Theoretical Computer Science 21 (1982) 341-349 341
North-Holland Publishing Company

NOTE

SOME REMARKS ON NON-ALGEBRAIC ADHERENCES

Sorin ISTRAIL

Depi.rtment of Mathematics and Computer Cesier, University “AllCuza” Iasi, 6600 Iasi,
Romania

Communicated by M. Nivat
Received October 1981
Revised April 1982

Abstract. We preseisi some properties of non-algebraic adherences of languages, whic: cau be
consistently called context-sensitive adherences, because it is proved that in the Chomsky hierarchy
of adherences, crnext-sensitive and recursive-enumerabie adherences coincide. Concerning the
center-mapping the traversing from algebraic to non-algebraic takes simple recursive to not
necessarily recursive-enumerable. Except for the last equality, the Chomsky hierarchy of adheren-
cesis proper: R agn < CFagr. © CSaan = RE aan and moreover, it can be refined in the non-algebraic
case by considering the McNaughton-Nivat adkerences.

Regarding the programming context, adherences occur when we consider the set of divergent
computations ‘shapes’ of a program or a program scheme. In this respect, the ‘interpretation’ is
powerful enough to translate R y45, 10 CSagn.

1. Preliminaries

Given a finite alphabet A and N.={1, 2, ...} a word over A can be thought as
a partial function f:N, » A, whose domain i

[n]=41,2,...,n}.

For any im <n we shall write f[m]=f(1)f(2) - - - f(m).
An infinite word over A will be a total function u:N, > A. We shail denote by
u|n] its initial segment of length n, i.e.

Let be A® the set of infinite words over A and we put A =A* UA". A denotes
the empty word.
The length of 4 tinite word f is denoted |f].
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The operator ‘left factors’ is defined by
FG(f)={geA*|g=fn]l,n<|f} forfeA*
FGw)={uln}lneN,} forueA®,
FG(L)=\J FG{x) forLcA”%.

xel
A basic notion in the theory of infinitary languages is that of adherence defined
as follows: for Lc A®, Adh(L)={u € A°|FG(u)c FG(L)}.
The center of a language L =« A” is L°=FG(Adh(L)).
For a family of languages %, let £agqn denote its family of adherences. i.e.

&L aqan={L |there in a finite alphabet

Aand L'c A%, L'e ¥ such that L = Adh(L")}.

The families of the Chomsky hierarchy will be deroted R (regular), CF (context-
free), C§ (vontext-sensitive), RE (recursive-enumerable).

Regarding adherence families we obtain Raan, CFadn, CSadns RE Adn.

The families B oan and CFaqn are called of rational respectively algebraic adher-
ences.

Let us denote R°, CF°, CS°, RE‘ the corresponding families of centers of
languages. ‘

The family of rational adherences and that of algebraic adherences possess a
representation theorem of the form: ‘

k
L=ULLY, (1)
i=1
where L;, L; are languages in the corresponding family.

McNaughton Theorem ([6]). Any rational adherence L can be represented as in (1)
withL,LieR, 1<i<k.

Nivat Theorem ((7]'. Any algebraic adheren:e L can be represented as in (1) with
L,LieCF,1<i<k.

The theorem which foliows will play an important role in the sequel. The
accompanying name seems to to be meaningful for the obtained results.

It improves to ‘unique completion’ the thecrem from [10, Theorem 9.9].

Let us consider a deterministic Turing machine M accepting L.

For any w € L, let spaces (w) be the space used in the computation of accepiance
of w. Then the language

. L:t___{wdSDaCeM(W)‘MIIW GL}
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can be accepted by a linear bounded automaton which will simulate the Turing
machine M using for the extension of its workspace only d-symbols.
Then we can state

Theorem (The Unique Completion Theorem). Foreveryr.e.setL. < V*, d ¢ Vtthere
exists a CS set L" such that L"={wd'™ 'weL,i(w)=0}, wi.re i’ is a (partial)
function.

Note tha: i cannot be a computable function. For, let i be computable. Now
wd' ™ eL" if weL which implies that we can decide the membership for the
(arbitrary) i.e. set L.

We suppose the reader familiar with the basic facts of the Nivat theory of infinitary
languages [2, 7, 8, 9].

2. Properties of non-algebraic adherences

By ‘non-:ilgebraic’ adherences we mean those adherences which are not algebraic
but r.e.

As we shall see in this interpretation, that ‘non-algebraic’ can be replaced
consistently, with ‘context-sensitive’,

Let us present for the beginning two nega‘ive closure results for CS. The first is
well known, and is captured in

Proposition 1. The family CS is not clcsed under FG.

Remark. Itiseasy tosee that RE isclosed under FG, hence for L € CS, FG(L)€ RE.

Proposition 2. The centers of CS are not necessarily recursive-enumerable.

Proof. Letusconsider the wellknownnotr.e.setL < V* L ={w|w € L(M,), where
M,, is the Turing machine encoded by w} [10].

