
Theoretical Computer Science 21 (I-982) 341-349 
North-I-Iolland Publishing Company 

341 

NOTE 

SOME REM IRKS ON NON-ALGE C AD 

Sor;n ISTRAIL 
Depwtment of Mathematics and Computer Center, University “AILCuza” la,pi, G600 Iasi, 
Rom lznia 

Communicated by M. Nivat 
Received October 198 1 
Revised1 April 1982 

Abstract. We presenr some properties of non-algebraic adherences of languages, wl~ci cali be 
consistently called context-sensitive adherences, because it is proved that in the Chomsky hierarchy 
of adherences, c jncext-sensitive and recursive-enumerable adherences coincide. Concerning the 
center-mapping the traversing from algebraic to non-algebraic takes simple recursive to not 
necessarily recursive-enumerable. Except for the last equality, the Chomsky hierarchy of adheren- 
ces is proper: RAdh 6 CF’Adh c CSl\dh - - REAdh and moreover, it can be refined in the non-alg&rsis 
case :jy considering the McNaughton-Nivat adherences. 

Regarding the programming context, adherences occur when we consider the set of divergent 
computations ‘shapes’ of a Grogram or a program scheme. In this respect, the ‘interpretation’ is 
powerful enough to translate RAdh to CSAdh. 

I@ Preliminaries 

Given a finite alphabet A and N, = {1,2, . , . } a word over A can be thought as 
a partial function f: N, +A, whose domain is 

[nl=(1,2., . , . ,n}. 

For any HZ < n we shall write f[m ] =f(l)j(2) l l . f(m). 

An infinite word over A will be a total function u : N, -+ A, We shall denote by 
u[n] its initia:l seigment of length n, i.e. 

Let be A? the set of infinite wor s over A and we put A” = A ’ LJ A’“. 4 &note!; 

the empty word. 
The length of a, tinite word f is denoted Ifl. 
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342 S. hail 

The operator ‘left factors’ is defined by 

FG(f)=:{gE:A”Ig =f[n], n <If!} frprf”EA*, 

FG(u)=={u[rz]~~2~N+} forf4EiC, 

FG(Lj= u FGCx) forL GA”. 
XEL 

A basic notion in the theory of infinitary larlguages is that of adherewe defined 
as follows: for L GA”, Adh(L) = {u E A” )FG(u) c FG(L)}. 

The center of a language L c_ A” is L” = FG (Mb(L)). 
For a family o$ languages 2, let 2 A& denote its family of adherences. i.e. 

sAdh = (L 1 there in a finite alphabet 

sl and L’ c A*, L’ E 29 such that L = Adh(L’)}. 

The families of the Chomsky hierarchy will be derzoted 48’ (regular), CF (context- 
free), 63 (f:ontext-sensitive), p;IE (recursive-er\umez-able). 

Regarding adherence families we obtain &dh, CPA&, c&dh, R&dh. 
The families H A& and c#&h are called of rational resrpectively algebraic adher- 

ences. 
ket us denotfe R’, CF’, C’S’, REc the corre!;ponding families of centers of 

I anguages. 
The family oti rational adherences and tbiit CC: algebraic adherences possess a 

representation theorem of the form: 

where Li, L: are languages in the corresponding family. 

McNaragbn Theorem ([ii]). Any rational adherewe L cm be represented as irt (I) 
with Li, L f E R, 1 s i :S k, 

?/b&c adhcrerr,:e L. can be represented as in (1) with 

The theorem which follows will play an important role in the sequel. The 
accompanying name seems to to be meaningf’al for ahe obtained results. 

It improves to ‘unique completion’ the the(:) fl-ajrn [lo, Theorem 9.91. 
Let us consider a determin:istic Turing machine la4 accepting L. 
For any w E L, let spaceM (w ) bl;;: the space used, in the computation of acceptance 

of W. Then the language 

* L”=(wd spaceM(w)-lwl 
IW ELI 
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can be accepted by a linear bounded automaton which will simulate the Turing 
machine M using for the extension of its workspace only d-symbols. 

