=

101 Optimal PDB Structure Alignments: a
Branch—and—Cut Algorithm For The Maximum Contact
Map Overlap Problem

Giuseppe Lancia*i Robert Carri Brian Walenz{ Sorin Istrail’

Dedicated to the memory of Dr. Fred Howes

ABSTRACT

Structure comparison is a fundamental problem for struc-
tural genomics. A variety of structure comparison meth-
ods were proposed and several protein structure classifi-
cation servers e.g., SCOP, DALI, CATH, were designed
based on them, and are extensively used in practice.
This area of research continues to be very active, be-
ing energized bi-annually by the CASP folding com-
petitions, but despite the extraordinary international
research effort devoted to it, progress is slow. A fun-
damental dimension of this bottleneck is the absence of
rigorous algorithmic methods. A recent excellent survey
on structure comparison by Taylor et.al. [23] records
the state of the art of the area: In structure compari-
son, we do not even have an algorithm that guarantees
an optimal answer for pairs of structures ...

In this paper we provide the first rigorous algorithm
for structure comparison. Qur method is based on de-
veloping an effective integer linear programming (IP)
formulation of protein structure contact maps overlap
(CMO), and a branch-and-cut strategy that employs
lower-bounding heuristics at the branch nodes. Our al-
gorithms identified a gallery of optimal and near-optimal
structure alignments for pairs of proteins from the Pro-
tein Data Bank with up to 80 amino acids and about
150 contacts each — problems of instance size of about

*Celera Genomics, Rockville, MD, email:
Giuseppe.Lancia@celera.com

'D.E.L, University of Padova

iSandia National Labs, Albuquerque, NM, email:
bobcarr@cs.sandia.gov

§Celera Genomics, Rockville, MD, email:
Brian.Walenz@celera.com
TCelera Genomics, Rockville, MD, email:

Sorin.Istrail@celera.com

Permission to make digital or hard copies of part or al of this work or
persona or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citdion onthefirst page. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior
specific permission and/or afee.

RECOMB 2001, Montreal, Canada

© ACM 2001 1-58113-353-7/01/04...$5.00

300. Although these sizes also reflect our current lim-
itations, these are the first provable optimal and near-
optimal algorithms in the literature for a measure of
structure similarity which sees extensive practical use.
At the heart of our success in finding optimal alignments
is a reduction of the CMO optimization to the maxi-
mum independent set (MIS) problem on special graphs.
For CMO instances of size 300, the corresponding MIS
graph instance contains about 10,000 nodes. While our
algorithms are able to solve to optimality MIS problem
of these sizes, the known optimal algorithms for the MIS
on general graphs can at present only solve instances
with up to a few hundred nodes. This is the first effec-
tive use of IP methods in protein structure comparison;
the biomolecular structure literature contains only one
other effective IP method devoted to RNA comparison,
due to Lenhof et.al. [18].

The hybrid heuristic approach that worked well for
providing lower bounds in the branch and cut algorithm
was tried on large proteins in a test set suggested by
Jeffrey Skolnick. It involved 33 proteins classified into
four families: Flavodoxin-like fold CheY-related, Plas-
tocyanin, TIM Barrel, and Ferratin. Out of the set of
all 528 pairwise structure alignments, we have validated
the clustering with a 98.7% accuracy (1.3% false nega-
tives and 0% false positives).

1. INTRODUCTION

A fundamental dimension of the difficulties encoun-
tered in designing successful practical predictions meth-
ods for protein structure is the absence of rigorous algo-
rithmic methods for basic problems in structure analy-
sis. Here are several reasons for this situation.

(1) By their nature, three-dimensional computational
problems are inherently more complex than the similar
one-dimensional ones for which we have more effective
solutions. The mathematics that can provide rigorous
support in understanding models for structure predic-
tion and analysis is almost nonexistent, as the problems
fare a blend of continuos-geometrical- and combinatorial-

2glv@ete-mathematics.
0PI®) Various simplified versions of the problems were
;ees %wn NP-complete, e.g., for structure comparison see
i1 10).
(3) There is a dramatic difference between sequence

193

Some text in this electronic article is rendered in Type 3 or bitmapped fonts, and may display poorly on screen in Adobe Acrobat v. 4.0 and later. However, printouts of this file are unaffected by this problem. We recommend that you print the file for best legibility.

alignment and structure alignment. As opposed to the
protein sequence alignment, where we are certain that
there is a unique alignment to a common ancestor se-
quence, in structure comparison the notion of common
ancestor does not exist. Similarity in folding structure
is due to a different balance in folding forces, and there
is not necessarily a one-to-one correspondence between
positions in both proteins. In fact, for two homologous
proteins that are distantly related, it is possible for the
structural alignment to be entirely different from the
correct evolutionary alignment. [6].

Pairwise structure comparison requires a structure
similarity scoring scheme that captures biological rel-
evance of the chemical and physical steric constraints
involved in molecular recognition. The most used scor-
ing schemes are based on three themes: RMSD of rigid-
body superposition [17], distance map similarity [15] and
contact map overlap (CMO) [8]. All these measures of
similarity use distances between residues and raise com-
putational issues that at present do not have effective
computational solutions. The first two measures require
a preset alignment for the equivalenced residues in the
two proteins to be given.

In contrast, the CMO measure does not require a pre-
set alignment. The measure was referred to as the “ul-
timate structure comparison measure” [19].

