
ELSEVIER

Information
Processing
Letters

Information Processing Letters 50 (1994) 211-216

Bounded-width polynomial-size Boolean formulas
compute exactly those functions in AC0

Sorin Istrail a,*, Dejan Zivkovic ba**

a Sandia National Laboratories, Dept. 1423, Algorithms and Discrete Mathematics, Albuquerque, NM 87185-5800, USA
b Department of Mathematics and Computer Science, Savannah State College, Savannah, GA 31404, USA

Communicated by D. Dolev; received 2 April 1992; revised 16 December 1993

Abstract

We show that the complexity classes AC0 and NC’ consist exactly of, respectively, constant and O(log n)
width polynomial-size Boolean formulas.

Key words: Computational complexity; Boolean functions; Circuit complexity

1. Introduction

The complexity classes AC? and NC’ and their modifications are well studied in the literature.
For example, Furst et al. [4] and independently Ajtai [1] proved that AC0 # NC’. Spira [51
showed that a Boolean function is computable by polynomial-size formulas iff it is computable
by logarithmic-depth circuits. In other words, the class NC’ consists exactly of polynomial-size
formulas. Barrington [2] gave another interpretation by showing that NC’ consists exactly of
those functions computed by bounded-width polynomial-size branching programs. In this paper we
consider similar characterizations of AC0 and NC’ via the width of Boolean formulas.

2. Definitions

In this section we review some of the basic notions from Boolean circuit complexity (for more
details see, for example, [61 and [31).

A Boolean circuit on n Boolean variables x1 , . . . , xn is a directed acyclic graph with the following
properties. Each node of fan-in zero, called input, is labeled with a variable, the negation of a

* Supported in part by U.S. Department of Energy under contract DE-AC04-76DP00789. Email: scistra@cs.sandia.gov.
** Corresponding author. Email: dzivkov@uscn.cc.uga.edu.

0020-0190/94/$07.00 @ 1994 Elsevier Science B.V. All rights reserved
SSDZ 0020-O 190 (94)00036-X

212 S. Istrail, D. Zivkovic/Information Processing Letters 50 (1994) 211-216

variable, or the constants 0 or 1. The nodes of fan-in greater than zero, called gates, are labeled
with AND or OR function. Lastly, there is a single sink node of fan-out zero called output. The
size of a circuit is the number of its gates, and the depth is the length of the longest path from an
input to the output.

A Boolean circuit computes a Boolean function f : (0, 1)" + (0, 1) in the natural way, i.e.,
for every b = (bi,...,&) E {O,l}” we let f (b) be the result of the output gate when the tuple
(b 1,. . . , b,) is given to the corresponding inputs. The class AC0 consists of functions computed by
polynomial-size circuits with unbounded fan-in and constant depth, and NC’ is the class of those
functions computed by circuits of fan-in two and depth O(log n) (note that here polynomial-size
comes for free).

A Boolean formula is a circuit whose gates have fan-out at most one. Since the size of a Boolean
formula does not count the inputs, we can attach to each gate that has an input its own copy of
the input. In this way we can conveniently represent the Boolean formulas as trees and, in fact, we
use the two terms interchangeably. A formula that can be represented by a binary tree is called a
binary formula.

The width of a Boolean formula is formally defined using its underlying tree. Given a tree T, we
first level the tree; that is, level 0 contains the root, level 1 contains the children of the root, level
2 contains the children of the children of the root, and so on. Let WI be the number of nodes on
level 1. The width w of the tree T is simply w = max{w, 1 0 < 1 6 d}, where d is the depth of T.
Of course, the width of a Boolean formula is the width of its underlying tree.

We define BFW’ and BFW’ to be the classes of Boolean functions computed by polynomial-size
Boolean formulas that have, respectively, constant and 0 (log n) width.

Finally, we use s (I;) and w (F) to denote the size and width of a formula F.

3. Preliminaries

In this section we first discuss an easy tree property about the width. After that we present several
technical simulations needed for the proof of our main result.

There is a natural way to assign the notion of width to particular nodes of a tree T. Namely, the
width of a node is the width of the subtree rooted at the node. Clearly, the width of the tree T
is the width of its root. Also, all the nodes that have full width of T lie on a path from the root.
This follows from the fact that no two children of a node can have the same width as the node
itself. To see this, suppose a node x has width wX and children nodes y and z of width w, and
wZ, respectively. Denote by TY and T, the subtrees rooted at the nodes y and z, and let 1, and
1, be the levels at which TY and TZ attain the width. We now argue that wX = wY = wZ is not
possible. Indeed, if it were, then lY # 1, since otherwise one would have wX 2 wY + wZ = 2w,,
a contradiction. Therefore, either 1, < 1, or lY > 1,. But if 1, < 1, then wX > wY + 1 > wX, a
contradiction. Similarly, if l,, > 1, then w, 3 wZ + 1 > wX, again a contradiction. This completes
the proof of the fact. The path along which lie all the nodes that have full width of T is called the
trunk of the tree T.

Lemma 1. A formula of width w and size s on n variables can be computed by a binary formula of
width 2w and size 2”ns.