We can consider only deterministic Turing machines without blocking, i.e. every
non-final state has a successor,

Consider the set

Li={wSwi#wy% - #w,|n=1,wi=w,w; by, wis,weL}

Let us observe that L; is context-sensitive.

We have Adh(L,)={w $ comp, |weL and comp, € (V u{#})“ is the unique
infinite computation of ‘nonacceptance’}.

Let us remark

LinV*$=FG(Adh(L,)n V*$=L3S. (2)
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Suppose that L1 is in RE. Then by (2) we have L € RE.
The only way out of this contradiction is to conclude that what were pretendmg
is untenable. [}

Corollary 1. ‘Every complement of a r.e. set can be represented as the intersectioin
between a center of a CS-set and a regular sei, i.e.

RE“<CS°nR.

Ii iz easy to cbserve that thr above inclusion is proper.
A first result concerning non-algebraic acherences is that, in fact, we have only
context-sensitive adhererices.

Theorem 1.

CS adan= RE pan.

Proof. By the Unique Completion Theorem, for every Le RE, L= V* anddg V
there exist a CS set L" given by L" ={wd'™’|w e L, i(w)=0}.

Because of unicity of completion we have Adh(L)= Adh(L") which implies
RE ah S CSaun. [

Corollary 2. CS°=RE".

By the theorems of McNaughton and Nivat any rational [algebraic] adherence
can be expressed in the form (1) where L;, L; are regular [context-free] sets.

In contrast with the fact that rational and algebraic adherences are ‘w-explicit’,
we shall show that CSaqn (= REaqn) are ‘w-implicit’, inplying a fortiori that a
McNaughton-Nivat representation cannot exist for them.

We reformulate a result of Axel Thue [12] in our context.

A (finite or not} word is called square-free (or irreducible or nonrepetitive) if no
subword of the form xx, with x a word #A, occurs in it.

Theorem ((Thue 1912) [12]). There are square-free (singleton) adherences.

To give an example, we shall consider the homomorphism &, defined by h(a) =
abc, h(b) =, h(c)=b and the C§-set

L={n"(a)|n=1}. 3)

It is easy to observe that Adh({L) is a context-sensitive singleton adhereace which
is square-free.

The w-word Adh(L) is known as the Thue-Morse word [1] and the construction
(3) is from [4] ar.d gives a simple proof to the so-called ‘square-freeness problem’
[11], namely the construction of a square-‘ree w-word over a three letter alphabet.
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As a consequence of Thue theorem, CSaan cannot be represented by expressions
with ‘squares’ which implies that explicit occurrence of ‘w’ (i.€. infinite power) to
represent them is impossible.

Corollary 3. CSaan (= RE ag,) cannot be McNaughton—Nivat representable.

A similar ‘Rat = Rec?’ problem can be formulated in the context of families of
adherences.

Given .Z a family of languages, let us denote by ZLaqn the family of adherences
of &, and by MN-Z a4, the family McNaughton-Nivat £-adherences, i.e.

MN-gAdh"—: {Llan, aLo, Ll, e ,Ln, L;, wee ,L;Ggi
L=Adh(Lo)=UJ L, L;‘"}.
i=1

Note that sets of the form (1) may not be adherences. However the existence of
L, assures consistency.

Problem. Given £ a family of sets: Laan = MN-Laan?

For the Chomsky hierarchy the answers are given by the McNaughton theorem,
the Nivat theorem and our Corollary 3.

Theorem 2. Given a family ¥ of languages closed under FG and intersection
[intersection with regular sets] then Laan is closed under intersection [intersection
with R Adh]-

Proof. Let be L €%, E € R. We consider the set L'=FG(L)nFG(R)e &.
We show that
Adh(L") = Adh(L) n Adh(E). (4)
Indeeq,
ueAdh(L)) iff FG(u)cFG(L')=FG(FG(L)nFG(E))

. {FG(u)gFG(L)i {ueAdh(L)
M \Few) cFGE) " ueAdh(E)

iff ue Adh(L)n Adh(E).

So, given L and I we can construct L' € £ such that (4) holds.
The case E € ¥ and £ closed under  is proved in a similar way. (]

Corollary 4. The farilies R aan, CS aan (= RE aan) are closed under intersection, while
the family CF gy, is closed under intersectior with rational adherences.
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Somewhat more general, we can prove the following result.

Corollary 5. Forevery full trio & (i.2. a family of languages closed under homomorph -
ism, inverse homomorphism and intersectior with » gular sets) the family Lagn is
closed under intersection with rational adherences.

Proof. Because every full trio is closed under FG the result follows from
Theorem 2. [

3. The Chomsky hierarchy of adherences

If we consider the correspondirg adherencence families of Chomsky hierarchy
we observe that the hierarchy is preserved except for the last two families which
collapse. In the non-algebraic case, the hierarchy can be refined by the consideration
of McNaughton-Nivat adherences.