CMO is based on the basic notion of contact between
two residues, notion of fundamental statistical mechan-
ics and chemical significance, and at the core of many
scoring schemes used in applications of protein structure
analysis and simulation. They applications include: val-
idation of protein models, identification of native folding
motifs among many incorrect alternatives, identification
of possible folds for a sequence of unknown structure,
finding sequences compatible with given structures.

This paper focuses on the CMO scoring scheme, which
was extensively studied and empirically validated by the
Godzik-Skolnick group at the Scripps Institute [7, §].
The work recorded here is part of our research program
started in 1999 on the CMO optimization. Its goal is the
development of the underlying mathematical structure
of CMO, which will lead to practical rigorous algorithms
for structure comparison, prediction and analysis [10,
11, 12].

The mathematical analysis and the algorithmic meth-
ods employed in this paper for the maximum CMO
problem have feasible generalizations to other basic prob-
lems in structure comparison and annotation that do
not have at present rigorous algorithms. These include:
(1) the computation of the minimal distance similar-
ity measures (used in the DALI classification); (2) the
computation of optimal fit of contact-based structural
patterns in protein structures, and (3) the development
of rigorous assessment tools for analyzing predictions in
the new competing category “Contacts” at CASP 2000.

1.1 Contact Maps

A contact map is an undirected graph giving a concise
representation of the 3D fold of a protein. Each residue
of a protein is a node, and there is an edge (called a
contact) between two nodes if the Euclidean distance
between the corresponding residues is within a given

threshold. The distance between two residues is defined
as the smallest distance between any pair of atoms in
the residues.

An alignment between two contact maps specifies the
residues that are considered equivalent. The value of
an alignment between two contact maps is the number
of contacts in the first map whose endpoints (residues)
are aligned with residues that are also in contact in the
second map. This value is called the overlap for the two
proteins, and the optimization problem is to find the
maximum overlap. Figure 1 shows two contact maps
and their alignment.

The contact map overlap (CMO) problem tries to cap-
ture the similarity in the 3D folds of two proteins by
comparing their contact maps. It was introduced in [7],
proved NP-hard in [10], and is emerging as a very impor-
tant practical measure of protein structure similarity.

1.2 CMO Optimization

The CMO problem can be reduced to a (very large)
Mazimum Independent Set (MIS) problem on a suitable
graph. An independent set is a set of vertices such that
there is no edge between any two of them. The MIS
is a classic problem in combinatorial optimization, with
large literature. Although its definition is nice and sim-
ple, this problem is one of the toughest to solve exactly.
Many papers over the years have dealt with the exact
solution of the max independent set or, equivalently, the
max clique [21, 1, 16], but the state of the art for this
problem is that we cannot practically solve instances on
dense graphs of more than a couple hundred nodes [16].
This fact makes the result achieved in our work record-
setting, since the max independent set problems that
we tackle and solve optimally in this paper have size
proportional to the product of the number of contacts
of the two maps (up to 10,000 nodes and more). Of
course, this was only possible by exploiting the particu-
lar characteristics of the graph derived from the problem
at hand.

Some of the most powerful algorithms for exact solu-
tion of combinatorial optimization problems are based
on Integer Programming (IP), which has been applied
profitably in very many cases [20, 3]. The IP approach
consists in formulating a problem as the maximization of
a linear function of some integer variables and then solv-
ing it via branch and bound. The upper bound comes
from the linear programming (LP) relazation, in which
the variables are not restricted to be integer, and is
polynomially solvable. When the LP-relaxation value
is close to the value over the integers, then the bound,
and hence the pruning of the search space, will be effec-
tive. In order to obtain better bounds, the formulation
is often reinforced by the use of additional constraints,
called cuts (from which the approach name, Branch-
and-Cut): these are constraints that do not eliminate
any feasible integer solution, but make the space of frac-
tional solutions smaller, this way decreasing the value
of the LP bound.

The maximum independent set has a natural formula-
tion as an IP problem: denoting by x, a binary variable
for each vertex v, we seek to maximize) ., subject
to Ty + z, < 1 for all edges {u,v}. Unfortunately, this

194

(/

A

‘_""\'4/ 7
4

1knt-4.0.cm: 55 residues with 43 contacts.

31 shared contacts.

1bpi-4.0.cm: 58 residues with 53 contacts.

Figure 1: An optimal alignment of two 4A threshold contact maps of proteins 1bpi and 1knt.

formulation gives a very weak bound. The formulation
can be strengthened by the use of clique-inequalities
cuts, such as), co Tv < 1, which say that any clique
@ can have at most one node in common with any in-
dependent set. The addition of these constraints can
lead to tight formulations. This is exactly the case
for the CMO problem studied here. In this paper we
formulate the CMO problem as an Integer Program
and solve it by Branch-and-Cut, where the cuts used
are mainly clique—inequalities and some other described
later. Although we show that there is an exponential
number of different clique inequalities, we characterize
them completely and show how to separate over them
in fast polynomial time. That is, given a fractional so-
lution, we can find in time O(n?®) (where n is the size
of the instance) the most violated clique inequality and
add it to the LP formulation. By a fundamental result
of Grotschel, Lovdsz and Schrijver [5], this is a neces-
sary and sufficient condition for computing the value of
an exponential-sized LP relaxation in polynomial time.
Finding cliques in a graph is in general a difficult prob-
lem, but we show that in our case we can solve it effec-
tively since the underlying graph is perfect.

1.3 Organization

In the remainder of the paper we will describe in de-
tail our Branch—and-Cut algorithm. In Section 2 we
formalize the problem as an Integer Program and de-
scribe the main inequalities used. Section 3 is devoted
to characterize the clique inequalities, describe a poly-
nomial algorithm for their separation and prove that the
underlying graph is perfect.

