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Abstract. The paper introduces a model for processing systems which provides “environment’ to
the abstract notion of process as introduced by Nivat [13]. A basic component of the madel is
a protection mechanism which is general enough to capture as particular instances known
protection strategies te.g.. take, grant, create, parameter passingi [5, 8, 9].

Decision problems associated with these systems are discussed for both cases: processes with
infinite and finite behaviours. Solvability results ase obtained for the safety problem: as a corollary
we get the solvability result of Beauquier in the context of his processes { 1]. Unsoltability results
are also derived.

A concept of compatibility is introduced for processes acting in parallel suject to some
synchronization condition. We show that the traversing from rational to algebraic systems can
take the compatibility problem from solvable to unsolvable.

1. Introduction

The problem of controlling the access to information in largc systems, manipula’-
ing many kinds of data, having different owners, is difficult and has various particular
aspects. Every such system has some mechanism implementing security policies,
being from this point of view a ‘protection system' [15].

One of the most influencial model for protection systems is the model based on
‘capabilities’ [S. 15].

Starting with an idca of Beauquier [1] which considers a capability based prot. c-
tion system as the se” of sequences of permitted “actions’ in the system, we ¢*.¢ a
general model for protection systems within the framework of the theory of
processes, as developed by Nivat [13, 2, 17].

Our model provides ‘environment’ to the abstract notion of process, ha- ing finite
or infinite behavicurs, and being general enough to capture as particular instances
the “protocol’ proces- s of Beauquier [1, 2] as well as other ‘reasonable’ protectinn
mechanisms.

* A preliminary version was presented at the 8th Colloquium on Trees in Algebra and Programming,
L'Aquila, Italy, March 9-11, 1983,
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Decision problems associated with these systems are discussed for both cases:
infinite and finite behaviours.

Solvability and unsolvability results are obtained for the safety problem and the
compatibility problem. Our concept of compatibility is introduced for systems acting
in parallel subject to some synchronization conditions.

Table 1 summarizes the decidability results obtained in this paper (S = solvable,
U = unsolvable, ? = unknown).

Table 1
Decidability results.

N e e e e e s e o e PR

Decision

problem Safety Compatibility
System’'s e — — e
class \ - ) *f wf & w wf wf

Rational S S S S S S S S
Algebraic S S S S i ? U ?
Context-sensitive ? ? U U 7 ? U 0
Recursive-enumerable U U & U U U U U

2. Preliminaries on infinite words and languages

Given afinite alphabet A and N. ={1, 2, .. .}, a finite word over A can be thought
of as being a partial function f: N. > A whose domain is

(m]=1{1.2,....n}

For any m -~ n we shall write
flm]=f0fQ2r- - fimo.

An infinite word over A will then be a total function « : N . > A. We shall denote
by «{n]its initial segment of length n, i.c..

uln]=uthr - wmn).

uf0] will always mean A (the emptyv word).
Let A™ be the set of infinite words over A and we put A = A4“ LA™,
The length of a finite word f will be denoted | .
The operator “left factors’ is defined by

FGifv={geA™ g =flnl.n~ifl} forfeAr,

'

FGiuv={ulnllneN.} forue A",
FG(WL: = FGx) forLcA™.
vl
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A basic notion in the theory of infinitary languagus is that of adherence defined
as follows:

Adh(L)={ue A" |FG(u)sFG(L}} forL cA”.

- L <A™ is called closed if Adh(L)< L.
- L < A” is called rational (algebraic) if FG(L) is regular (context-free).
- L < A is called central if L = FG(Adh(L)).

Following Nivat [13] and interpreting A as the alphabet of ‘actions’, a process p
is "'a mechanism capable to do actions".

The set of infinite *behaviours’ of p is some fixed set B (p)< A” and the set of
“finite behaviours' is some fixed set B*(p)c A*. If p =(p\,...,p) is a vector of
processes, then B (p)=B“(p,)x- - - x B (pi)(respectively B¥*(p)=B*(p;) x- - - X
B*(p.)) and any we B”(p) (ue B*(p)) may be viewed as being an w-word (word)
over A* (ie.. AXAX"%A) (B*(p) is restricted to k-tuples of words of the
same length).

We call a process rational (algebraic, closed) if its set of infinite behaviours is
rational (algebraic, closed).

A set Sc A" is called a “condition of synchronization' or ‘synchronization set':
given S, we can define the set of S-synchronized behaviours of p as BY(p) U B3 (p)
where

BS(p)=B“(p)nS” (respectively, B&(p)=B*(p)nS*).

