-
vertex graph G € G, and for every start-
ing vertex, the walk defined by u visits
at least once every vertex in G. A sim-



ilar definition can be done for a class of
graphs under some restricted labelings.

The standard definition of universal
traversing sequences can be obtained as
a particular case of our generalized sce-
nario. We take A such that @, =
{0}),Q: = {¢},Q@ = {¢'} x T and
6(¢",t) = (g,t). Then < A,u > is a gen-
eralized n-universal traversing sequence
for § iff u is an n-universal traversing
sequence.

4 Initial Reductions

We construct for every labeled con-
nected 3-regular graph Gy a connected
3-regular graph G; with a special label-
ing, called I-labeling, and Diam(G,) =
Diam(Go) + 1. Then we show how a
traversing sequence u of Gy can be used
by a walking finite-automaton A to tra-
verse Go. The automaton A is indepen-
dent of the structure of the graph G,.
Therefore, an n-universal traversing se-
quence u for graphs with I-labelings and
diamemter d(n) can be tranformed into
a generalized n-universal traversing se-
quence < A, u > for (arbitrarily) labeled
graphs with diamemter d(n).

4.1 Reduction to 3-Regular
Graphs

A construction of Cook and Rackoff [7]
(see also [4]) reduces the problem of con-
structing universal sequences for arbi-
trary undirected graphs to that of con-
structing universal sequences for graphs
with maximum degree 3. The idea of
the construction is the following. Let
G be a n-vertex graph with maximum
degree A(G) = d. A vertex of degree
d' < d is replaced by a full binary tree
having at least d' leaves; if two such ver-
tices have an edge between them then
just connect the corresponding leaves.
Let G’ be the resulting graph. Then G’
has O(A(G)n) vertices, and Diam(G') <
Diam(G) * log(A(G)).

We can now make the next step reduc-
ing the problem to the one of construct-
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ing universal traversing sequences for 3-
regular graphs. Such a reduction was
given in [4], and [5]. Applying the re-
duction to a n-vertex graph yields a 3-
regular graph of size 2n.

4.2 Reduction to 3-Regular
Graphs with I-Labeling

This is the part where we use the gen-
eralized scenario. For every labeled n-
vertex 3-regular graph Gy we construct
a 3-regular 8n-vertex graph G; which
is labeled with a special labeling, called
I-labeling. In an I-labeling each edge
is labeled with two Identical threets,
i.e.,,00,,.11,,.22,.

The graph G| is obtained from two copies
of Go by the transformation described in
the Figure 2. The transformation is ap-
plied to every edge of Go.

Theorem 1 Let u be an 8n-universal
traversing sequence for the class of I-
labeled $-regular graphs having diameter
8(n). Then there is a walking finite-
automaton A having O(1) states such
that < A,u > 1s a generalized n-universal
traversing sequence for the class of n-
vertez 8-regular graphs of diameter 3(n)
under all labelings.

Proof. Consider a sequence u that tra-
verses G;. Let (v,v') be an edge of Gy
labelled ,v01,v". Let (v1,v}), (v2,v3) be
the corresponding edges in G,. Suppose
u starts at v;. We construct a walking
finite-automaton A. Suppose A is placed
initially at v in Gy, and v = Ou'. Then

A can be instructed to walk to v' and
to store the other label 1 from the edge.
Then it generates a 1-move and comes
back to v. Now A knows the labels on
the edge (v,v").

The graph from Figure 2b can be inter-
preted as a finite-automaton Ag. In-
deed, regard vertices as states and the
semi-edges as labeled directed edges. We
define A in state ”01”, meaning a "0”
move was started on an edge labeled "0
17, to act as Aoi. If u reaches v} or vy
then A moves to v'. If u comes back to v
and uses a 1 or a 2 then the process stars
again. The 1-edge or the 2-edge is inves-



tigated. In this way A using u simulates
in Gy the walk of u in G;. All other cases
are similar. A can be defined such that
the number of moving steps on the graph
to be no greater than the size of u. O

5 Constructing
Polynomial Size Uni-
versal Traversing Se-
quences for I-labeled
Graphs with Small
Diameter

We give two constructions of univer-
sal traversing sequences for I-labeled 3-
regular graphs. In the first subsection we
present a simple construction perform-
ing exhaustive search in a graph where
every walk can be reversed. The remain-
ing subsections are devoted to the second
construction. It is developed by gener-

alizing some of the key concepts of the
polynomial construction for the 2-regular
graphs.