Then we can state 

Theorem (The Unique Completion Theorem). For every r.e. ,cet L.. cr V*, d & Vfhere 
exists a CS set L” such that L” = {wd i(w) 1 w E L, i(w) 3 0}, w hi ‘i’ is a (paitial) 

function. 

Note thaz i cannot be a computable function. For, let i be computable. Now 
wd i’w’ E L” 8 w EL which implies that we can decide the membership for the 
(arbitrary) i.e. set L. 

We suppose the reader familiar with the basic facts of the Nivat theory of infinirary 
languages [2,7,8,9]. 

2. Rope&es of non-algebraic adherences 

By ‘non+tlgebraic’ adherences we mean those adherences which are not algebraic 
but r.e. 

As we shall see in this interpretation, that ‘non-algebraic’ can be replaced 
consistently, with ‘context-sensitive’. 

Let us present for the beginning two negative closure results for CS. The first is 
well known, and is captured in 

Proposition 1. The family CS is not ched under FG. . 

Remark. IIt is easy to see that RE is closed under FG, hence for L E CS, FG(L) E RE. 

Proposition 2. The centers of CS are nr3t necessarily recursive-enumerable. 

Proof. Let us consider the well Known not r.e. set L c V*, L = {w 1 w ti L(M,), where 
Mw is the Turing machine encoded by w ) [lO:l. 

We can consider only deterministic Turing machines without blocking, i.e. every 
non-final state has a successor. 

Consider the set 

Ll={W $ Wl# W2#* * l #W,q)n 31, Wl=W, Wi +,w,Wi+i, WEL}. 

Let us observe that L1 is context-sensitive. 
We have Adh(L1) = (w $ compw 1 w E L and camp, E (V u {#})” is the unique 

infinite computation of ‘nonacceptance’}. 
Let us remark 

L; r’r V*$ =: FG(Adh(L1)) n v”$ = L$. ((2) 
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iSuppose that _L,T is in RE. Then by (2) we ‘Inal e L E RE. 
‘Thle only way out of this contradiction is ta c.Jnclude that what were pretending 

is untenable. c3 

Gordlary I. kvery complement of a r.e. set can be represented as the intersection 
between a center af a CS-set an,d a regular sef, i.e. 

It ifz easy to observe that t&p above inclusion is proper. 
A tint result concerning non-algebraic adherences is that, in fact, we have only 

context-sensiti~+~e adhererices. 

Theorem 1. 

-Adh = REA,dh* 

Pr*oof. By the Unique Completion Theorem, for every L E RE, L E V* and d E V 
there exist a CS set L” given by L”={wd’(“‘lw EL, i(w)s 

Because of unicity of completion we have Adh(L) = Adh(L”) which implies 

R &dh c CtAdh. n 

Gurcollary 2. @SC = REC. 

By the theorems of McNaughton and Nivat any rational [algebraic] adherence 
can be expressed in the form (1) where Li, .L: are regular [context-free] sets. 

In contrast with the fact that rational and algebraic adherences are ‘w-explicit’, 
we shall show that CSAdh (= RJl!&dh) are ‘w-implicit’, inplying a fortiori that a 
Mcldaughton-Nivat representation cannot exist for them. 

We reformulate a result of Axe1 Thue [12] in our context. 
A (finite or not) word is called square-fwe fzor irreducible or nonrepetitive) if no 

subword of the fo:m XX, with x a word :+A,, occurs in it. 

Theorem ((Thue ;1912) [ 121). There are sqilare-free i singleton) Qdherences. 

To give an example, we shall consider t!,re homomorphism h, defined by h (61) = 

abc,, h(b) = W; h(c) = b and the C&set 

L ={h”(a)~n al}. 

It is easy to obrierve that Adh(L) is a con text-sensitive singleton adhereace which 
air; square-free. 

The w-word Adh(L) is known as the Thue-Morse word [l] and the construction 
(3) is from [4] arid gives a simple proof to the so-called ‘square-freeness problem’ 
f 1’61, namely the construction of a square+ee w-word over a three letter alphabet. 



Some remarks on non-algebraic adherences 345 

As a consequence of Thue theorem, CS A& cannot be represented by expressions 
with ‘squares’ which implies that explicit occurrence of ‘w’ (i.e. infinite power) to 
represent them is impossible. 

