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Abstract

Self-assembly is, essentially, the study of the optimal conformations of a set of discrete units
(amino acids, nano-bricks, etc), where optimality is determined by internal nearest neighbor in-
teractions, and homogeneous external interactions. This report summarizes the recent advances
made by self-assembly researchers at Sandia.

Work on general self-assembly theory is motivated by our ability to realize physical processes
in which the theory has relevance. The fabrication and self-assembly of Janus bricks is explored

1Research supported in part by the San&a National Labs, Laboratory Directed Research and Development
program and in part by the DOE, Math Information and Computional Sciences Program.
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in a laboratory setting, and the results of our early experiments with the Janus bricks are
presented.

We present a framework for general self-assembly problems, in which the optimal confor-
mations are characterized by the extreme points of a set of (possibly unknown) constraints.
The origin of these constraints is in the combinatorial geometry of the discrete units, and an
algorithm for determining these constraints via numerical experiments is presented.

The study of constraints can be specialized to an important problem arising in protein .
folding. We prove approximate constraints on the conformations of certain popular protein
folding models which characterize the properties of the energetically optimal conformation to
within a small (possibly zero) error.

The analysis of protein conformations requires very flexible tools for visualization. This
leads us to the development of TORTILLA a general protein modeler, TORTILLA is our
answer to the classical “ball and stick” models of yesterday, providing us the ability to rapidly
visualize conformations from an ever-expanding set of protein models.
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Part I 

Experiments on the Development and 
Self-Assembly of Janus Nanobricks 

Self-assembly may someday allow one to create a desired engineering part using only 
preprogrammed small pieces that will interact in a very specific fashion, much the way a 
virus self assembles. For this process to become practical, or even possible, simple 
interactions must be controlled through fundamental understanding. Hydrophobic and 
hydrophilic interactions have proven to be of great interest in self-assembly process 
because they are very strong and can be controlled. Ceramic and glass Janus 
nanobricks were made and several self assembly experiments were carried out. 

Introduction 

larger product. This process is observed in many different biological systems, but it is most striking and 
well studied in viruses. Viruses produce all the components required to form a mature virus within a host 
cell. After all the components are produced, they come together to form a complete mature virion. 

The forces that drive the assembly of virus particles include hydrophobic and electrostatic 
interactions - only rarely are covalent bonds involved in holding together the multiple subunits. In 
biological terms, this means that protein-protein, protein-nucleic acid, and protein-lipid interactions are 
present'. 

Self-assembly is a process in which several small units interact with one another to form one 

Figure 1 A virus capsid self- 
assembled from only 20 equilateral 
triangular tiles. (Picture from 
Scientific American) 

One interesting part of viruses is the capsid. 
which encapsulates the genetic material of the virion. The 
capsid is made up of proteins in the shape of thin 
equilateral triangles. Only 20 of these triangles are 
required to form the icosahedral capsid (Figure I ) .  The 
simplest regular polyhedron is the tetrahedron with only 
four triangular tiles. 

This research project involves both investigation 
and understanding of some of these simple interactions, 
specifically hydrophobic and hydrophilic. In addition to 
understanding the interactions, the pieces, Janus 
nanobricks, need to be created. We use the term Janus, 
the two-faced God of Gateways, to signify bodies that 
have two or more types of surface affinities'. 

affinities, any shape could be self-assembled if the bricks 
had sufficient mobility and time to find their proper 
neighbors. If this process could be controlled, current 
fabrication process would be revolutionized. A recent 

Programmed with an unlimited range of surface 

paper by Rothemund shows how self-assembly in 2d can be used to compute, in a way similar to DNA 
computing.2 



Experiments 

I. Hydrophobic and Hydrophilic Interactions 

mediated water. In 3d systems, hydrophobic (water repelling) or hydrophilic (water attracting) are 
important; in 2d systems, such as particles trapped at an air-water interface, capillary forces are dominant. 

configuration. The plate must be hydrophobic on one side but hydrophilic on the other. In 3d suspension, 
these plates should associate in pairs, hydrophobic-to-hydrophobic surfaces touching. 

Scotchlitem Glass Bubbles, or “microballoons,” were obtained ranging in size from 35 to 135 Zm 
in diameter. Glass Bubbles are thin-walled (approximately 2 Em) borosilicate, hollow glass spheres. The 
advantage of using microballoons is that outside surface can be chemically treated separately from the 
inside. 