5.1 Exhaustive Search on I-
labeled Graphs

For every u € T let uF be the sequence
u in reversed. Let u' = wuf If G,
has n vertices and diameter 8(n) then
let uy,uy,...,u; be all the sequences of
size d(n) in T*. Then uv* = uvjub..u}
is an n-universal traversing sequence for
all n-vertex 3-regular graphs that are I-
labeled and have diameter d(n). Indeed,
let G, be such a graph and v a vertex of
it. For every 1,1 < ¢ < k the walk of u!
ends up at v. By the way we selected the
u; it is clear that we visit all the vertices
of G;. u* has size 20(0(0),

5.2 Colliders and Attractors

We start our second construction of uni-
versal traversing sequences by transform-
ing G, into a new graph with special
properties. We will consider G; both a
labeled undirected graph, and a labeled
directed graph as follows. Each labeled
edge of G can be regarded as being made
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out of two directed semi-edges each one
labeled by a threet. We will refer to the
0- (1-, 2-) semi-edge of a vertex.

Definition 1 A collider C(4) s a di-
rected graph with the following properties:

e Each directed edge is called semi-
edge, and is labeled with a threet

o Every vertez has fan-out 8 and the
labels of the three out-going semi-
edges are 0,1, and 2

o The fan-in of a vertez v in a graph
with n vertices satisfies 0 < fan-
in(v) < 3n

e A is a special vertez of the graph
called the attractor and has the
property that all of its three out-
going semi-edges end up in A (they
are directed loops).

This collider is the intermediate struc-
ture that will be subject to our trans-
formations. We start by constructing a
collider from the graph G;.

Definition 2 The collider Cq = Co(A)
is obtained as follows. Pick one arbitrary
vertez A from Gy and redirect its three
semi-edges to come back to A. This ver-
tex ts the attractor of Co.

Definition 3 Let DComp,(Co) be the
subgraph of Co consisting of all the ver-
tices connected by a directed path with A
and the semi-edges between them.

The following lemma presents the key
property that will remain true for all the
graphs in our sequence of graph transfor-
mations.

Lemma 1 The collider Co(A) has the
following property:
o The vertez sets of the two graphs Gy
and DComp4(Cy) are equal.

Proof. It is easy to see that every path
in G, between a vertex v and A can be
transformed into a directed path in Cq.
0O

5.3 Collisions

A collision is a set of semi-edges hav-
ing identical threet that end up in the
same vertex. If the semi-edges are la-
beled with 0 (1,2), then we call it a 0- (
1-, 2-) collision. An I-labeling has no col-



lisions. When the attractor vertex is cre-
ated, 3 collisions are introduced: two 0O-
semi-edges collide, two 1-semi-edges col-
lide, and two 2-semi-edges collide.

5.4 Contractions

A contraction for a collider C is a pair
K = (M, ) where

o M is a collider-shrinking transfor-
mation that simultaneously changes
of the semi-edges according to a set
of rules

® K is a sequence-ezpanding map that
transforms a sequence of threets into
another sequence of threets accord-
ing to a set of rules

A collider C; under a contraction K =
(M,x) will be transformed into a new
graph C;;; = M(C;) having the same
vertices, but the semi-edges may change
their endpoint.

Consider the contraction K, = (M, &)
given by the rules:

* 00,1 100,2 — 200

Let C, = Ko(Co) be the graph obtained
from C, as follows. The vertices of C;
are the same as those of C,.

Informally, M, acts as follows. For every
vertex v the 3 semi-edges going out from
v will change their end-points as accord-
ing to the rules of K;. For example, the
1-semi-edge from vertex v in C; will end
up in the vertex v, such that the walk 100
from v in Co ends up at v;. Similarly for
the other cases.

As far as the sequence-expanding map Ko
is concerned the transformation is sim-
ilar. For example, ko when applied to
the sequence 1102 gives as result the se-
quence 1001000200.

Given two contractions
K; = (M;, k:),% = 1,2 their composition
is defined as K 0 K; = ((MjoM;,K10K2).

Lemma 2 Contractions are closed un-
der composition.

5.5 Universal Colliding Se-
quences

A sequence u € Tt is called a collision
sequence for the labeled strongly con-
nected graph G if for every two vertices
v1,v; from the same connected compo-
nent of G the walk generated by u when
started from v, meets the walk generated
by u when started from v, (not neces-
sarily after the same number of threets).
A sequence is called n-universal colliding
sequence for a class of graphs § if it is
a colliding sequence for every n-vertex
graph in §. Similarly, the notion can
be defined for graphs under special la-
belings. Every universal traversing se-
quence is a universal colliding sequence.