Each Branch—-and-Cut for a maximization problem,
must rely on some sort of heuristic algorithm in order to
obtain tight lower bounds (i.e. good feasible solutions).
In fact, these are used to effectively prune the search
space, by removing from consideration each subproblem
whose LP upper bound is lower than the best feasible
solution found so far. In our work we have implemented
many different heuristics, which are run for several it-
erations at the root node and at each subproblem dur-
ing the search. Our heuristics fall into two categories:
Steepest Ascent Local Search and Genetic Algorithms.
and are described in detail in section 5.

Our program has been run on real data coming from
the PDB protein data base. This is the first time that
exact solutions have been found for real instances of
this problem. We have run our procedure on 597 pro-
tein pairs, with sizes ranging from 64 to 72 residues. In
order to perform such a massive computation on a stan-
dard, single—processor Pentium PC, we have limited the
time devoted to each individual instance (details can be
found in Section 6 on computational results). There-
fore, some problems have not be solved to optimality.
However, even within the time limit of 1 hour per in-
stance, we have been able to solve 42 problems optimally
and for 362 problems (60 percent) the gap between the
best solution found and the current upper bound was
less than or equal to 5, thereby providing a strong cer-
tificate of near—optimality. These results also show the
effectiveness of our lower bounding heuristic procedures,
and in particular, of our genetic algorithm.

2. IP FORMULATION

195

A contact map is a graph giving a concise representa-
tion of the 3D fold of a protein. Each residue is a node,
and there is an edge between two nodes if their euclidean
distance is within a given threshold when the protein is
folded. An alignment is a mapping, compatible with
the linear ordering, of some residues of the first protein
into some of the second. The value of an alignment
is the number of edges in the first contact map whose
endpoints are aligned with residues that also share an
edge in the second contact map. The mazimum contact
map overlap problem calls for an alignment of maximum
value.

We can rephrase this problem in graph—theoretic lan-
guage as follows: We are given two undirected graphs
G1 = (1, E1) and G2 = (Va, E2), with n; = |V;| and
m; = |E;|, for ¢ = 1,2. A total order is defined on
i = {a1 < ..o < anl} and Vo = {b1 < ... < an}
(we may identify V; with {1,...,n;} for s = 1,2). It is
customary to draw such a graph with the vertices ar-
ranged increasingly on a line. We distinguish a tail and
a head for each edge {i,j}, where the tail is the left
endpoint and the head is the right endpoint. Therefore,
we denote an edge by an ordered pair (i,).

A non—crossing map of Vi in V2 is defined by any
two subsets of the same size k, {i1,...,ix} C V1 and
{u1,... ,ur} C Vo, where i1 < i2... < it and similarly
for the up’s. In this map, up is the image of i, for
1 < h < k. Two edges (i,j) € E1 and (u,v) € E, are
shared by the map if there are I,t < k s.t. i =14, j = s,
u = uw; and v = uy (see Figure 2). Each pair of shared
edges contributes a sharing to the objective function.
The problem consists in finding the non—crossing map
which maximizes the number of sharings. This prob-
lem is closely related to the maximum edge-induced
common subgraph problem [9, 4], with the additional
constraint that the isomorphism of the subgraphs must
preserve the ordering of the nodes. Also, a somewhat
similar problem is the RNA sequence structure align-
ment, to which Lenhof, Reinert and Vingron applied
and IP approach in [18]. In a different way, they ob-
tain results akin to ours for clique inequalities in their
solution space, i.e. RNA letter—letter alignments. Here,
we fully characterize cliques via an if-and—only-if char-
acterization, and we show that the underlying graph
is a perfect graph. Note that noncrossing maps are in
one-to-one correspondence with noncrossing matchings
in the complete bipartite graph W having vertex sets
V1 and V5 and edge set V1 X Va.

2.1 IP Formulation

We denote by y.s a binary variable for e € E; and
f € E», which is 1 iff the edges e and f are a sharing in
a feasible solution. The objective function is

max Z Yef- (1)

e€Eq,f€Ey
The sharings (e1, f1) and (ez, f2) can be both achieved
by a noncrossing map if and only if they are compatible,
i.e. no two of the lines betweens the tails of e; and fi,
the tails of ex and fo, the heads of e; and fi and the
heads of e> and f> intersect at a single point (or, as we

Figure 2: A noncrossing map of value 5

will say, cross). Then the constraints for the problem
are simply

Yerf1 + Yeofs <1 (2)

for all ei,ea € Ei, fi,fo € E> st. (e, f1) and
(e2, f2) are not compatible. Although it is possible to
list all pairs of incompatible sharings and solve the cor-
responding IP with this formulation, the resulting LP
bound would be very weak unless we strengthen it with
cuts, which are hard to separate, and it would also have
too many constraints. Therefore we introduce a new
set of binary variables z;, for ¢ € Vi and u € V5,
which represent the actual map, and constraints such
that the support graph of x must be a non—crossing
matching. Then, we bound the y variables by means
of the x variables so that the edges (i,j) and (u,v)
can be shared only if i is mapped to u and j to wv.
For ¢ € Vi (and analogously for ¢ € V3), denote by
5T () the set {j € i +1,...,m1 : (4,7) € Ei} and
0-(@)={jel,...,i—1:(j,%) € E1}. Then we have
the following constraints:

Y Yapwe < Ti (3)
jest(i)