Approximately 10 ml were sieved and then coated with a solution of 5% Me3SiCI silane in hexane. The 
microballoons were placed in 10 ml of the silane solution and soaked for 30 minutes. They were then 

One of the simplest interactions to investigate and manipulate is the interaction 

To study hydrophobichydrophilic interactions, a two-sided primitive Janus plate is the simplest 

The microballoons were sieved to narrow the size distribution to 90 to 100 Zm in diameter. 

siianate 

J )  d 
L- J crush 

Figure 2 .A graphic representation of 
the primitive Janus  bricks from 
crushed microballoons. 

soaked in reagent-grade ethanol (EtOH) for one hour 
and washed with EtOH. 

two aluminum blocks (ca I O  cm’) and subjected to 
1000 psi of pressure in a press. The pressure crushed 
the microballoons into small shards of glass, 
approximately 10 Cm in extent. Each shard has two 
different surface affinities, with the outside 
hydrophobic and the inside hydrophilic. 

spread across the surface of water in one of two 
ways. For side-view microscopy, the water 
substrate was contained in a quartz cuvette was 1 
mm by 1 cm and overfilled to be slightly convex; 
for top-views, a one-centimeter-diameter circular 
well in a glass microscope slide was used. In 
some experiments the shards were applied with 
EtOH as a spreading agent and in others by 
sprinkling. Particles tended to center themselves near 
the convex apex of the water substrate. Studies were 
also done using a two-phase liquid system (oil and 
water). In that case the crushed microballoons 
were stirred into the solvent mixture and allowed 
to separate. 

The dried microballoons were placed between 

These primitive Janus bricks were then 

II. 

microcomponents would be regular shapes that tile 
space; ceramic materials offer the most advantage but 
the highest challenge. In two dimensions, our target 

Janus Nanobrick Formation using LIGA molds 
The Janus bricks well suited for 
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was a perfect square or an equilateral triangle made of silica or alumina, as these shapes are needed for
simple aggregate structures while the materials are good model ceramics.

LIGA technology was used to fabricate the molds. LIGA is an acronym from German words for
lithography and galvanic electroplating. LIGA molds consist of a silicon wafer substrate covered by a
patterned polymer (PMMA) sheet of uniform thickness. The pattern of holes is made by x-ray exposure
from a highly collimated synchrotronssource through a mask. Thus the sidewalls of the PMMA holes are
precisely vertical. The PMMA is chemically developed to create a high aspect ratio, parallel-wall mold2.

We filled the mold with a desired material then dissolved the PMMA or decomposed it with heat
. . . . . .
leaving a three-dimensional
micropart. This micropart could
be separated from the substrate
afier further processing to set the
affinities of the surfaces.

Sol-gel processing in
UGA molds. Initial attempts
were made to form bricks from
sol-gel materials. While these
attempts failed, the procedure is
noted here. Two different types
of sol-gel were used. The first
was a ‘B2’, a base-catalyzed gel
which becomes a gel in about 15

Figure 3 Alumina plates made by dry pressing and bisque
tiring. The larger triangles and squares are 1 mm on each
side, thickness 0.2 mm.

minutes.
The ‘B2’ sol-gel was made tlom a TEOS (tetraethylorthosiloxane) solution and mixed with a

catalyst (0.7N NH.iOH) in a 10:1 ratio. The mixture was then applied to the surface of the LIGA mold
and placed in a desicator for one hour. The desiccator was filled with EtOH (ethanol) to help reduce the
rate of evaporation.

To ensure complete filling of the mold, additional volumes of the sol were added every half-hour
for a total of three applications. The sample was then either placed in a 50°C oven overnight or left at
room temperature overnight.

The same procedure was performed with the ‘A2’, an acid-catalyzed sol with 2.ON HC1 in the
same ratio of 10:1 (’A2’ stock: acid) as the base-catalyzed B2 samples.

To consolidate the samples, the A2 and B2 samples going into the oven were placed in one
covered petri dish. The two samples, which sat at room temperature, were also placed in one covered
petri dish. Unfortunately the large amount of shrinkage and concomitant cracking of these silica materials
during drying made them unusable for forming molded bricks.

Bisque--red ceramic powder processing. A successfid process was developed for making Janus
plates of precise shape and thickness using dry ceramic powders. A fine powder was pressed into the
PMMA molds using ca 1000 psi press between flat anvils. Excess powder was scraped off with a sharp
blade, then the wafers were bisque-fired at 1000 C for 1 hr (ramping up and down over a period of 1 hr
each). In bisque firing, the particles become lightly but firmly sintered together with minimal part
shrinkage (and not full density). After firing, the PMMA had been cleanly burned away, leaving the
Janus plates firmly adhered to the wafer where they could be surface treated before removal using a sharp
blade.