The converse happens to be aiso irue
with respect to our particular construc-
tion.

6 The Graph Compres-
sion Construction

In this section we construct our univer-
sal colliding sequences for graphs with
I-labelings. It will be shown to they
are universal traversing sequences too.
The construction starts with G; which
is transformed into a collider Cy. Then
Cy is transformed by a series of contrac-
tions. The resulting sequence of colliders

Cos C15 s Chiam(G1)

ends up with a special collider where col-
liding sequences are easy to comstruct.
The progress towards the special collider
will be realized by increasing the number
of collisions at the attractor. The next
lemma gives us a measure of progress and
convergence for the collision process.

Lemma 3 Let Diam(G,) be the undi-
rected diameter of G;. Then for every
vertex vy there exists a directed subgraph

Ty, such that
1. T,, s a binary tree with root vy,

2. all edges of T,, are directed towards
vg, and



3. the depth of T,,, viewed as a rooted

un.dl'rected graph is no greater than
Diam(G,).

Proof. Fix v,. Consider for every
vertex v the shortest undirected path
P(vo,v) viewed as a graph. Its length
is no grather than Diam(G,). Let H =
UyP(v,v). The graph H contains all
the vertices of G;. Consider a span-
ning tree for H, say Tg. It has depth
no greater than Diam(G)). Let T,, be
the directed graph obtained from Ty by
reading each edge as a semi-edge directed
toward the root vo. Ty, is a binary tree
by the 3-regularity of G, and has undi-
rected depth no greater than Diam(G1).
[}

Theorem 2 Let 8(n) be a given func-
tion and let G be the class of I-labeled n-
vertez $-reqular graphs having the prop-
erty that

Diam(G) < 3(n).

Then n-universal traversing sequences of
size 2000(™) can be constructed for the
class § in DSpace(d(n)).

The proof of the theorem is contained in
the next 3 Lemmas.

The algorithm for constructing the
n-universal colliding sequence

1. Given G; € § a graph with n ver-
tices, construct Co(A) as described
in section 5.3.

2. Consider now the following 3 con-
tractions:

Contraction Ko

¢ 0— 0,1 —100,2 — 200
Contraction K;

e 0—011,1 »1,2— 211
Contraction K,
¢ 0—022,1 - 122,22

3. Define a macro-step of the con-
traction process to be Kogz =
(Mor2, Ko12),

Koz = Koo K10 K,

Let C; be Msal gCo),l < 1 < 8(n)
and C., = Mg (Co). (Here M3, is
Mo;; composed with itself ¢ times.)

4. Let
Usn = K'gg) (0)1

where u,, is the n-universal collid-
ing sequence that we construct for
the class §.

Lemma 4 For every 1,0 <1 < 3(n) the
following hold:

1. For every verter v and every semi-
edge s going out from v, the end
point of s is either A, or remains
the same as in Cy.

2. Every vertez v of C; is connected by
a directed path to A.

3. Consider T4 given by lemma $ for
G, (we choose vo = A). Let T}
be the graph T4 in its occurence in
C:. The directed graph T, has the
same vertez set as T4, and the same

sems-edges from each vertexr; how-
ever, the end-point of a semi-edge
may be different from its end-point
in_ Ta. Then all the semi-edges of
T, at level 1 + 1 collide in A.

4. The wvertez sets of G, and
DCompa(C;) are equal.

5. For every colliding sequence u for
Cit1 the sequence ko3(u) is a col-
liding sequence for C;.

Proof. It is easy to check that the 5
facts are true for the collider C,. (The
case 4 comes from Lemma 1.) Assume
by induction that they are true for the
collider C;. We show that they are true
for C;;1 as well.

1. Consider a vertex v in Cj;; and its ¢-
semi-edge. Suppose that the t-semi-
edge of v in C; was (v,v'),v' # A.
Then the contraction K, might leave
it the same ¢ — ¢ or transform it ¢ —
t't’. In C;y, walking from v after a
first t-step if we reach a completely



labeled edge .t't', then we end up
the way we started. If the edge is
not completely labeled, by induction
hypothesis one of the semi-edges is
colliding in A. This will imply that
the semi-edge t of v after K; end up
in A. Similar arguments holds for
K, and K,. As a corollary, I holds
true for Ciyq.

2. If v was connected by a directed

path to A in C; then by 1 it is still
directed connected in to A in Ciyy
although by a shorter path.