We shall denote by R, CF, CS the classes of regular, context-free. :espectively
context-sensitive languages of the Chomsky hierarchy.

The family of rational adherences and that of algebraic adherences possesses a
representation of the form

3
L=UJL, (L), (1)
[ |
where L, L, are languages in the corresponding family.

Theorem 2.1 (Mc. Naughton). Any rational adherence L can be represented as in
(OHwithL, [ <R, 1=i<k.

Theorem 2.2 (Nivat). Any algebraic adherence L can be represented as in (1) with
L.L eCF, 1=i<k.

More about infinitary languages and processes can be found in [12, 13, 17, 18].
We suppose the reader familiar with basic facts of formal language theory [4,
14, 3]

3. A model of protection in processing systems

A basic question concerning computing mechanisms is the following.
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How can a ‘mechanism’ be programmed to supervise the development of a
‘process’ (i.e., a set of ‘actions’ performed sequential or in parallel) in such a way
that the security requirements do not be violated? Much more, in what conditions
can we tell something a priori on the possibility of executing ‘illegal’ actions?

Let us introduce the basic concept of the paper.

Definition 3.1. A processing system is a 6-tuple PS=(Act, Q, F, qu, #) where
A =(Act, Q, F, q,) is a finite automaton (without final states) and # = ({Q.}.c A H)
is the ‘capability legisiation’ and
(i) Act s the set of actions,
(i1} Q is the set of states,
tiil) F:ActxQ - 29 is the transition function,
(iv) go€ Q is the initial state,
(v) Q. < Q is the set of states compatible with action a for any a € Act,
(vi) H, the set of histories, is a prefix-closed subset of Act*,
Two languages, related to a processing system are introduced:
- The set of legal infinite behaviours is given by

L, PS)={uecAct’¥i=0: Flulil,qo) " Q.1 #0
and u[ile H;.
- The set of legal finite behaviours is given by
L.(PS)={ueAct' \Vi,0<i<|ul]: Fiu[i],qu) N Quu. 1. =)
and ue H}.

Remark. Because H is prefix-closed. in the definition of L (PS) we have: u < H.,
V), 0= j<ululjleH. .

In fact, a processing system PS may be viewed as an action-sens:tive con-
struct. Every action changes the state of the system in the same way an input
symbol changes the state of a finite automaton. In addition, tlic capabiiity iegisiation
implements a “protection mechanism’: denoting by Q, the subsct of Q consist ng
of those states in which action *a’ can occur, we require for a process to be composed
from actions having a ‘good’ state as well as a "good" history.

So. the process described by the sequences of actions, is protected from ‘illegal’
occurrences of actions which do not agree with compatible states or with admissible
histories.

We shall associate two processes to a processing system:

- pps the full process with infinite behaviours B, ( nps) = L, t PS) and finite behaviours

B ipps) == L, (PS),

- pps the historviless process, having as infinite l‘clm\_'iours

B, ipps)={ueAct” \Vi=0,Fu[i], g~ Quii. 1, # 0}
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and as finite behaviours

B.(pps) ={u e Act*|Vi, 0<i <|u|: F(u[i], g,) " Quii- 1, # 0}

{i.e., we have dropped the restriction on histories).

Our model incorporates features presented in other protection models (Beauquier
[1], Lipton and Snyder [9] and Harrison, Ruzzo and Ulmann [5]), providing us
with a general framework to represent protection mechanisms and having decision
procedures for enough complex classes.

As will be clear from Example 3.2, our mechanism is powerful enough to express
protection strategies in the same way, as graph-rewriting rules do [8, 2] (e.g., take,
grant, call, create, segment). Thus we can model sufficiently realistic systems.

Example 3.2. The states of our processing system PS will be graphs with vertices
C, a set of objects/subjects ‘e.g., Editor, File, User 1) and edges E, labeled by
names of actions (e.g., call, read, write-abbreviated ¢, r, w).

We interprete an action as being a triple, consisting of two labeled vertices
together with a labeled edge joining them (see, e.g., Fig. 1.

user read file

O~ O

Fig. 1. The action "a .

If *a” denotes this action, Q.. the set of states in which "a” can occur, will be the
set of all graphs with vertices from € and edges from E which contain as subgraph
the one which represents *a’ (as in Fig. 1).

Now, if states means graphs, state-transitions will be grapn transformations by
a sct of graph-rewriting rules /2. We shall exemplify with GRANT: for sy, 2, 53€ C,
and a the action (s, a, 5:), we consider the graph rewriting rule depicted in Fig. 2.

a a
0 write e 0 : . write ; a .