Results and Discussion

I. Hydrophobic and Hydrophilic Interactions between JanuMicroballoon Shards
In order to study the interactions between the shards, we first had to be sure that the surfaces were

successfully coated with the silane. The simplest check WaSsimply comparing tie normal and the
siianated w-holemicroballoons. By comparing the differences in contact angles of the water with the
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microballoons, it became very obvious that the 
silanation procedure made the surface hydrophobic 
(Figure 4). 

between the crushed microballoons. The most 
successful procedure for spreading the glass shards 
was simply sprinkling them onto the surface of the 
water. When the normal untreated shards were spread 
on the surface, they floated around and didn't appear 
to interact with one another. 

The silanated shards were spread in the same 
manner and immediately packed together. The 

The next step was to observe the interactions 

Figure 5 Side view of hydrophobic, 
silanated microballoons (top) and 
normal untreated microballoons 
(bottom) at the surface of water. The 
hydrophobic balloons exhibit contact 
angles of 90" while the untreated 
balloons do not. 

sprinkling also caused some shards to land on top 
others. Those shards on top of others almost 

F 

immediately pulled spontaneously to the surface of the 
water. 

another. In fact, the interactions cause the shards to pull together. These interactions pulled the shards to 
one another even when they are separated by 0.5 mm to 1.0 mm. 

up. This was confirmed by sprinkling the shards on a droplet of water and then evaporating the water. 
The sample was then examined under SEM. 

surface of the water, the microscope can be focused on the shards and then focused on the light being 
transmitted through the shards, which formed focal spots above the liquid surface. The difference in 

The silanated shards did interact with one 

It was also observed that the shards surprisingly oriented themselves with the hydrophobic side 

Another unique feature of the shards is that they act as small convex lenses. With the shards on the 
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focus positions was approximately 100 pm. This focal length approximates the diameter of the
microballoons proving that the shards were oriented with the curved side facing up (none were seen to
focus on the opposite side of the water surface).

We tried to observe how the shards flip to be concave down on the water surface but the process
was much too fast to see or record with our equipment. However, we were able to see the process by
slowing down the flipping using a viscous overlying phase, as follows.

The two-phase mixing experiment allowed for the shards to be mixed with oil and water and then to
separate based on density and hydrophobic-hydrophilic interactions (Figure 5). It was observed that no
matter how the shards settle on the oil-water interface they quickly assume the lowest free energy
orientation with hydrophilic side facing the water. The strength of this reorienting force is strong enough
to rotate a 50-micron shard 180° within 0.05 see e
at the edges.

.,. —.-,!.,- ,...4” ,— ----- ,-!-.-!

Figure 6 One-millimeter tiles coated
with gold and a hydrophobic silane
exhibit no lateral capillary interactions
on an ethanol subphase (top) but strong
corner-to-corner interactions on water
(bottom).

/e rejected x rays as being too penetrating, but f

n thoughthe initial “grip” on the shard must be only

II. Capillary Interactions between Janus Tiles
The alumina tiles made by LIGA molds were treated
in various ways to tailor their aggregation
characteristics and to effect specific binding forces
between edges. While this study showed promising
results, it is unfinished in that a general way to
impart different affinities and binding forces from
one surface to another was not found.

We aimed to have highly specific pairs bound to the
tile edges, so that only edges that were programmed
to stick together would do so. The surface available
for this joining was (for the large tiles in Fig 3)
0.2 mm by 1.0 mm. For the necessary specificity we
looked to biological adhesion molecules; we
considered using virus head-tail pairs, biotin-avidin,
and antigen-antibodies. Although the virus head-tail
pairs are the most remarkable option (these are viral
pieces called “packaging material” separately grown
by recombinant techniques) and possibly the most
specific, we chose to pursue biotin-avidin, which is
among the strongest bonds in biology.

Our general strategy to program the tiles with IWO
surface affkities was to treat all the surfaces firs~
then use line-of-sight processing to change selected
surfaces. Thus, it is a decisive advantage to perform
the line-of-sight treatments while the tiles are aligned
on the substrate, as in Figure 3. Available line-of-
sight techniques were lasers, x rays, physical vapor
depositions such as evaporation or sputtering, and
plasma cleanings.

ndthat noneof the other techniqueswere completely
effective. For example, we used an RF discharge in air to attempt to clean silane treatments from tile
edges but the disch&ge was too isotropic even with baffles in the chamber, resulting in all the surfaces
being fully c!eaned (except for the base against the substrate). Although the mean-free path of reactive
species in the plasma should have been several centimeters, it is likely that their excursions were much

9



shorter given the frequency of the driving field. A DC
discharge may be more effective since it would be more line-
of-sight.