Z YG,i)(uw) < Tiv (4)
jes— (%)

for all ¢ € Vi, (u,v) € E», and of course analogous
constraints for ¢ € V2 and (u,v) € E1. We call these
activation constraints. Finally, the noncrossing con-
straints are of the form:

Tiuw + Tjo < 1 (5)

forall 1 <i<j7<mn,1<v<u< n st
i # jVu # v. We define a relation of compatibility
for the = variables similarly as for the y. A matching in
W is a set of lines connecting nodes of Vi and V3 in the
usual drawing of W, with Vi drawn on the top and V>
on the bottom. We denote such a line for ¢ € Vi and
j € Vo by [i,7]. We say that two lines: cross if their
intersection is a point; strictly cross if they cross at a
point other than an endpoint; are compatible if they do
not cross. A set of sharings is feasible if they are all mu-
tually compatible, otherwise it is infeasible. Similarly

196

we define a feasible and infeasible set of lines. If we
draw the lines connecting the endpoints of an infeasible
set of sharings, we have an infeasible set of lines.

The connection to the independent set problem is now
clear. We define two graphs G, and G, as follows. In
G there is a node N;, for each line [, u] with ¢ € V1 and
u € V2 and two nodes IV;, and INVj, are connected by an
edge iff [¢, u] and [j, v] cross. Similarly, in Gy there is a
node Ny for each e € F; and f € E»> and two nodes
Ny and N,y are connected by an edge iff the sharings
(e, f) and (€', f') are not compatible.

Then a selection of z variables feasible for all non-
crossing constraints corresponds to an independent set
in G, and a feasible set of sharings is an independent
set in Gy. The maximum independent set in Gy is the
solution sought after. All cuts valid for the independent
set problem can be applied to the z and y variables.
The most notable cuts for the independent set problem
are the clique inequalities: Any independent set and
any clique can have at most one element in common.
Another (weaker) class of inequalities are the odd-hole
inequalities: Any odd cycle of length 21 + 1 can have at
most | nodes in an independent set. We will show that
G has no odd holes, while Gy may contain them.

Adding clique inequalities presents two types of dif-
ficulties. First, findig cliques in a graph is in general a
hard problem itself. Second, there may be exponentially
many different cliques. We can overcome these difficul-
ties if we have a separation oracle: that is a black box
that, given a solution to an LP with only some of the
clique inequalities, tells us if the solution is in fact fea-
sible for all the clique inequalities, or else returns us a
violated clique inequality.

In the next section we will describe an O(n?*) sep-
aration oracle for the exponentially large (O(22™)) set
of all cliques in the z variables. Although we do not
characterize all cliques for the y variables, we identify
several classes of cliques in G, and show that satisfying
the clique inequalities for the x variables implies also
satisfying the clique inequalities for the y variables for
all but two classes of cliques. Furthermore, the cuts for
z—cliques are so strong that adding the two non-implied
classes of y—cliques yields only a tiny improvement in
the bound, while increasing the running time in a way
that makes their use dispensable. For these reasons, we
focus primarily on cliques in the x variables, i.e. sets of
lines in the bipartite graph W which are all mutually
crossing.

Our final IP formulation for the max CMO problem
is given by Equations (1), (3), (4) and (5), where z;;
and y.s are binary variables for all 4 € V1,5 € Va,e €
E., f € E>. The formulation is strengthened by the
aforementioned cuts.

3. POLYNOMIAL SEPARATION OF
MAXIMAL CLIQUES

In this section we study the problem of characterizing
all cliques of G, i.e. sets of lines in the bipartite graph
W which are all mutually crossing.

We define the following notion of a triangle in W.
T(, jlu) = {[¢,u],[¢ + 1,u],...,[j — 1,u],[4,u]} where

i < j € Viand u € Vs, and T(ilj,u) := {[s, 7], [i,J +
1],...,[t,w — 1], [{,u]} where ¢ € Vi and j < u € Va.
Clearly a triangle corresponds to a clique, so that

(T(i,jlu)) <1 and (T(ilj,u) <1 (6)

are valid inequalities for each 4, j and uw. These in-
cludes the standard matching constraints, which are just
T(i|1,n2) and T(1,n1|u). We have the following lemma.

LEMMA 1. Given a fractional LP solution x*, we can
compute the value of any t triangles in time O(n> +1t).

Proof We start with a preprocessing in which we
compute z*(T'(¢|1,v)) and z*(T'(1,4|v)) for each i €
Vi and v € Vs in total time O(n?). This is done by
first fixing 4, letting z*(7T'(¢|1,1)) = zj; and noticing
that z*(T(i|1,v)) = z*(T({|1,v — 1)) + z;, (and simi-
larly we obtain all z*(T'(1,4|v))). Now, given say any
i1 < ix € Vi and u € Vi, we get (T (i1,42|u)) =
z*(T(1,42|u)) — 2" (T(1,41 — 1|u)) in time O(1). °

We call the algorithm computing the O(n”) basic tri-
angles of the proof SETUP. It will be the preliminary
step to our fast separation algorithms.