Proof. We argue by induction on the width w. The case w = 1 is trivial, and for w > 1 consider
the trunk of the tree T representing a formula F of width w and size s. To simplify the argument,
we suppose that the trunk contains exactly two nodes; it will be clear later what modifications are

S. Istrail, D. Zivkovic /Information Processing Letters 50 (I 994) 21 l-216 213

needed in case the trunk contains one or more than two nodes. Denote the two gates Gr and G2
and suppose they are, say, A and v node, respectively. Further assume that Gr is at the root, and

Ply..., Pks are its subtrees of depth greater than 0 not including the subtree rooted at the node
G2. Also, denote ~1,. . . , pu the depth-0 children of Gr, i.e., all the literals feeding into it. Next, let

Ql,..., Qm be all the subtrees of depth greater than 0 of the node Gz, and 41,. . . , qV its depth-0
children. We can assume that both u and u are at most n and no constants feed into Gr or G2,
since otherwise the formula F is determined or we can remove the gate G2.

Since the width of each Pi (i = l,...,k) and Qj (j = l,...,m) is less than w, by the
induction hypothesis we have equivalent binary formulas P[(i = 1, . . . , k) and Qi, (j = 1,. . . , m).
Moreover, for every i = 1,. . . , k and j = 1,. . . ,
s(P,‘) < 2”-’ ns(Pi) and s(Qi) < 2w-1ns(Qi).

m, w(Pi) and w(Q(i) are at most 2(w - l), and

We now build the binary tree T’ that simulates T as follows. The top gate of T’ is same as Gr,
i.e., an A gate. The right subtree of the root is the binary tree PI, and the left subtree begins with a
line of A gates whose other input is the constant 1. The number of A gates on the line is equal to
the depth of Pi. Next, the last gate on the line has the right subtree being the binary tree Pi. Again,
the left subtree of the last gate begins with a line of A gates whose other input is the constant 1,
and the number of them is equal to the depth of Pi. Continuing in this way, we partially build the
tree T’ that has as the bone a long line of A gates except the last gate, and the other input of the
A gates is either the constant 1 or one of the binary trees Pi,. . . , PL. Finally, we extend the bone
down with a line of u A gates whose other inputs are the literals pl,. . . ,pu. Now, the last A gate
on the line has one input pu, and the other input is the same node as the gate G2, i.e., an V gate.
The right subtree of the v gate will be the tree Q’,, and the left subtree begins with a line of V gate
whose other input is the constant 0. The number of the v gates is equal to the depth of the tree
Q;. Proceeding just as before, we finish up the construction of T’ by extending the last node on
the line of v gates that corresponds to the tree Qh with a line of 2, V nodes whose other inputs are
the literals 41, . . . , qV.

Clearly, the tree T’ thus constructed is binary and

w(T’) < max{max{w(P[) 1 1 < i < k},max{w(Q(i) 1 1 < j < m}} + 2

< 2(w - 1) + 2 = 2w,

k m

s(T’) < c2s(P/) + u + c2s(Q;) + TI
i=l j=l

< 2(2w-1nes(Pi) + 2’~ - ItZeS(Qj) + n)
i=l j=l

< 2”n (ks0) + 2sCQjJ + 1)
i=l j=l

As an aside and no surprise, note that the above lemma shows that the power of polynomial-size
binary and general formulas is the same provided their width is bounded or logarithmic.

214 S. Istrail, D. Zivkovic/Information Processing Letters 50 (1994) 211-216

Lemma 2. A formula of depth d and size s on n variables can be computed by a binary formula of
width 2d + 1 and size 4d(n + l)(s + 1).

Proof. We argue by induction on the depth d. For d = 0 the claim is obvious. For the induction
step, suppose P is a formula of depth d > 1 and size s. Let T be the tree that represents F. Denote
by Ti,..., Tk the subtrees rooted at the children of the root of T whose depth is greater than 0.
Also, denote tl, . . . , tl the depth-O children of the root of T, i.e., all the literals feeding into it. We
can assume that I 4 n and no constants appear as children of the root of T, since otherwise the
formula is determined and we are done.

Since the depth of Tl, . . . , Tk is less than d, by the induction hypothesis we have equivalent binary
formulas T,‘, . . . , Tisuchthatw(T,‘) < 2d-1 ands(T:) ~4d-1(rz+l)(s(T~)+1), (i= l,...,k).

Now, to construct the desired tree T’ equivalent to T we proceed in pretty much the same way
as in the proof of Lemma 1. The root of T’ is the same gate as the root of T, say an V gate. The
right subtree of the root is T;, and the left subtree begins with a line of v gates whose other input
is the constant 0. The number of the V gates on the line is equal to the depth of Ti. Next, the last
gate on the line has as its right subtree the tree T;, and the left subtree begins with a line of V gates
whose other input is 0 and whose number is equal to the depth of T;. The process is clear now
for each of the rest of T$. . . , TL. To finish up the construction, we extend the last gate on the line
associated with TL to a line of V gates whose other inputs are the literals tl, . . . , tl.