GRANT

Fig. 2.

That is, "if s, can write on s> and it happens that it can do « to s, then s, grants
s> the ability (the right) to do « to s3™". If one wants to canture a GRANT-mechanism
our set A2 of rewriting rules will contain GRA:NT rules for any vertices and edges
fultilling the ‘left-member” requirement; also we shall include an “identity ruie’
(Fig. 3) for anv edge.
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Fig. 3.

We shall consider five objects/subjects sy, 52, 53, 4, S5 and the initial state q,
wiil be given by Fig. 4.

write,
call
D
write

l'eadl

Fig.4. The initial state q,.

In our formalism we shall define the transition function by

Fla,q)={q'|lqg = q'.rulee R).

rule

H, the set of histories, will be constructed as follows. We want any write-action
to be ninmediately preceded by a call-action, i.c., if v € H, v = v, write; v, then
v =) call write; v- {in abbreviated form v = v1cw;va).

Hence we shall take H =FG(({c, ri, r2}* - (c{w, wa, wih™* - {c, ry, ra}%).

Fig. 5 presents (non-identical) transitions of states as well as sequences of legal
actions in PS. We shall focus our attention on L (PS).

Considering the historyless process of PS, namely pps we have

B.,(pps)={c,war}’ufe, wa, ri}¥ vy {eowiowa, r}”

ule, wa, rif ow {e, w, wa, 1 P wa s {e w, wa, wa, oy, 101

which is a rational process.

For the other process pps (of legal behaviours), B,,( pps) will be obtained as given
by Fig. 5.

Notation. If V7 is an alphabet containing ¢, wy, ..., w, and V' = Vi{w,, ..., w}
then [ V] will denote the set

*

1
{ ‘r] — ( ‘/V*U ((‘H', ).4: ‘/!’*)
[ |
Now we have
B, tpes)=[c,war ] Ule,wa, ri]ewy s Teowy, wa, n ]
clecws b ewy s leswiowa m ] ows s feowy waowa, ry, e

Hencee ppg is a rational process.
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write,

et
do: f.\ call _/c\( L \rs) () Hcm:xmr
/ \_/ write, \\\_{/)\/ (wyis
performed)

read,
e, wa, ’1}*

write,

_/——\

‘q,_ (s\ call (S\Y (s\ ?\s read, m
12: 1 2 - 3 - 4} ——=3ASs

read;

feowa, ¥ -wi-{e,wi,wo, i} wa - {e, wi, wa, wa, ry, ro}*

write,
, GRANT
q: s Afp---- Ss i
— _/ write, N\ __A__write; \_ ~ | (Wals
T~ performed)
read,

{c,wa, "1}* “wyc{e, wiawa, "1}*

Fig. 5.

It is not too difficult to see that taking another history set H we can obtain ppg
algebraic.

Indeed, it is sufficient to ask that read—and write —actions to be (not necessarily
immediately) preceded by a call-action.

Proposition 3.3. For any processing system its historvless process is rational.
Le., the set Rps = B (pps) is regular.

Proof. Lect us consider the regular grammar G = (Vx, Vi, x. P) where
i) WV ={xolu{la, q.)aeAct, q. € Q.},

i) Ve ={ilye Va\{rilh

(iii) P consists of the fol'owing rules (ta, g)1e Vi ):
- Xu—(a,qu) if a € Act and g, € Q..
- ta g) = ta.gia’ g forall q', a’,with o' ¢ Fla.g)n Q...
- la, q)—=>A.

It is casy to observe that

B.(pps)=h(L(G),
where /1 is a homomorphism defined by

Iz(tﬁ)\za forall a, q. T
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Remarks. (1) L (PS)=Rpsn H.
(2) A e L (PS).

Proposition 3.4. Let PS=(Act, Q, F, qu. ) be a processing system where # =
({Ou}ugAu. H) Tll(”l

Adh(H)n Adh(Rps) = Adh(H N Rps) = L, (PS). (2)

Proof. ia) Adh(H )~ Adh(Rps) = Adh(H N Rps).

We always have: Adh(H n Rps) € Adh(H )~ Adh(Rps). The converse inclusion
follows from the fact that H and Rps are prefix-closed.

(by L,,(PS)=AdhiH N Rps).

Let wuelL,iPS). Vi ulileRpsnH =FG(RpsnH) and hence FGlu)c
FG(Rpsn H) yielding u € Adh(Rpsn H). Conversely, let « belong to Adh(Rpsn
H). We have FG(u) € FG(Rps " H) = Rps " H which shows that Vi, u[i]e Rps " H,
le,uel (PS).