3. By induction hypothesis, in C; all
the semi-edges of T% at level 1 + 1
collide in A while the other are in
the same position as is T4 or are col-
lided in A. Consider a semi-edge in
T3t at level 7 4 2, say t, that is not
collided in A. It ends up where a t-
semi-edge at level 7+ 1 begins. Then
when the turn of the K} contraction
comes in the macro-step i + 1, the ¢-
semiedge of Tit! will collide in A.
Certainly this holds for all the semi-
edges at the ¢ + 2 level.

4. By 2 it follows that we do not dis-
connect.

5. For every sequence of threets » and
every vertex v consider the walk of
u in Cy;, starting from v. Let v' be
the end point of the walk. Then the
walk of kg12(u) in C; starting from
v ends up in v'. Indeed, if the first
walk does not involve A then the tra-
jectories of the two walks are iden-
tical. If the first walk involves A,
then the second walk will also reach
A. Therefore if u is a colliding se-
quence in Cji,y, ko2 will be a collid-
ing sequence in C;.

]

Figure 3 gives the sequence of contrac-
tions for a collider.

Lemma 5 The collider C.n has the

property that all the semi-edges collide in
A.

Proof. By Lemma 4, Ca(n)-1 has the

property that all the semi-edges from
T3 collided in A. Some of the re-
maining semi-edges of the collider might
still end up at a different vertex than A.
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The last round however will complete the
collision process.
O

Lemma 6 1. The sequence

Uy, = ;ca(")(O)

is an n-universal colliding sequence
for the class §.

2. u,n 15 n-universal traversing se-
quence for the class G, has size
36*(") and can be constructed in
DSpace(d(n)).

Proof.

Because 0 is a colliding sequence for C. »
it follows by Lemma 4 that u,, is a col-
liding sequence for Co. Moreover, for
every v of Co the walk of u,, from v
visits A. As our choice of A was ar-
bitrary, the sequence u., will visit an
entire connected component of the undi-
rected graph G, with n vertices. We have
| Unn IZ 33*8(71).

It is not difficult to see that the sequence
can be constructed in DSpace(d(n)). O

7 Constructing Poly-
nomial Size General-

ized
Universal Traversing
Sequences

We return now to arbitrary graphs hav-
ing small diameter under arbitrary la-
belings. We use the universal travers-
ing sequences for the class of I—labelezd
3-regular graphs with small diameter in
order to construct generalized univer-
sal traversing sequence. Therefore, as
a corollary to Theorems 1 and 2 we ob-
tained the following.

Theorem 3 Let d(n) be a given func-
tion and let G be the class of n-vertez
graphs having the property that

Diam(G) * log(A(G)) < 8(n).



Then n-universal traversing sequences
of size 3%°(") can be constucted in
DSpace(d(n)).  In particular, when
8(n) = O(logn) the generalized univer-
sal traversing sequences have polynomial
si1z2e€.

8 Applications

The following classes of graphs have

the property that by choosing a proper

8(n) = O(logn) every graph G in the

class satisfies: Diam(G) * log(A(G)) <

d8(n). The classes are: expanders of

constant degree, random graphs, but-
terfly networks, shuffle-exchange net-
works, cube-connected-cycles networks,
de Bruijn networks, cliques. As a corol-
lary, for them we can construct gener-
alized universal traversing sequences of
polynomial size.

For other classes of graphs, the construc-
tion gives better traversing bounds than
the the O(n'9") universal traversing se-
quences of [11]; for example in the case of
the hypercubes, we construct traversing
sequences of size O(n!°9o9"),

9 Concluding Remarks

We constructed a generalized version of
universal traversing sequences. In this
scenario, one sequence is used by a walk-
ing finite-automaton for traversal of all
the n-vertex undirected graphs under ev-
ery labeling. For a given n, the same se-
quence generates different sequences of
moving steps (as opposed to the uni-
versal traversing sequence scenario when
all such sequences of moving steps were
identical to the universal sequence).

For the class of graphs with small diame-
ter we constructed a log-space traversing

algorithm. Using log space a Turing Ma-

chine can traverse a graph with diameter

cxlogn by trying all the sequences of size

c*logn. Our traversing algorithm is per-

formed without reseting is a manner sim-

ilar to the universal traversing sequences.

We believe that graph compression and

universal colliding sequences hold the key

to the extention of the method presented
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in [9], and partially generalized in this
paper, to capture the solution to the
Undirected Graph Connectivity Conjec-
ture.
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