Call a1, an,, b1, and b,, the set of terminal nodes.
Counsider a path P which passes through all the terminal
nodes, and alternates nodes of V; and V» in a zig-zag
fashion: That is, we can orient the path so that ai is
the first of the nodes of Vi visited by the path, and if
ar has been visited by the path, then all of the nodes
in Vi visited after aj are to its right. Similarly, by, is
the first of the nodes of V5 visited by the path, and if by,
has been visited by the path, then all of the nodes in V>
visited after by, are to its left. Note that any such path
must start and end at a terminal node (see figure 3),
and must always include the lines [a1, bn,] and [an,, b1].
There are only two possibilities after we orient the path
as described before: The path starts at a1 and bn, is
the second node or it starts at b,, and a; is the second
node. For each node of degree two in P a triangle is
defined by considering the set of lines incident on the
node and contained within the two lines of the path.
Let Ta(P) (Ts(P)) be the set of triangles defined by P
with tip in the nodes of Vi (V2) having degree two in
P. We define T(P) := T4(P) UTg(P). The following
theorem characterizes completely all cliques in G.

THEOREM 1. A set Q of lines is a mazimal cligue in
Gy if and only if there exists a zigzag path P such that
Q=T(P).

Proof (Sketch) If: Let @ be a set of lines and P a zigzag
path such that Q = T'(P). Take any two lines in T'(P)
and show they cross. Hence T'(P) is a clique. Now,
for any line not in T'(P) show there is a line in T'(P)
“parallel” to it. Hence, T'(P) is a maximal clique. Only
if: Let Q) be a maximal clique. Let a? <...< akQ be the
nodes of V; in Q. For each ¢, consider the leftmost and
the rightmost lines of Q out of a®. Show that the union
of these lines defines a zigzag path P, and Q C T'(P) by
construction. But T'(P) is a clique, and @ is maximal.
So Q =T(P). S

197

Figure 3: Left: A zigzag path P (bold) and the set T(P). Right: Same path after flipping V2.

The inequalities (T(P)) < 1 for all zigzag paths P
are therefore the strongest clique cuts for this particular
independent set problem. We now show that they can
be separated in time O(n?). To make the following argu-
ment easier, we rename the nodes of V5 as {c1,... ,¢ny },
so that the leftmost node c¢; is b,, and the rightmost,
Cng, 18 b1 (i.e., we flip the nodes of V> with respect to
the usual drawing). Having done this, two lines were
not crossing in the original drawing of W if and only
if now they are strictly crossing. Furthermore, a zigzag
path P now looks as a path wich goes from left to right
both in V; and V2. We call such a path a leftright path.

It is easy to see that there are O(22") leftright paths.
However, there is a low—degree polynomial algorithm
for finding the leftright path P with largest x=* (T (P)),
making separation of this class of inequalities very ef-
fective in the practical solution of the problem. With
respect to the new drawing of W, orient each line [a, (]
in the two possible ways and then define the length
for each arc (a,c) € Vi x Vo and (c,a) € Vo x Vi
as follows: I(a,c) = z*(T(a|l,c)) — z*(T(1,alc)) and
l(c,a) = z"(T(1,alc)) — " (T(a|l,c)). The lengths of
four special arcs are defined separately, as l(a1,¢1) =
0, llcr,a1) = 0, l(any;ns) = 2°(T(an,|1,cny)) and
l(cngyan,) = (T(1,an,|cny)). Now, consider a left-
right path P starting with either the arc (a1,c1) or
(c1,a1) and ending with either the arc (an,,cn,) or
(cng,Gn,). Call I(P) the standard length of this path,
i.e. the sum of arcs lengths. We then have the following
lemma.

LEMMA 2. For a leftright path P, l(P) = z*(T(P)).

Proof Suppose P = (a1,Chy = C1,Qjy,Chyy-.. ,0j, =
@nysCh; = Cny). A similar argument applies in the other
three cases. From tedious but simple algebra, we have
I(P) =

=l(a1,c1) + Y1 Uches ajppn))
+34 Uj(ut1)s Chirgny) + Uanys Cnz)

2 (7 (@4 lon) = 2 (T (@i 11 0n)))
+ X125 (@ (Tai |1, en,)) = 2" (T(L, aj0len))
+2* (T (an 1, €ns))
= DI (01, @y lon)) =S 2 (T (@ [1 00))

+ 3 e (T (a1, ¢n,)) —
+z*(T(an, |1, cny))

=2 (T(1,a5lcn,)) + 4= 27 (T(1, a5,y lcn,))
Et 2 (T (aj(i+1) 11, ch,)) — =" (T(ay, 1, Ch(1_1))

+Et 27" ((ajtllacht)) Et 27" ((1:ajt|cht))

+2* (T (an, |1, cny))

= 2" (T(1,a5lch,)) + 24—
+ 300 8 (T(a5.01, hg_yy + 1,¢1,))
=" (T(a;, |1, ¢hy_yqy)) + 27 (T(an, (1, ny))

=2 (T(1,a5,lcn,)) + 2 2" (T(ag, + 1, a5, lcn,))
+ 340577 (T(a401, engy_yy + 1, 0n,))
+2*(T(an, |chg_yy +1,¢n,))

Yo e (T(1,aj,lcn,))

:C (T(a]t +1 aJ(t+1)|chz))

=z"(T(P)).
The same kind of computations can be carried for the
other three possibilities for starting/ending arcs. o

The longest leftright path can be found effectively. In
fact we have

THEOREM 2. There is an O(n?) algorithm for finding
the longest leftright path in a complete bipartite oriented
graph.