Remark. From this proposition we have
AdhiL (PS) =L, (PS) (3)

which seems a very natural link between the two kinds of behaviours as already
emphasized by Nivat [13], hence :.,,(PS) is a closed language.

4. Decision problems

This section is devoted to the study of the ‘safety problem™ and the ‘compatibility
probtem’ for processing systems. Decidability results are obtained for both
problems.

Definition 4.1. A processing system is called centralif H ~ Rpg is a central language.
It 1s called rational (algebraic, context-sensitive) if H 15 regular (context-free,
context-sensitive).

Remark. The "centraiity hypothersis’ means in fact that

FG(L,,iPSh = L (PS), (4

The satety problem

To getinsight why we call the problem 'safety problem’ instead of, say, "occurrence
problem” or -aiphabet problem' lct us consider the environment provided by
Example 3.2, There, an action meaas that a subject/object does something to
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another subject/object. So, if for example ‘a’ will be interpreted as ‘s reads s”.
then the safety problem asks if, in some legal behaviour of PS, s will eventually
can read s’ at some moment.
In this interpretation we obtain the well-known concept of *safety’ as use.1in [8, 2].
Usually the question of safety will stand for iilegal actions to see whether it
happens to be a behaviour containing them.

The safety problem for infinite behaviours (w-safety problem). Given a
processing system PS = (Act. Q, F, qo, %) and an action a € Act, does there exist a
behaviour « € L, (PS) such th..c u = wau' for some w € Act* and '€ Act®?

If for a given PS and ‘a’ the answer to the w-safety problem is “'no™, we shall
say that “'PS is w-safe fora".
We shall denote by
SAFETY ps.o = FG(L,,(PS) ~ Act* - a. (5)
Let us remark that PS is w-safe for "a” if and only if SAFETY ps_, =
The safety problem for finite behaviours (+-safety problem). Given a pro-

cessing system PS =(Act, Q, F, qu, #) and action a € Act, does there exist a
behaviour w € L (PS) such that w = w'aw"” for some w', w”e Act*?

This time we have to deal with the set X = H nRpsn Act™ - a - Act*, but because
X =0ift H nRpsn Act™ - a =0, we shall denote by

SAFITY ps., = H N Rps ™ Act™ - a. (6)

In an analogous way as for the w-safety problem, we see that PS is #-safe for

‘a’ iff SAFETY pg, = 0.

Theorem 4.2. Let PS bhe a central processing system and a € Act. Thea PS s
w-safe for a iff PS is =-safe for a.

Proof. Because of (4), (5) and (6) we have

SAFFTY pg.q = SAFETY pg 0. (7)
Theorem 4.3, The *-safety problem for algebraic processing systems is solvable.
Proof. The theorem follows from (6) and the fact that H is context-free. ]

Corollary 4.4. The w-safety problem for central algebraic processing systems is
solvable.



92 8. Istrail, C. Masalagiu

Remark. For non-central Nivat-processing systems PS we have in general

3} %
SAFFTY ps.a & SAFETY ps.,, Va

and it is difficult to treat FG(L,(PS)).

However we can prove the following theorem.
Theorem 4.5. The w-safety problem for algebraic processing systems is solvable.

Proot. By Proposition 3.4 we have

L.,(PS) = Adh(L .(PS)),

that is, L,,(Py) equals the adhcrence of a context-free language and hence it has a
Nivat representation

"
L.,iPSv={J L, -«L})
i1

where [, and L, i = 1,..., p are context-free languages (se¢ Theorem 2.2). Then

r)
FG(L,,(PS) = [FGIL) U L(L)* - FG(L))

o]

1s a4 contexi-free language. So our result follows because the emptiness problem for
context-free languages is decidable. ]

We shall discuss some extensions of the problem in Section S.

Svachronization and compatibility

We shall consider the compatibility problem for processing systems, showing that
in the rational case the problem is decidable. Our notion of compatibility 1s more
general than that of Beauquier (viewed only as inclusion between the sets of
behaviours)—scee Section S,

Gur concept is formulated in the context of parallelism and synchronization.
Within this framework we feel that the notion captures an interesting phenomenon.

Let us suppose that we have two processing systems with a common Act
st

PS, “tAct.Q, F.qu, %), 1=1.2

and a synchronization” set § < Act < Act.
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The w-compatibility problem of PS, with PS,. For every infinite behaviour of PS;
does there exist an infinite behaviour of PS,, such that the two processes pps,, Pes.
can ‘cooperate’ (i.e., run in parallel and satisfy the synchronization condi-
tions) during these behaviours?