Similarly, our effort to sputter-coat only certain sutiaces with
gold in order to bind receptor molecules using thiol
chemistry resulted in trace gold deposits on the shadowed
sides-enough to eliminate the affinity contrast we sought.
Here evaporation over a long path (as opposed to sputtering)
might be more effective.

While we obtained a photosensitive avidin for attempting
optical programming methods, this technique and the
refinement of the other techniques were not accomplished in
the project period.

Nevertheless, using hydrophobically treated tiles, we
performed simple experiments on the surface of a liquid
subphase to check surfaces energies and tile-tile interactions.

In Figure 6, hydrophobic tiles floated on water ~xhibit long-range comer-t~-comer interactions while
those on EtOH do not. These comer forces result from capillary hydrostatics, which in the limit of small
deviations h(x,y) and slopes h. for the liquid surface from its unperturbed height has the forms

v*h(x,y) = -*h(x,Y)

which has strong cusps at comers of the form

h,= r-’”
for squares and

h, ~r-2J5

for triangles, where hr is the slope and r is the distance fromthe comer.6 These “singularities”account
for strong comer-to-comer interactions, which can be seen in Figure 7, showing an ensemble of
hydrophobic triangular tiles on water. With no agitation, the triangles are seen to tile the plane densely in
local regions because the comer-to-comer interactions tend to bring the tiles into registry. This happy
circumstance can be exploited in future self-assembly experiments.

Conclusion
We have shown that simple interactions such as those with water can be applied and manipulated for the
use of a Janus self-assembly process. A successful protocol was developed to make millimeter-size Janus
tiles from microballoons and from LIGA molds. While the hydrophobic and hydrophilic interactions
have proven successful for orienting these tiles, biological adhesion molecules offer the key to specific
binding. Capillary hydrostatic interactions on a water subphase offer strong, long-range, self-orienting
interactions for future studies.

Acknowledgment. This work was funded by Sandia National Labs (DOE contract No. DE-AC04-
94AL85000).

References

10



(1) Cann, A. J. Principles of MolecularVirology second edition 1997 p. 23.
(2) Rothemund, P.W.K., Using lateral capillary forces to compute by self-assembly, Proc Nat Acad Sci

2000,97, pp 984-989.
(3) LIGA Technology, http://daytona.ca. sandia.gov/LIGA/indexl .html.
(4) Chopard, B.; Luthi, P.; Dro% M. Microscopic Approach to the’Formation of Liesegang Patterns, J.

Stat. Phys. 1994,76, pp. 661-677.
(5) Adamson, H. T., Statistical Mechanics of Phases, Interfaces, and i%in Fihns (Wiley-VCH, New

York, 1996), chapter 7, section 7.3, page 345.
(6) Jackson, J.D., Classical Electrodynamics (John Wiley& Sons, Inc,New York, Second Edition,

1975), chapter 2, section 11, page 77.

11



Part II

Energetic Tiles

1 Energetic tilings

In this report, we introduce an energetic tiling scheme. In this scheme, we will assume that
the edges of our tiles sit on some lattice and interact by some local physical process for which
there is an energy cost (positive or negative), dependent upon the number and types of contacts
which are made.

1.1 Proposed definition of an energetic tiling

Let A be a set of polygons called tiles, Let ~d be the set of configurations, which tilings of the
plane with polygons from the set A.

.4n energy function can be defined for z e EA by the following

E(Z) = ~ ‘Tlij6ij,

ii

where nij (z) is the number of tiles, per unit volume, having face i which makes contact with
a face j (note: nij = nji). Since nij is symmetric, we may take eij = Cj:. we may call c the
interaction energy.

If A contains a tile h such that for any t G A, ~ij = ~li,j where i, Ii are faces of h and j, Ij
are faces of t, then we call h a hole. It is not difficult to show that (up to a constant) we may
rewrite the energy as

where ~ij = Owhen i (or j) is a face of h, and pt is the number, per unit volume, of tile t E A– h.
This is simply a formal way to capture the notion of a gap in the tiling by distinguishing one
tile as a hole and assigning to the non-hole tiles a chemical potential, pt.

There is some question whether the tiling statistics, pt and nij are well-defined for every
configuration Z. We would like to ignore that question for now.

1.2 Tiling statistics

Let sA be the set of valid (~j), that is, those (n~j)
z C ~A with tifing statistics within 0(6) of (nij).
compact. Additionally, it can be proven that SA

such that for any 6 there exists a configuration
This set is bounded and closed, and therefore “
is convex.