Proof We use dynamic programming to find such a
path. Call VX (¢,7) the length of a longest leftright
path starting at a; and using nodes of V> only within
CjyCit1y--- sCny- Also, call V »(i,5) the length of a
longest zigzag path starting at c¢; and using nodes of
V1 only within a;, as41,... ,ar,;. We have the following
recurrences:

V\((i’j) = ma‘x{l(aiacj) + V/‘(i + l,j),V\((i,j + 1)}7

V/‘(i’j) = ma‘x{l(cjaai) + V\(i:j + 1)5V/‘(i + 1:j)}'

The only boundary conditions we need are the values
of VA, (n1,n2) and V »(n1,n2), which are easily set to
V\(’I’Ll,’nz) = l(anucﬂz) and V/(n17n2) = l(CTL27aﬂ1)'
The recurrence can be then solved backwards starting
at (n1,n2), in time O(n?). At the end, VA, (1,2) is the

198

length of the longest leftright path starting with arc
(c1,a1) and V #(2, 1) is the length of the longest leftright
path starting with arc (a1, ¢1). The maximum of the two
is the longest leftright path. °

The following corollary says that we have a polyno-
mial oracle for the clique relaxation of CMO.

COROLLARY 1. There is an O(n?) algorithm for sep-
arating the class of all mazimal clique inequalities.

Proof From theorem 1, a clique inequality is vio-
lated if and only if there is a zigzag path P such that
z*(T(P)) > 1. Since a zigzag path corresponds to
a leftright path via lemma 2, we can simply find the
longest leftright path and check if it has length > 1. By
lemma 1, we can compute in time O(n?) the lengths I
for all the arcs of the complete bipartite oriented graph
since each arcs requires the value of only two triangles.
Together with theorem 2, this concludes the proof. ¢

4. OTHER VALID INEQUALITIES AND
STRENGTH OF RELAXATION

The odd-holes inequalities for the independent set
problem say that for any odd-hole C there can be at
most ||C|/2] nodes in an independent set. The fact
that we can find (weighted) cliques in G, in polynomial
time hinted us to proving that G, is in fact perfect. In
this case, G, has no odd holes. A graph G is weakly tri-
angulated if neither G nor G° have (induced) chordless
cycles of length greater than four Note that in G, there
may be holes of size 4 (G, is not chordal); e.g. [a1,bs],
[a2,b4], [as,b1] and [a4,b2] define a chordless cycle. A
result by Hayward ([13]) states that weakly triangulated
graphs are perfect.

THEOREM 3. The graph G, is weakly triangulated.

Proof We have to prove that there are no chordless
cycles of length > 5 in (¢) G, and (it) G5.

(¢) Consider a cordless cycle of length £ > 5 in G,. It
corresponds to a set l1,...,l; of lines in W, such that
l; crosses l;—1 and l; 41 only. Since l; does not cross I3,
wlog assume I3 lies completely to the right of I;. We
distinguish two cases. If &k > 6, for ¢ = 4,... [k — 1,
since l; crosses l;—1 but does not cross l1, also [; lies
completely to the right of ;. Use the same argument
starting from l;_; and knowing that [, is completely to
its left. Then for 1 = 2,...,lx_3 we deduce that the line
l; is completely to the left of I,_;. Hence the nonempty
set L = {ls,...,...,lk—3} lies completely within the
lines l; and lx_1. But l; crosses both l; and [;_1 and so
it must cross all the lines in L. So Iy cannot have degree
2 in the cycle. If K = 5 we reason as follows. I; does not
cross I3, I3 does not cross s but 5 crosses I1. So I3 is to
the right of both I and I5, written 3 € R(1,5). Then,
since I5 does not cross Iz nor I3 but I crosses I3, I5 is to
the left of both Iy and I3, i.e. 5 € L(2,3). Continuing
we get 2 € R(4,5), 4 € L(1,2) and 1 € R(3,4). A
contradiction, since we started with I3 to the right of I3
and ended with /1 to the right of I3.

(#¢) We start by embedding the contact maps of each
of the two proteins into the plane as follows. The ver-
tices of the first protein Vi are placed on a horizontal
line according to their order, with the first amino acid
in the protein being the left-most vertex. The contacts
between vertices are then drawn in as curved edges, but
do not affect G,. The vertices of the second protein V>
are placed on a horizontal line below this first line and
also according to their order in the protein.

The vertices of G correspond exactly to the edges in
the embedded complete bipartite graph Ky, n,. Two
vertices in G, are adjacent whenever their correspond-
ing edges cross. We wish to eliminate the case where
the edges intersect at a point (i.e. do not strictly cross)
to make our analysis easier. We do this by constructing
a graph isomorphic to G, from a non-complete bipartite
graph Gp, n, with more vertices than Ky, ., as follows.
Make a group of nodes for each vertex in Vi that con-
sists of na copies of that vertex in Vi, and likewise form
a group of n1 copies of a vertex for each vertex in V5.
We do not overlap any of these vertex groups and main-
tain the order of these vertex groups on the line. Then
an edge 4j in K,, n, which is the k;st edge from the
left incident to ¢ and is the kond edge from the right
incident to j is assigned the new endpoints of the kist
rightmost copy of ¢ and the kond leftmost copy of j.
Then the graph isomorphic to G, is obtained by con-
sidering the crossing edges of G, n, analogously as in
our first construction of G.