A simple iechnical result is presented in the next

Proposition 3. If Z, &' are two farilies of languages satisfying:
(i) contain for any letter a, the singlcton {a};
(ii) are ciosed under -, U, *;
(iii) IL € L'\ such that Adh(L) e MN-& aan, then

MHK-¥ Adh & MN-¥ :\dh-

Proof. Take Lo=La* LcV* a¢V. Then Adh(La*)=Adh(L)uLa*=
Ui=1 LL{® wLa* e MN-%aqn because of (iii) and t1e fact that La* e %",

Suppose iowards contradiction that Adh(La™) € MN-Paap, that is, |_i<1 LLL{“ U
La*=\J/_, E;E[” = Adh(E), forsome E, E;, E! € 5 Because ‘a’ is ‘fresh’, it follows
that there exists a subset J of {1,..., p} such that ' eJ implies Ej\{A}<a™ that is
Ei“=a".

Now La* =U;e; EiE}” = (Ujes Ej)a® which is equivalent to

L=UE,'.

jed
This contradicis < ¥'. O

Theerem 3. Ti:e following inclusions hold :

R aq: = CF poqn < MN-CS ogn © MN-RE p 41 = CSaan = RE aqn.

Proof. The first three strict inclusions follow from Proposition 3 taking L of (iii)
as follows:

{b"c"in =0}, {b"zln =0}
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and respectively a subset of 5* which is 1.e. but not context-sensitive. In all cases
Adh(L) = b“. The last strict inclusion follows from Corollary 2. O

4. Adherences and programs

There are some connexions between divergences in (fiowchart) program schemes
and adherences, which justify again the interest in studying them.

Let us consider a flowchart program scheme § together with a labeling a of
boxes such that each box have a different label and the labeling may be partial,
i.e. there are some boxes without iabel (or more appropriate in our context, labeled
by A).

If Lab is the tfinite) label alphabet, we can associate with finite computations
and infinitc computations over S, words and respectively w-words, i.e. the sequence
of labels of boxes visited by the computation.

In[5]such words are called convergent computation shapes and divergent computa -
tion shapes. Denote by C(S, a) and D (S, a) the corresponding sets. N

Note that in case of partial labeling of S, it is possible to have a divergent
computation with a finite ‘shape’. However we shall include in D(S, «) only w-words
over Lab.

Let us consider total labelings of program schemes. A (flowchart) program scheme
S is called reduced if for any box b, there is a path linking the STAKT and STOP
which passes through b.

It is easy to prove the following result.

Proposition 4. For any reduced program. scheme S and total assignment o, the set
of divergent computation shapes D(S, a) eqiials the adherence of C(S,a), i.c.
D(S, a) = Adh(C (S, a)).

Proof. Let u e D(S, ). Then u =u(1)u(2) - - - is an infinite sequence of labels of
boxes in §, describing a path in the graph of S.

For any n, let b, be the box labeled by u{n). Then S being reduced, it follows
that for any n there exists a path linking b, with STOP. Denote the corresponding
word from Lab* by w,.

Then, for any n, u[n]- w, € C(S, a) which yields u € Adh(C(S, a)). The converse
inclusion follows similar. [J

Corollary 6. The family of divergent cmputation shapes of reduced total labeled
program schemes equals R aqn.

When we consider interpreted program sch.emcs, i.e. programs, the set of divergent
computation shapes are not necessarily rational [S] and moreover not necessarily
adherences.
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However regarding partial labeled programs, every member of CSaan (= RE aan)
is the szt of divergent computation shapes of some program.

Proposition 8. The family of divergent computations shapes of partially labeled
programs, which are adherences, equals CS pcy, (= RE ..an).

Proof. Let L = Adh(L') be a member of €Sx4, For simplicity we consider L'
{a, b}". Suppose that M is a Turing machine accepting L'.

Let us consider the following program P (having unrefined parts) which will
provide us with the fact that considering a partial lateling a with Lab={a, b} we
have that D(P, a’ = Adh(LL")=L.

The input variable of P is x, which is initialized with an arbitrary member of {a, b}*.

START
initialize x.
if M accepts x
theny:=x; P';
while true do
z:=Nextix); y :=tail(z, x); x:=2;
if M accepts x then P’
else
od
eise
STOP

where Next(x) is the next word after x in the lex‘cographic order; tail (z, x) is
defired only if z = xz' with 2’ # A, ir: whcih case tail <z, z)=2z'.
In P above the fragment P’ is

while x #A do
if first-is-a(y) then

a y .= erase-first(y)
else if first-is-b(y) then
b y .= erase-first(y)
else
od

We remark that a labels only two doxes in P'.

Gur meaning for ‘first-is-a’ is ‘if the first letter in y is a’; the function ‘erase-first’
erases the first letter of the nonempty word to which it is applied.

The program P diverges in two situations:

() for a word w=L' such that we(L')°=FG(\dh(L")), i.e. is a prefix of a
member of L = Adh(L');

(i) tor a word w € L’ sucy that w g L'
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