Thus, the energetic tiling problem is one of maximizing a cost function on the convex body .
SA. A study of this set is therefore essential. As of this writing we have no general theory
which further describes ~d all but the most trivial A.
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If SA is a polytope, then it has only a finite number of vertices, at least one of which will
maximize any given energy. Additionally, all the extreme points of Sd are isolated, i.e. the
various optimizing configurations are stable to perturbations of the energy function.

If S~ is not a polytope, at least part of the boundary of SA must be a non-linear constraint.
This divides the extreme points of SA into two classes: the isolated extreme points, and the
continuous extreme points, or “sensitive” and “insensitive” extreme points (a finite number of
the former and an infinite number of the latter).

One can compute an approximate SA, assuming one has a tool to produce approximately
optimal tilings for any given energy function. A heuristic procedure to “flesh out” SA would be
. generate a set of statistics from finite (periodic) tilings which optimize randomly generated
energy functions.
. Take the convex hull of the statistics. The vertices of this hull are approximations to the
extreme points of SA.
. Use the inequalities of the convex hull as energy functions and attempt to generate configu-
rations with statistics outside the the current convex hull.
. .4dd these new points to the current set of vertices and take the convex hull again.

Repeating the last two steps should result in one of two outcomes. If SA is a polytope, then
eventually all the extreme points of SA will lie in the current convex hull, and that current
convex hull will be SA. If SA is not a polytope, then the nonlinear part of the boundary will
always contain extreme points not in the present convex hull, and the process will not terminate.
The unfortunate part of this heuristic is that it does not provide a means of deciding is SA is
a polytope or not, nor when one has found it, if it is.

1.3 Triangular tiling

We look at some simple energetic tiling schemes with triangles. Let & be the set consisting
of a single equilateral triangle with distinct edges. Let Al be a set consisting of two triangles,

one of which is considered a hole.

1.3.1 Energetic tiling with &

The statistics set, S& = So, is the polytope (~ij z O, and ~j nij = 1, Vi) with vertices realized
by the three tilings, (up to rotation) shown (as unit cells) in figures 1.3.1—1.3.1

1.3.2 Energetic tiling with Al

As of this writing, it has not been determined whether the statistics set, SA1 = S1 is a polytope
or not. Thus we cannot present a complete set of vertices in this section. Two easily proven
isolated vertices are shown in figures 1.3.2 and 1.3.2 (using gray triangles to represent holes).
Note: the all-hole tiling (p= O) and all the vertices of SOare also isolated vertices of S1.

13
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We have performed a series of numerical experiments to try and isolate the rest of the
vertices. These experiments strongly suggest that three additional constraints of the form

are obeyed by the elements of S1. If we assume these constraints (in addition to p, nij >0, and
~j nij = p, vi), we find several new isolated vertices (figures 1.3.2–1.3.2).

It is also true that, if we assume that Eq’s 1—3 are true, we require additional constraints,
because taking 1—3 and the trivial constraints alone yields a polytope with the vertex

3

()

;00

P=~, nij= 000,
000

which is a set of statistics not realizable by any tiling that we have been able to create, thus
we know there are additional constraints. There also may be non-linear constraints, but, as of
this writing, we have no conjectures about them.

Part III

Energetic Dominos

2 Energetic dominos

In this chapter we derive constraints on the interactions of hydrophobic contact between bipoles
in the cubic and face-centered cubic lattices. Although we do not prove the tightness of the
inequalities we are able to derive lower bounds that guarantee a predictable degree of approx-
imation. This allows us to prove that the biplane self-assembly is within a small percent of
optimal.

3 Definitions and Notation

We denote by 3 a figure composed of hydrophobic residues, on a lattice. We denote by ~ a figure
composed of bipoles (a hydrophobic/hydrophilic pair) on a lattice. Similarly for F,j 7’, ~i, G’,
etc.

We denote by IV(.F) or N(CJ the number of hydrophobic residues in For ~ , respectively. “
When there is no ambiguity, we will denote this quantity with N. Similarly we denote with
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H,L, W (or HAL,.., , W(g) when needed) the dimensions Height, Length, and Width
of 3 or Gon the cubic lattice. Without loss of generality we let H z L z W. We give directions
to the cubic lattice, namely +z, –z, +y, –y, +z, –z, corresponding to H, L, W in the obvious
way. A figure on the FCC lattice can be partitioned in four different ways so that the slices
are 2D triangular lattices. We denote with H, L, W1, W2 the four dimensions of 3 or g, and
let wlog H > L > WI 2 W2. We use the corresponding direction names z, z’, y, y’,Z, x’ for the
directions +z, —z,+y, —y,+Z, –z respectively.