After having constructed G, from Gp, n,, let an an-
tihole of size 5 or more be given. Denote the vertex in
this antihole whose corresponding edge has the leftmost
endpoint in Vi by I. Denote its neighboring vertices by
1—2,1—1,l+ 1,1l + 2 consistently with the order that
these 5 vertices appear in this antihole. The vertices
1,1+ 1, etc. correspond to edges in Gy, n,, whose end-
points in V4 and V> are denoted by 1,12, (I4+1)1, (I+1)2,
etc. Since the edges for | and [+ 2 must intersect, and
the edge for I + 1 must not intersect either of these, the
left-to-right order in Vi for I1, (I + 1)1, (I + 2)1 must be
li,(1+2)1,(I+1);1. Also, the left-to-right order of the
endpoints in V3 must be (I4+2)2, 12, (I4+1)2. The edge for
1 — 1 must intersect the edges for [+1 and [+ 2, but not
the edge for I. Hence, the new left-to-right orders are
l17 (l_l)la (l+2)17 (l+1)1 and (l+2)2’l21 (l+1)2a (l_1)2'
The edge for | — 2 is required to intersect the edges for
l and I + 1. As a result, this edge will also intersect
the edge for I — 1, which contradicts the definition of an
antihole.

°

Since G, is perfect, it is no surprise we could find
weighted cliques in polynomial time. In fact, there are
algorithms for finding a max weighted clique in a weakly
triangulated graph of time O(|V|?), due to Hayward,
Hoang, Maffray [14] and Raghunathan [22]. Our O(n?)
result for this specific graph makes a huge difference in
the practical solution of the problem. Finally, we note
that since G is perfect, the clique inequalities and non-
negativity provide a complete polyhedral description for
the non-crossing bipartite matching polytope that the

199

x variables are constrained to be in.

The situation is different as far as the graph Gy is
concerned. In fact, G, can contain odd holes. There
is a known polynomial time algorithm for separating
odd-holes ([20]), which we used in our code. Finally,
we mention some cliques for the y variables. Consider
two edges both in the same graph. They can either
(i) have no endpoint in common and not intersect, or
(i3) have one common endpoint or (74) no endpoint in
common and intersect. For an edge e and R one of
(i), (i), (i1), call R(e) the set of edges which are in
the relation R with e. Then, in any feasible solution
in which e is mapped into ¢’ and f is mapped into f,
f' must be in the same relationship to e’ as f is to e.
That is, if f € R(e) then the set {{e, f}} U {{€e', g} :
g ¢ R(e’)} is a clique in Gy. It can be proved that the
clique inequalities relative to the cases (71) and (%i1) are
implied by the activation constraints together with the
matching constraints for the nodes, and hence cannot
be used as cuts. The remaining inequalities however
are not implied. Our computational experiments have
shown that these clique inequalities in the y variable are
actually very weak, and very seldom does their use give
an improvement to the bound value.

5. LOWER BOUND HEURISTICS

5.1 Geneticalgorithms

The genetic algorithm (GA) paradigm has been de-
scribed in great detail elsewhere [25, 24]. Classical ap-
plications of the GA encode candidate solutions as bit
strings (the genome), which is then decoded for evalua-
tion. However, unless great care is taken in choosing an
encoding scheme, this method will frequently produce
infeasible solutions. Instead of using the bit as the fun-
damental element in our genome, we use the alignment
edge. An alignment edge associates a residue in one pro-
tein with a residue in the other. Mutation is the opera-
tion of translating one side of a set of contiguous edges.
For each edge, the probability of mutation is tested. If
the test passes, a mutation is performed by randomly
choosing a protein (top or bottom), a set of edges (all
edges to the left or right of the current edge), a direction
to shift in (left or right) and a distance to shift. After
the shift is performed, new edges are added in any avail-
able positions. In Figure 4 we show two mutations: The
top alignment shows the initial state, the middle align-
ment shows the state after the first mutation and before
the second mutation, the bottom alignment shows the
state after both mutations. Dashed lines are edges that
have been added after a mutation is performed, dotted
lines are edges that have been removed by a mutation.
The first mutation shifts the circled edges to the right by
one position, causing the right-most edge to be removed
and a new edge the be inserted. The second mutation
shifts the circled edges to the left by one position, caus-
ing the left-most shifted edge to be removed and a new
edge to be randomly inserted on the right end — exactly
one of the dashed lines is inserted.

Recombination merges edges from two parents to cre-
ate a new candidate solution. First, a random set of

e
e
o
o—

Figure 4: The mutation operator.

A/
AL
AL

Figure 5: The recombination operator.

contiguous edges is copied from a parent to the child.
Then, as many edges as possible are copied from the
other parent into the child. Finally, new edges are added
in any available positions. An example is shown in Fig-
ure 5. The top two alignments are the two parents, the
middle alignment is the partially constructed child and
the bottom alignment is the fully constructed child.

5.2 Local Search

The local search heuristic algorithms follow the stan-
dard approach: Given a feasible solution s of value v(s),
a neighborhood N (s) of solutions which can be obtained
by s through a valid move is explored. Let s’ € N(s)
such that v(s') = max{v(u),u € N(s)}. If v(s') > v(s),
s’ replaces s and the search continues, otherwise s is a
local optimum. Since converging to a local optimum is
very fast, the search can be repeated many times, each
time starting from a random feasible solution.

In the contact map problem, a feasible solution is
identified by a pair (A, B) of sets of vertices in G; and
G such that |A| = |B|. If A = {a1 < ... < ax} and
B = {b;1 < ... < by}, the feasible solution they define is
that in which a; is mapped to b;, for i =1,... ,k.