Corollary 3, C&&, (= j%EA& cannot be McNaughton-NCJat representable. 

A similar 
adherences. 

Rat = Ret?’ problem can be formulated in the context of families of 

Given 2 a family of languages, let us denote by ZAdh the family of adherences 
of 2, and by MN-2 A& the family McNaughton-Nivat S-adherences, i.e. 

MN-sAdh = 
1 
L13n, 3L0, L1,. . . , L,,, Li, ,, . . , LI,ES: 

L = Adh(L0) = fi Li, Li”}. 
i = 1 

Note that sets of the form (1) may not be adherences. However the existence of 
L 0 assures consistency. 

Problem. Given 2 a family of sets: ZAdh = MN-SA,jh? 

For the Chomsky hierarchy the answers are given by the McNaughton theorem, 
the Nivat theorem and our Corollary 3. 

Theorem 2. Gillen a family 9 of languages closed under FG and intersection 
[intersection with regular sets] then 28’ A& i:3 closed under intersection [intersection 
With RAdh]. , 

Prod. Let be L E .2Z9 E E R. We consider the set L’ = 4;%(L) n FG (H ) E 2’. 
We show that 

Adh(L’) = Adh(L) r\ Adh(E). 

Indeed, 

(4) 

u cAdh(L’) iff FG(u)rFG(L’)=FG(FG(L)nFG(E)) 

iff FG(u)zFG(L) iff u E Adh(L) 

1 FG(u) c FGiE) 1 u E Adh(E) 

iff u E Adh(L) n Adh(E). 

So, given L and 1: we can construct L’ c 2’ such that (4) holds. 
The case E E 55’ and 9 closed under /I is proved in a similar way. 14 

Adh ( := Adh) are closed under intersection, w bile 
is closed under intersection with rational adherences 
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Somewhat more general, we can prove the falllowing result. 

Cor&wy 5. For every fuU trio .Z’ (i.e.. 2 a family t If l<angtxages closed under homomorph - 
ism, immerse homomorphism and intersection * with r* +gular sets) the family S,+,dh is 
clostsd under intevection with rational adherences. 

Proof. E&cause every full trio is closed under FG the result follows from 
Thesrelm 2. G 

3. The Chomsky hierarchy of adherences 

If we consider the corresponding adherencence families of Chomsky hierarchy 
we observe that the hierarchy is preserved except for the last two families which 
collapse. In the non-algebraic case, the hierarchy can be refined by the consideration 
of McNaughton-Nivat adherences.. 

A simple technical result is presented in the next 

P~opdtfon 3. IjYZ, 2’ are two families of languages satisfying: 
(I) contain for any letter aL, the singkton (a); 
(ii) are closed under 0, u , s I, 

(iii) 3L E 9’\5? such that Adh(L) E MN-2&dh therl 

Proof. Take Lo= La*, L E V*, a ti V. Then, Adh(La*) = Adh(L) u La* = 
d;z 1 L,&:” u La * E MN-Z’ A& because of (iii) and t re fact that La * e 9’. 

Supp(ose Wwards contradiction that Adh(La *) E 1 dN=zAdh, that is, Uy= 1 LiLi” u 
LLI*=(J~=~E~E~~ = Adh(E), for some E, Ei, E! E -7 Because ‘a’ is ‘fresh’, it follows 
that there exists a subset J of {1 , . . . , p} such that ! E J implies Ei \{A} c a+ that is 
E;” = a”, 

NOW La * = UjcJ EjEi” = ( UjEJ Ej)aw which is equivalent to 

e4prelm 3. 7ke following inclusions hold: 

Adh=MN- Adh ‘= Adh = Adh- 

. The first three strict inclusions follow from Proposition 3 taking L of (iii) 
as follows : 

UJ Y ;n SO}, {b”‘ln 20) 
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and respectively a subset of &* which is I .el but not context-sensitive. In all cases 
Adh(L) -= bw. The last strict inclusion follows from Corollary 2. 0 

4. Adherences and programs 

There are some connexions between divergences in (flowchart) program schemes 
and adherences, which justify again the interest in studying them. 