If the answer is “'yes™, we shall say that **PS, is w-compatible with PS,".

Notation
LS(PS|,PS:)={v €8 |v =(uyy, tx)aty2, t23) *+ * (Uyp Uay) L
Wi = Ul din s €ELL(PS), 1=1,2}.
The infinite word ¢ above will be denoted by
Uy, U).

Also. if w and z are finite words of the same length w=w, -+ w,,
then (w, z) will denote the word

(Wi 2w, 22) = (w 2,).
Thus
L3PS,,PS:)={veS” v = u),u,€L,(PS),i=1,2}
We shall define here the “finite’-analogous for L ‘E”(PSI. PS-). Namely, we put

L':(Psls PSZ) :{“‘ Es‘“';“v = U s Hap ), U= U Uy,

€L PS).i=1,2}

={(uy, u) | € L (PS,), 1 1,2, 1] = lusl)

We can extend our notation to languages in the following way:

(L. L:) :{<Nl~ 1)

€L u-els} forL,.L.<A",

(o L) = w2 Ly usells,

wyl =y forL, L.cA™.

Now we can reformulate the o -compatibility problem:

Vll1€ I_“,( PS\ ), 3“3 € L“,(PS:): (1 1y H:)'E L‘;"PS;. PSg) .

Defining the homomorphism 7 (first projection) by m((a, b)) = a for any (a, b) €
S. we can extend it to infinite words as follows: if ¢ €S“, we define m(¢) as the
limit of the sequence (¢fn]), ... i.e., the unique «’ such that, for any n =1,
e ]) is a prefix of it.

Reformulating again, the «w-compatibility problem becomes

TT[(L;‘(PS‘. PS:’" :L(,,(PSL) 2,
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Proposition 4.6. Given two processing systems PS,, PS; and a synchronization set §,
there exists a processing system PS such that

L.,(PS)=L%PS,.PSs),  L,(PS)=L%(PS,,PS:).

Proof. We take

PS = (Act < Act, Q, xQ>, F, (qu1, qu2)s %)
where F is given by

Fila,. a>), (g, q)={th ,h)hieFta,q), i =1,2
and

#=GQuuyun tiarane aa’ H

with

O _ Ou]xoa:s (ah a:)ES,
e g, (a,,ags,

H :{<“’1~ WZ)|WE eH,i=1,2, 5“‘:1 = ?W:

b

Let us prove that L, (PS) = LS(PS,, PS;).

For ¢ € L,(PS), t ={(u,, u-) the following two conditions are satisfied:
tar Vi, Feli qongoan Qe #0,

by Vi, celj)e H.

We can refine them by
e VL gthychothie Fauliloquin i =1,2 A
Qi e =0
VL w e HLGE = 1,2,
But Q. . .., =it
i@ g us e S,
From ia" it follows that for every

‘u"'-, F’!‘q“i- “li’l’i)'.y\ou‘u s b I‘ﬂ‘ [ = l* 2‘

As a conclusion, ¢ e L, (PS) iff (2", ta”) and (b)Y hold which in turn holds iff

v= LYPS,, PSs).
The =-case is obtained in an analogous way.
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Remark. From Proposition 4.6 it follows that

W](L?(PS], PSZ)) = #i(i—mlps))-

So our w-compatibility problem will be

L,(PS)) = (L,(PS))?. (%)
Because we always have

miL.(PSH < L, (PS)),
it follows that (%) is equivalent with

Lm(PSl)g wl(Lm(PS)) ‘:’ .

In order to obtain our decidability result we need a theorem of Nivat [ 13] which
we present for the case of two processing systems.

Theorem 4.7 (Nivat [13]). If p,, p> are two closed rational processes and S is a
synchronization set, then B (p, p2) is a closed rational language.

Theorem 4.8. Ler PS,, PS. be two rational processing systems, and S a . ynchroniz -
atic n set.
Then the w-compatibility problem of PS, with PS i decidable.

Proof. As we have noted before, L, (PS;),i =1, 2, are closed sets. Because they are
rational adherences, they possess a McNaughton representation (see Theorem 2.1)
yielding that FG(L,,(PS;)) € R, that is, L,,(PS,) are raticnal. From the Nivat Theorem
4.7, LS(PS,, PS2)=B$ (pes,, prs,) is also a closed rational set. Moreover, the equality
shows that B< (pps,, pes,) = L. (PS) is an adherence, namely Adh(L,(PS)). Because
7, is a faithful sequential mapping, 7, commutes with Adh (property 9 in [16]) and
hence (L, (PS)) is closed.