A figure % can be decomposed into H levels of sizes hl,... , hH so that N = hl +.””+ hH.
We denote by Lij Wi the dimensions of the ith level of 3 in the cubic lattice.

We showed how to decompose a figure 3 on the square lattice into levels, such that N(7) =
hi+ ”.” + hH. Alternatively we can decompose 3 with respect to the other two dimensions,
namely with respect to the z- or y- axes. We define thus the H-, L-, and W-partitions of
a figure 3. The H-partition partitions 3 into H-slicesj or levels, as we showed above. We
denote the ith H-slice by xi, and its size by l~il = li. The H-slice xi has dimensions length
and width, that we denote by L(Hi) and W(fii). The L-partition similarly partitions 3 into
L-slices. We denote the ith L-slice by Li, and its size by l~il = /i. We define its dimensions
H(Li) and W(Li). Similarly we define the W-partition, the IIT-slices Wil their sizes lWi I = vi,
and their dimensions H(Wi), L(Wi). In the FCC lattice we make corresponding definitions.
There, we denote the Wj-slices (~ = 1,2) by Wj,i and their sizes by IWj,i I = ~j,i.

\Ve say that a perimeter residue of level i, in the cubic lattice is a corner residue if it has

exposed faces on both the z- and y-directions. N’otice that in a 3D figure on the cubic lattice
there are 12 different types of corners. We denote a corner using the two defining faces of it.
Thus we define (z’y)-, (z’y’)-, (xz)-, . . . . (y’z’)-corners. Then, a corner residue of type (uv) is
a residue that has exposed faces on directions u and v where u # –v.

4 Bipole Contact Upper Bounds on the Cubic and FCC
lattices

We would like to obtain a good upper bound on the number of H-H contacts possible when N
bipoles self-assemble on the cubic, or FCC lattice. Denote the number of contacts by [HH](N),
or simply [HH]. A way to obtain an upper bound on the number of contacts possible is to
observe that each residue can only make as many contacts as the number of its neighbors, minus
one for its polar part. That gives 5 contacts on the cubic lattice, and 11 contacts on the FCC
lattice. Therefore we obtain the following inequalities, for a configuration of size N:

[HH] < 5N (loCUBIC)

[HH] < llN— (1.FCC)

In order to give tighter upper bounds, we introduce some more notation. Let [HH] be the
number of H-H contacts, [HP] be the number of H-P contacts excluding the bipole edge, and
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[17w] be the number of H-Water contacts, i.e. contacts between hydrophobic residues and
empty points in the lattice. Then clearly the following equations hold:

[HH] + [HP] +[HWJ = 5N (2.CUBIC)

[HH] + [HP] +[HW] = llN (2.FCC)

.
We now introduce the concept of a “conflict” contact [REF Agarwala]. Let (Hl, F’l) and

(H2, P2) be two bipoles. Let there be a contact (Hl, H2). This is a conflict H-H contact for HI
if and only if there is a contact (112,PI). Similarly it is a conflict contact for H2 if and only if
there is a contact (Hl, P2). Call (Hl, H2) a conflict contact if it is a conflict contact for at least
one of H1, H2. In [REF Agarwala] it is shown that on the FCC lattice every H-residue that
has a P-residue as a neighbor in an {H, P}-sequence, can at most 7 non-conflict H-H contacts
and 4 conflict H-H contacts.

Denote by [HHc] the conflict H-H contacts, and by [lY17e] the non-conflict H-H contacts.
Then [HH] = [HHe] + [HHc]. In the cubic lattice [HHc] always equals O, but in the FCC
lattice we have [HHe] < 7N and therefore

[HHc] ~ [HH] - 7N (3.FCC)

Finally define similarly a “conflict” H-P contact. Let (Hl, PI) and (172,P2) be two bipoles,
and (Hl, P2) be a H-P contact. This is a conflict H-P contact if and only if (Hl, H2) is also a
contact. Clearly every H-H conflict contact corresponds 1-1 to a H-P conflict contact (we are
implicitly assuming that the contact (H, H’) is different from the contact (H’, H)). Therefore,

[HP] = [HPc] + [HPe] = [HHc] + [HPe] z [HH] - 7N + [HPe] (4.FCC)

Now we can prove a tighter upper bound on the number of H-H contacts for the FCC lattice,
and also demonstrate an idea that we will use to prove a tighter bound for the cubic lattice.
For the FCC lattice, expand the equation (2.FCC) to get:

[HHe] + [HHc] + [HPe] + [HPc] + [HW] = llN (from (2.FCC))

- [HHe] + [HHc] < llN – [HPe] – [HPc] – [HW]

= 2[HHc] < 41V – ([HPe] + [WV]) (from (3.FCC), (4.FCC))

= [~~C] < 2N – ~([HPe] + [HW])

* [HH] < 9N - ;([HPg] + [HID])

In the cubic lattice the following corresponding inequality holds:
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[ZW] < 5N - ([HF’] + [Hw])

Therefore we have proven the following result:

Theorem 1 The following upper bounds on the number of H-H contact edges for a conforma-
tion of N bipoles on the Cubic, and FCC lattices, hold:

[HH] <2.5 X N - 0.5X ([HP]+ [WV]) (5.CUBIC)

[H17] <4.5 X N - 0.25X ([HPg] + [HIV]) (5.FCC)

5 Stronger Bounds for the Cubic Lattice

Using (5.CUBIC) we can derive a stronger upper bound on the number of H-H contacts of
iV bipoles in the Cubic lattice, by deriving a lower bound on the number of H-P or H-Water
contacts. Intuitively, a place where a figure ~ should miss a certain number of contacts, is
the edges and corners in the exterior of the embedded figure 3 consisting of the hydrophobic
residues of ~. For example in the cubic lattice it is easy to see that any figure 3 has at
least 8 corner residues and each one of them makes at most 3 H-H contacts, at least 2 H-
Water contacts, and exactly one contact to its polar part. hloreover, every “level” or .H-slice
of the figure has at least 4 “corners”, namely at least one H-residue that has no H-residue
neighbors on the (+x, +y) directions, one that has no H-neighbors on the (+z, –y) directions,
one that has no H-neighbors on the (–z, +y) directions, and one that has no H-neighbors on
the (–z, –y)-directions.

For every bipole conformation G there is a corresponding H-residue conformation 3 con-
sisting of the hydrophobic residues of ~. Every If-residue in ~ has 5 free neighboring positions
for either H-H, H-P, or H-W contacts. Every I-l-residue in 3 that contacts at most 4 other
H-residues, corresponds to a residue in ~ that has at least one H-W or H-P contact. Therefore
every residue in 3 that has more exposed faces than 1, contributes at least the number of
exposed faces minus 1 to the sum [l!fW] + [HP]. That is, the exposed “area” of a figure 3,
A(Y), minus the number of exposed faces of 3, E(7) is clearly a lower bound on [HP] + [lilt%’].
Of course if 7 corresponds to a bipole conformation ~ then I?(X) = N(r). On the other hand,
if we obtain a lower bound on A(>) – E(%) for any conformation 3 of N H-residues, that
would clearly be a lower bound for [HP] + [HW] for any bipole conformation G of size N.

Let 3 be a figure of H-residues. As we defined above, H, L, W are the dimensions height,
length, and width of 3 respectively. Assume wlog that H z W z L. Define Ha to be the
number of H-slices that have L-dimension z 2. Similarly define La to be the number of L-slices
that have W-dimension ~ 2 and W= the number of W-slices that have L-dimension z 2. Then
denote by Hb, Lb, Wb to be the number of H-, L-, and W-slices respectively that do not satisfy
this condition. In order to prove a lower bound on A(r) – E(F), we will identify residues that
have at least 2 exposed faces. For each such residue, we will call one of its exposed faces the
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bipoie face. Intuitively, such a face wlog would connect to the polar part of the corresponding
bipole. Mathematically, assigning polar faces will help us give a lower bound on A – E: we
can count as contributions to this quantity all the faces of a particular residue, except its polar
face. Those additional faces we will also call water/polar faces or w/p faces. Then A – E is at
least as large as the number of w/p faces we can count.

First consider the H-partition of 3. Take an arbitrary H-slice fii.

● If W(?fi) = 1 then Mi is either a single cube, or a column of cubes with possible gaps.
In both cases we can demonstrate 2 w/pfaces on the Z, x’ directions by placing all the
polar faces of residues in %!iin the y-direction as shown in figure [REF FIGURE].

● if W(?l~) = 2 then we can similarly count 4 w/p-faces on the Z, z’ directions: 2 of them
in the “row” of %!iwith the highest y-coordinate (placing polar faces in the y direction),
and two of them in the “row” with the lowest g-dimension (placing polar faces in the y’
direction. Figure [REF FIG] demonstrates that.