Let us. consider a flowchart program scheme S together with a labeling a! of 
boxes such that each box have a different label and the’ labeling may be partial, 
i.e. there are some boxes without label (or more appropriate in our context, labeled 

by A). 
If Lab is the d.finite) label alphabet, we can associate with finite computations 

and infinite: computations over S, words and respectively o-words, i.e. the slequence 
of labels of boxes visited by the computatiorl. 

In [S] such words are called con&gent compu&on shapej: and divergent computa - 
tion shapes. Denote by C(S, cu) and D(S, cu) the correspond{ing sets. L 

Note that in case of partial labeling of S, it is possible to have a divergent 
computation with a finite ‘shape’. However we shall include izn D (S, cy ) only o-words 
over Lab, 

Let us consider total labelings of progra_m schemes. A (flowchart) program scheme 
S is called reduced if for any box 6, there is a path linking the START and STOP 
which passes through b. 

It is easy to prove the following result. 

Proposition 4. For any reduced program scheme S and tot,zl assignment Q, the set 
of divergent computation shapes D(S, a) eqr& the adherence of C(S, a), Le. 
D(S, a) = Adh(C(S, a)). 

Proof. Let u eD(S,cr). Then u =u(l)u(2) l l I is an infinite sequence of labels of 
boxes in S, describing a path in the graph off S. 

For any it, let b, be the box labeled by u(n). Then S being reduced, it follows 
that for any rt there exists a path linking b, with STOP. Denote the corresponding 
word from Lab* by w,,. 

Then, for any n, u[n] l 

inclusion follows similar. 

Corollary 6. The famiZj I 

program schemes equals 

wn E C(S, cu) which yic Ids u E Adh(C(S, a)). The converse 
cl 

of divergent c*jmplutation shapes of reduced total labeled 

When wt: cailsider kterpreted prog,w.m sckemb;s, Le. programs, the set of divergent 
computation shapes are not necessarily rational [!!?I and moreover not necessarily 
adherences. 
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However regarding partial labeled programs, every member of CSAdh (= 
is the set of divergent computation shapes of some pI*ogram. 

Adh) 

kqm$tion 5. The family of divergent computatiotz 5 shapes of partially labeled 
pKlgF4W’U, which are adherences, equals c$A& (= R&d& 

!Pro& Let L = Adh(L’) ble a member of CS A&. For simplicity we consider L’ c 
.[a, b}“Z Suppose #that M is a Turing machine acceptin;g L’. 
Let us. consider the fol!lowing program JP (haviq!; unrefined parts) which will 

provide UIO with the fact that considering a partial labeling Q with Lab = {a, b} we 
have that I3 (p, B 1: = Adh(J,‘) = L. 

T’k input variable of P i:s X, which is initialized B ith :an arbitrary member of {a, b}*. 

3TART 
initialize x . 

if M accepts x 
then y :=x; P’; 

whiile true bt, 
2: : = Nextllx); y :=t2ii[r,x); x:=2; 
ill A4 accepts x then P’ 

else 
Od 

else 
STOP 

wher-e Nr:xt(x) is the next word after x in the IexicoGraphic order; tail (z, x) is 
defined only if z = xz ’ with z ‘ + A, in whcih case tail p z, z ) = z ‘. 

Zn B above the fragmerlt p’ is 

whiRex fh do 
if first-is-a ( y ) then 

a Y : = erase-first(y) 
ehle if first-is-& ( y ) then 

b y k= erase-first(y) 
else 

Od 

We remark that cy labells only two aoxes in P’. 
Our meaning for ‘first-is-a’ is ‘if thc2 first letter in y is a’; the function ‘erase-first’ 

erases the first letter of the nonempty word to which it is applied. 
The program P diverges in two situations: 
(4) for a word IV E k’ such that w E (L’)’ = iF%(_ Mh(Z,‘)), i.e. is a prefix of a 

membt:r of L = Adh(k’); 
(ii) tar a word w E E’ suc!r that w liE L”. 
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By the construction of (Y, D(P, ar ) will describe only the first type of divergence, 
namely 

L = Adh(L’) = D(P, a). q 

I want to thank very much Maurice Wivat for his encouragements to write this 
paper and one of the referees for detailed comments and pertinent suggestions 
which improved the paper. 
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