As both members are closed sets, their inclusion L, (PS,)< @ (L,(PS)) 1s
equivalent with FG(L,,(PS,)) < FG(m (L, (PS))). Now, the theorem follows because
the inclusion 1y R is decidable. [

The +-compatibility problem of PS, with PS,. For every firite behaviour of PS,
does there exist a finite behaviour of PS; such tfiat the two processes pps, and pps,
can “cooperate’ during these behaviours? '

If the answer is yes™, we shall say that “'PS; is #-compatibie with PS;™.

The problem can be rephrased as

7 LE(PS,, PSy)) = L 4(PS})?

in the same way we considered it in the w-case.
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With PS given by Proposition 4.6, the *-compatibility is captured in the
question:

L.(PS;) < mi(L4(PS)?, (8)

Theorem 4.9. Let PS, and PS. be any central processing systems and PS
given by Proposition 4.6, Then L PS))<mi (L PS) if FGWL,PS\)Hc
i (FGIL,(PS)H).
Proof. (=) L(PS) < (L .(PS)) implies

Adh(L . 'PS))) < Adh(a (L .(PS))).

Because PS is closed, again by Property 9 in [16] and by Proposition 3.4 we have
Adh(L;(PS[”gTf}(Adh(L<(PS))) and L(x,(PSI‘Qm(L‘,,(PS)).

Henece FGIL,,(PS)) < 7 ((FG(L,(PS).
<= FG(L,,(PS)) < m(FG(L,(PS))) yields

FG(Adh(L .(PS)) < 7 (FG(Adh(L (PS))).
PS; being central it follows that
L.PS) < m(FG(Adh(L (PSV))
= (FG(L .(PSI) = 7 (L APS.

Corollary 4.10. The =-compatibility problem for central, rational processing svstems
is decidable.

However, the result holds in a more general case.

Theorem 4.11. Ler PS, and PS. be two rational processing svstems. Then the

~~compatibility problenm of PS; with PS, is solvable.

Proof. We have L (PS)) = H, ~"Rps, i =1, 2, which implies that L (PS,) is regular
when H, is regular i = [, 2). What remains to prove is that H, the history set of
PS is regular. (PS is given by Proposition 4.6.)

If 5 1s the synchronization set. then

H={veS" v =, ud u) =lusu, e Hoi = 1, 2}

and we know that H and H» are regular. Let G, GG> be two regular grammars in
normal form.i.e., having rules v > av, v = b and respectively v’ = a'v’, v' = b" (where

LA A R AR PO
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x, y, x', y' are nonterminals and a, b, a’, b'€ Act, that is, terminals). Following a
standard construction it is not difficult to see that a grammar with rules (x, x')~>
(a,a'Mly,a"), (x,x")-> (b, b') will generate exactly H\{A}.

Ncw (8) is decidable, being an inclusion between regular sets. [

§. Finally legal behaviours and Beauquier processes

In Beauquier [1, 2] a protection system is identified with the set of all finite
sec,uences of actions permitted in it.

Within this framework he obtained important solvability resuiis for the safety
problem (formulated in similar terms) and the compatibility problem viewed only
as inclusion between the sets of behaviours, i.e., not in the parallelism and syn-
chronization context.

His model contains some protection mechanisms expresscd in somewhat informal
terms and this implies that any generalization requires new proofs of the solvability
results, if at all possible.

Considering ‘finally legal behaviours' in our Nivat's processing systenis we obtain
that Beauquier's processes are particular instances of ours.

Ia this general framework we re-obtain Beauquier's result of the soivability of the
safety problem, now for algebraic systems. For the compatibility problem we show
that his result is the best one (to date) because the natural extension from Dyck sets
to context-free sets takes the problem for solvable to unsolvable. Note that our
concept of compatibility subsumes the Beauquier's one by simply taking § =
{ta, a)|a € Act}.

Let us consider the context provided by Example 3.2 and imagine that all actions
are only of two types: ‘ask for" ('[') and satisfy” (*]'). An action of the form

m

OO

has in Beauquier systems two parts’:

(0, m, [)tread: "somcone asks for permission to do m to 07)
and

(0, m, Piread: “it is permitted to do m to 0™).

Because the subject s who asks for permission to do m to 0 (and then getting this
permission) must be uniquely determined, a behaviour (i.e., a finite sequence of
this protocolar version of actions, named events by Beauqurer) is required to be a
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restrained Dyck word over the alphabet of parentheses:
Act={(0,m, $)|0e €. meM,$e{, [}

where € is the object/subject set and M the set of modalities.