Therefore we can count a total of 411@+ 2Hb w/pfaces, all of them assigned in the directions
X,X1.

Next we consider the W-partition of 3. We will be careful to count contacts that are
independent of the ones we counted in the H-partition so as to avoid double counting.

Let Wi be a W-slice in this partition. Similarly as before we can count w/pfaces in the
z, z’ directions. Figure [REF FIG] demonstrates that. The polar faces we are assigning for the
W-partition are in the y, y’ directions, as for the H-partition. The w/pfaces we are counting
for the W-partition are in the z, z’ directions, while they are in the x, Z’ for the H-partition.
Therefore the numbers of w/pfaces counted for the H- and W-partitions add up. We count a
tObl of 41V0+ 2Wb W/p-fiiCW fOrthe W-partition.

~From the above we obtain lower bound on [HP] + [HW] for the Cubic lattice:

[HP] + [HW] ~ 4(H0 + W.) + 2(Hb + Wb)

Because the N residues of % fit in the above dimensions, we immediately obtain the following
volume constraints

HaXwaxL+Hbxw+~xwb>N

where H ~ W > L. The above formula can be used for any specific N, in order to give
tighter lower bounds on the number of contacts achieved by IV bipoles on the Cubic lattice.

Theorem 2 Let F be a figure of N bipoles on the Cubic lattice, with dimensions H z W > L “
and such that H = Ha -i- Hb and W = Wa + W..l where Ho, Hb, W~, wb al! non-negative. Then
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[HH] < 5N - 4(lf. + W.) + 2(lf, + W,) (H-H.UB)

where

H.x W.x L+ Hbx W+ HxWb>N (VOL)

The above constraints can readily be used to calculate lower bounds on the number of contacts
missed for a configuration of N bipoles. For N between 50 and 100, we performed a simple
calculation using I14atlaband obtained the following results:

For N=50, [HH]<5x50– 28. That is, number of contacts missed is >28.
For 51< N <55, number of contacts missed >30.
For 56< N <75, number of contacts missed ~ 32.
For 76< N <80, number of contacts missed z 34.
For 81< N ~ 100, number of contacts missed z 36.

Biplane Configuration. Consider for instance the biplane configuration for N bipoles.
.According to this configuration the bipoles are placed such that the hydrophobic residues form
two opposing rectangles that are of sizes equal, or differing by one. The dimensions of the
rectangles are the closest to square. That is, given N = 2k + 1 the two rectangles (call them
top and bottom) have sizes k, and k + 1 respectively. Then, for size k find minimum 1 such that
1* (1– 1) ~ k, or 1* 1 z k. Then the top rectangle has dimensions 1,1 – 1, or ~,1, respectively.
Similarly for the bottom rectangle. It is a trivial exercise to place these two rectangles of
hydrophobic residues against each other so as to maximize hydrophobic contacts.

These lower bounds can be used to guarantee an approximation ratio for the number of
contacts achieved by the biplane configuration. For h’ = 50 for instance, this configuration
achieves a total of 5 x 50 – 40 = 210 contacts (double counted as above). This is easy to
calculate, and we omit the calculation. Compared with the upper bound of 222 contacts, the
biplane configuration is guaranteed to be within .9459 of optimal. For N = 100, the biplane
achieves 5 x 100 – 60 = 440 contacts, similarly providing a 440/464 = .9483-approximation.

Part IV

TORTILLA Protein Folding Software

6 The TORTILLA Protein Folding Package

The Tortilla Software Package is a graphical UNIX/Motif tool for designing protein-related
algorithms and experiments. Tortilla was designed with flexibility and expandability in mind.
It is fully object-oriented and uses state-of-the-art software patterns. Additional algorithms
and data types may be added by the end user at compile time, at link time and at run time.

Tortilla features many built-in capabilities, including:
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. Support for any crystallographic lattice. Built in definitions for 2D/3D cubic, face-
centered cubic, body-centered cubic, diamond, and hexagonal close packed.

● A conformation editor (for on-lattice structures) - to create or refine an on-lattice protein
conformation (Figure 10).

. A conformation display ( ‘t3d” interactive graphical display) as either ball-and-stick, space-
filling spheres, peptide planes, or as a cartoon “ribbon”. .

● Ab-initio on-lattice protein folding algorithms.

. Protein structure comparison.

. Contact map display.

. Protein sequence alignment.

. On-lattice energy landscape experiments, including determining the lowest energy con-
formation of a single sequence and determining the set of sequences with a single lowest
energy conformation from all sequences of a specified length.
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Figure IO: Theconformation editor with abiplan~conjuecture structure.
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