Clearly the tree T’ thus constructed is binary and

w(T’) 6 max{w(T/) 1 1 6 i < k} + 2 < (2d - 1) + 2 = 2d + 1,

k k

s(T’) G C~S(T/) + 1 < x2.4dP1(n + l)(s(Ti) + 1) + n
i=l i=l

G 2.4d-1(n + l,($s(TJ + k) + n
i=l

< 2.4d-1(n + 1).2s + n = 4d(n + 1)s + n

6 4d(n + l)(s+ 1). Cl

Lemma 3. A binary formula of width w and size s can be computed by an unbounded fan-in circuit
of depth 2w and size s.

Proof. Let F be a formula represented by a binary tree T that has the width w and size s. By
induction on w, we will construct a circuit C of depth at most 2w, the size at most s, and such
that C computes F.

The base case w = 1 is trivial. For w > 1, consider the trunk of the tree T. It contains a sequence
of v and A gates in any order. For the sake of concreteness, suppose that from the root of T down
the trunk there first is a run of gl v gates, then a run of g2 A gates, and so on alternating until the
end of the trunk. Further suppose that the trunk ends with, say, a run of g, v gates. Thus, the trunk
is a sequence of r alternating runs of v or A gates, it starts and ends with a run of V gates, and the
kth run has gk gates (k = l,..., r). With these assumptions we have that r is an odd number, i.e.,
r = 2m + 1 for some m = 0, 1,2,. . . .

S. Istrail, D. Zivkovic/Information Processing Letters 50 (1994) 211-216 215

Let TF,Tt,..., Ti be the subtrees that feed into the gates of the kth run (k = 1,. . . , r). If

T;, T;, . . . , Tgk denote also formulas computed by the corresponding subtrees, we can write

F = T; V” .vT~,v(T~r\...r\T~~r\(...~(T~v...vT~~)...)). (1)

By applying the distributive law and expanding the expression on the right-hand side of (1) as
much as possible, we have

F = T; v . ‘. v T;,

Now we build the circuit C that computes the right-hand side of (2) as follows. The root is an V

gate, and the next level consists of gs + g5 + . . . + g, A gates. Below these come the circuits for every
tree Tf, Tt,. . . , T& (k = 1,. . . , Y), given by the induction hypothesis. If we index the A gates on
the first level by (i, j), where i = 1,. . . , m and j = 1, , gzi+l, then the (i,j)th A gate connects
to the roots of the circuits for Tf,. . . , Tj2, Tp,. . . , Tg4,. . . , Tf’, . . . , TiL, Tfi+‘, thus computing the
(i, j) th product from (2) . Finally, the top v gate is connected to the roots of the equivalent circuits
for T’ 1 , . . . , Tj, and every A gate on the first level.

Therefore, the circuit C correctly computes the formula F and by induction has the depth at
most 2(w - 1) + 2 = 2w. Moreover, the size of C is

r &

S(c)~~~s(T,)+g3+g5+...+gr+1~s. 0
i=l j=l

4. The result

The next theorem shows that the complexity classes AC0 and NC’ consist precisely of, respectively,
constant and 0 (log n) width polynomial-size Boolean formulas.

Theorem 4. AC0 = BFW’ and NC’ = BFW’.

Proof. The inclusion BFWO G AC0 is a consequence of Lemma 1 and Lemma 3. To see the converse
AC0 G BFWO, we first observe that an AC0 circuit of depth d and size s can easily be made into a
formula of depth d and size O(S~). Now the inclusion follows from Lemma 2.

To prove NC’ = BFW’ we use the fact that NC’ consists of polynomial-size O(logn) depth
formulas, which in turn have the same power as the polynomial-size formulas. Then BFW’ G NC’
is trivial, and NC’ G BFW’ follows from Lemma 2. 0

Acknowledgment

We would like to thank David Barrington for many helpful discussions. His valuable ideas and
comments were influential to the paper. Suggestions generated in discussions with Steve Lindell are
also acknowledged with pleasure.

216

References

S. Istrail, D. Zivkovic /Information Processing Letters 50 (1994) 21 l-216

[1] M. Ajtai, C!-formulae on finite structures, Ann. Pure Appl. Logic 24 (1983) l-48.
[2] D.A. Barrington, Bounded-width polynomial-size branching programs recognize exactly those languages in NC’, in: Proc.

18th Ann. ACM Symp. on Theory of Computing (1986) 1-5.
[3] R.B. Boppana and M. Sipser, The complexity of finite functions, MIT/LCS Tech. Rept. No. 405, 1989.
[4] M. Furst, J. Saxe and M. Sipser, Parity, circuits, and the polynomial time hierarchy, Math. Systems Theory 17 (1984)

13-27.
[51 P.M. Spira, On time-hardware complexity tradeoffs for Boolean functions, in: Proc. 4th Hawaii Symp. on System Sciences

(1971) 525-527.
[6] I. Wegener, The Complexity of Boolean Functions (Wiley-Teubner, New York, 1987).
[7] D. Zivkovic, Non-probabilistic techniques in circuit complexity, Ph.D. Thesis, Wesleyan University, 1992.