In this way his events are actions; the access matrix will be a graph and the
transformations in the access matrix can be modeled by graph rewriting rules.

All these features can be captured in our processing systems, except the fact that
the history set H need not be prefix-closed.

Definition 5.1. A generalized processing system (GPS) is a processing system for
which we drop the restriction on H to btie prefix-closed, i.e., H is an arbitrary se.
The languages

L (GPS)={ue Act*|(Vi,0<i<|u|:

Fuli],qnnQ is1, #0), and u e H} 9)
and

L,tGPS)=Adh(L .(PS)) (10)

will be referred to respectively as the set of finally legal finite behaviours (of Pgps)
and the set of finallv legal infinite behaviours (of Pgps). The languages studied by
Beauquier in connection with his system are of the form L (GPS). We consider
also infinite behaviours in our systems, and the results obtained turn out to provide
new information about the Beauquier’s systems as well.

The safety and the compatibility problem for finally legal behaviours can be
formulated in analogous terms. They will be referred to as the #f/wf-safety/compati-
bility problems.

Theorem 5.2. The #f-safety problem for tfinally legal finite behaviowrs of) algebraic
aeneralized processing svstems is decidable.

Proof. It is immediate from the fact that L, (GPS)=H ~ Ry and the analogous
SAFE 1Y (e, again cquals H A Rps ™ Act™ - g, and H is context-free,

Theorem 5.3. The wf-safery problem jor (findlly legal infinne hehaviours of ) alge -
braic generalized processing svstems is decidable.

Proof. From (101 following the same way as in the proof of Theorem 4.5, 7]

On the context-sensitive level the safety probiem is unsolvable. Actually we can
prove a stronger result.



Nivat's processing systems 99

Theorem 5.4. The *f-safety problem for central context-sensitive generalized processing
systems is unsolvable.

Proof. We shall prove first that for an arbitrary GPS there exists a central GPS'
such that

Va, SAFETYGpsa=0 & SAFETY(ps o =0. (11)

Let GPS = (Act, Q, F, qo. #) be a generalized processing system and a’ £ Act.
Then GPS' = (Act', Q', F', qu, #') where

- Act'=Actu{a’l,
-Q0'=0u{q't.q'=0Q,
- F' is defined as

F'ta’.q" ={q'},

F'ta'.q)=0 forqg #q'
F'ta,q)=Fia,q)o{q'} fora #a'andqeQ,
F'ta,q" =0 fora #a’,

- tl"» =qo.
=% =({Q.}u. nctn H'). Here H' =FG(H) - (a")* and

Q.—-Q, fora#a’, Q. ={q'}.
Let us note that
L (GPS)=FG(L (GPS)) - (@)"* and Raps = Reps - 1a)™
We have
FG(Adh(L .(GPS"))) =
=FG(AAhFG(L ,(GPS)) - (a")*")
= FG(Adh(FG(L (GPS)HUFG(L(GPS) - (a)”)
= FG(Adh(L .(GPS))UFG(L .(GPS)) - (a")*
= FG(L .(GPS)) - (a')* = L ,(GPS".
So GPS' is central. Now
SAFETY Gps'o = FGIH) (@' V* n Rgps - @) *n(Act)* - a

= FG(H):’\R(‘,pSF\ACt* - a.
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Because

SAFETYGpsa=H NRgpsnAct* - a and H =0 & FGH)=0,

Falsls
VAIRGPS ! Yoy

it foilows that (11) holds.

To end the proof we shall show that the «f-safety problem is unsolvable for
arbitrary context-sensitive GPS.

Let C be an arbitrary context-sensitive set over Act and a’& Act. We consider

the generalized processing system

GPS =(Actu{a’}, Q. F, qo, #),

¥ = ({Qulu. Ac o HYWhere Q, = Q= Q,Va € Actand H = a'C. We take F such
that we have R¢ps = (Actuia’h™ and so

SAFETY Gps.o- = a 'C.

[t 1s true that SAH-‘;r\':;pSJ, =0t C =0
The emptiness problem for context-sensitive sets being unsoivable [14], the
theorem follows. 3

et us note that we can easily prove an analogue of Theorem 4.2 for generalized
processing systems and hence we have the following theorem.

Theorem 5.4. The wf-safety problem for central context-sensitive generalized process -
ing svstems is unsolvable.

Remarks. (i) The construction in the proof of Proposition 4.6 holds when H is not
prefix-closed as well. Indeed, defining the history control as in the definition of
GPS. the entire construction becomes meaningful for GPS.

(i In the proof of Theorem 4.11, the construction vields H of the same type
as H, ¢ =1, 2veven if the H,; (7 = 1. 2) are context-free and non-prefix-closed.

As a conclusion we get a variant of Theorem 4.11 for GPS.

Theorem 5.5, The «f-compatibility problem for rational generalized processing svs -
tems is solvable.

The proof of the next theorem somewhat parallels that of Theorem 4.8, However,
we need a spectal construction to get the desired inclusion solvable.

Theorem 5.6. 7he wi-compatibiiity problem for rational generalized processing svs -
rens iy solvable.

Proof. Lct us consider GPS,. GPS: two generalized processing systems and § a
svichronization set.



Nivat's processing systems 101

We have that L, (GPS;), i = 1, 2, are closed sets and rational adherences. That is,
FG(L,(GPS;))e R, and so L,(GPS;) are rational. Nivat's theorem shows that
LS(GPS,, GPS.) = BS(paces,, Paps.) is a closed rational set.

Considering a similar GPS-construction as in Proposition 4.6, we have

Ls(GPS;, GPS,)#L,,(GPS)=Adh(L .(GPS)).

That is, in general, LS(GPS,;, GPS,) is not an adherence, and so, we cannot derive
from this that 7 (L5(GPS,, GPS,)) is a closed set.

However, the fact can be obtained in another way. Consider GPS', GPS5 two
generalized processing systems and S’ a synchronization set given as follows. Let
‘a’ be a new action. GPS; is obtained from GPS, by adding the new action ‘a’
which can be followed only by other a’s and taking H, = Ha*, i = 1,2. We also
put §'=SutlaxS)u(Sxalula,a). Let GPS' be the corresponding system,
analogous to that given by Proposition 4.6.

We have

L$«GPS', GPS>) = L5(GPS,, GPS:)uE(a, a)”

and
L$tGPS, GPS5) = L,(GPS)=Adh(L .(GPS")).

We are not interested in detailing E’: the main point is that all its w-v.ords have,
except for finite prefixes, the (a, @) termination (E'=E - (a,a)").
Applying 7, to the first relation we get

UL (GPS', GPSH) = m(LS(GPS,. GPS:nhum (Eta, a)”).
By our second relation, 7, commutes with Adh:
Adhtm (L AGPS'M=7(LSIGPS,. GPS:) u m(Eta. a)™),
from which w have
7L JGPS,, GPS:)=Adh(m (L (GPS))NHNS*™. (12)

Now we can prove that 7 (LS(GPS,, GPS.,)) is closed.
Indeed, let we Adhim (LS(GPS,, GPS-)). Then

FG(.0 € FGiim (LSIGPS,, GPS:)1)) = (by (12))
= FG(Adh(m (L . (GPS')HS"}
< FG(m (L .o GPSHNAFG(S™).
That is,
us Adht 7 (L (GPS ) S = (bv (12)) 7 (LIGPS,, GPS,)).
The wf-compatibility problem is given as follows:

L (GPS) < = (LY(GPS,.GPS.))?
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which by closedness can be rephased as
FG(L,(GPS,)) € FG(m(L$(GPS,, GPS,)))?

As an inclusion between regular sets, it can be decided. [1°

Theorem 5.7. Let GPS, and GPS, be two algebraic generalized processing systems.
The *f-compatibility problem for GPS, with GPS, is unsolvable.

Proof. Similarly as in the proof of Proposition 4.6 we can obtain
L.(GPS)=L%(GPS,, GPS,)
={weS*w=(un, un) Ui Uon),

w=u, U, €GPS, i=1.2
and H is context-free if H, and H, are context-free.

Let L, L, be two arbitrary context-free languages over some alphabet Act.
Consider GPS; = (Act, Q.. Fi, qoi, %), i =1, 2, with % = ({Q4}uc ac Hi), Q4 = Q,
Fia,q)=Q,VYacActand H, =L, i=1,2.

[t is casy to see that Reps, = Reps, = Act® and so

L*(GPS,) = R(;.ps, M L, = L,.
Now, we shall consider the synchronization set § = {(a, a)la € Act}. Then

H={weS*w=(u,u),uecH}
={weS*Iw =) ueH ~H-}.
The question "L (GPS )7L .(GPSH?" is in fact reduced to
LycmiH) @ Liclinl, & LcL,

and the theorem follows because the inclusion problem for context-free
languag.s is unsolvable, 7
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