We have two algorithms, which differ in the way N(s)

200

N

RERENYS

(b) M(7,4)

@) ©) @) ONONG)
N asselo

(©) M+(7,4) (d) M-(6,3)

Figure 6: Moves for the two algorithms. (a)
starting solution s. (b) solution s’ € N(s) for 1st
algorithm. (c¢) and (d) solutions s’ € N(s) for 2nd
algorithm.

is defined. In the first algorithm, a move M(a,b) in-
volves two elements a € G1 — A and b € G2 — B. The
move adds the line [a,b] to the current mapping, and
so some lines (i.e. those indexed by J, where [a;,b;]
crosses [a,b] for all j € J), must be removed. The new
solution is (AU {a} —{a;,j € J}, BU{b} —{bj,j € J}).
This allows for big “jumps” in the solution space (i.e.
removal of many lines, and introduction of very skewed
lines) and is suitable for instances in which the contact
maps are quite different (Figure 6(b)).

While in the first algorithm the number of lines after
a move can increase, decrease or stay the same, in the
second we have increasing moves and decreasing moves.
An increasing move M1 (a,b) is defined, as before, for
a ¢ Aand b ¢ B. Such move simply changes (A4, B)
into (AU{a}, BU{b}) (Figure 6(c)). A decreasing move
M~ (a,b) is defined for a € A and b € B. The new solu-
tion is (A —{a}, B — {b}) (Figure 6(d)). This algorithm
does not introduce very skewed lines easily and so is
suited for similar proteins, in which good solutions are
made of many parallel (and typically vertical) lines.

6. COMPUTATIONAL RESULTS
6.1 Branch—-and-Cut

We ran our branch—and—cut program on a set of 269
proteins with 64 to 72 residues and 80 to 140 contacts
each, selected from the Protein Data Bank. The set was
chosen to contain both a large number of similar pro-
teins, as well as a large number of dissimilar proteins.
An all-against-all computation would have resulted in
36046 alignments; we selected a subset of 597 align-
ments, so that there would be roughly as many pairs
of similar proteins as well as dissimilar. The results are
reported in Table 7. We set a maximum limit of 1 hour
or 15 nodes in the search tree per instance. We also set a
minimum limit of 1 node in the search tree (i.e. at least
one LP is solved even if takes more than 1 hour). We
found that the LP time at each search node could take
from 1 minute to 2 hours, depending on the instance
size and similarity of the proteins (the more similar, the
easier the LPs). In Table 7 we sort the instances by the
value of the final gap (gap between best solution found

from a heuristic and the upper bound, 0=optimal so-
lution). For each gap level, we report total instances,
average and max number of residues (n) and contacts
(m), and performance of the heuristics, which are run
at each node of the search tree for a maximum time of
5 minutes for all nodes. For each heuristic, we report
how many times it found the final best solution. From
the table, it appears that the GA heuristic is clearly
superior to the others.

We have been able to solve 42 problems optimally and
for 362 problems (60 percent) the gap between the best
solution found and the current upper bound was less
than or equal to 5, thereby providing a strong certificate
of near—optimality.

6.2 The Skolnick clustering test

The hybrid heuristic approach that worked well for
providing lower bounds in the branch and cut algorithm
was also tried on large proteins in a test set suggested by
Jeffrey Skolnick. It involved 33 proteins classified into
four families: 1) Flavodoxin-like fold CheY-related, 2)
Plastocyanin, 3) TIM Barrel, and 4) Ferratin.

We evaluated the validation of this clustering using
our structure alignments. We performed 528 alignments
and the cluster was retrieved with 1.3% false negatives,
and with 0% false positives. Considering the percentagte
of the number of contacts in the alignment with re-
spect to the number of contacts in the smaller protein,
the range 0.314 — 0.99 contained 119 ”within clusters”
alignments with a 0% false negatives; the range 0.0 —
0.313 contained 409 ”between clusters” alignments with
a 1.3% false negatives.

7. REFERENCES

[1] E. Balas and C. S. Yu, Finding a maximum
clique in an arbitrary graph, SIAM J. on Comp.,
15(4):1054-1068, 1986.

[2] H. M. Berman, J. Westbrook, Z. Feng, G.
Gilliland, T. N. Bhat, H. Weissig, I.N.
Shindyalov, P.E. Bourne, The Protein Data
Bank, Nucleic Acids Research, 28 pp. 235-242,
2000.

[3] W. J. Cook, W. H. Cunningham, W. R.
Pulleyblank and A. Schrijver, Combinatorial
Optimization, John Wiley and Sons, New York,
1998.

[4] P. Crescenzi and V. Kann, A compendium of NP
optimization problems,
http://www.nada.kth.se/~viggo, the web.

[5] M. Grotschel, L. Lovasz and A. Schrijver, “The
Ellipsoid Method and its Consequences in
Combinatorial Optimization”, Combinatorica 1
(1981), 169-197.

[6] A. Godzik, The structural alignment between two
proteins: Is there a unique answer ?, Protein
Science, 5:1325-1338, 1996.

[7] A. Godzik, J. Sklonick and A. Kolinski, A
topology fingerprint approach to inverse protein
folding problem, J. Mol. Biol.,227:227-238, 1992.

[8] A. Godzik and J. Skolnick, Flexible algorithm for
direct multiple alignment of protein structures
and sequences, CABIOS, 10, (6) 587-596, 1994.

[9] Garey and Johnson, Computers and
intractability: A Guide to the Theory of
NP-Completeness, Freeman, 1979.

201

Gap=] 0 | 1 [2

| 3 [4 [5 |>5]

n. inst 42 48 72
avgn | 66.4 | 66.8 | 66.7
max n 69 72 71
avgm | 61.1 | 56.3 | 57.3
max m | 92 89 93
GA 38 44 63
LS1 25 20 35
LS2 5 0 0

71 76 95 193
67.0 | 67.03 | 66.8 | 66.8
72 71 72 72
59.7 | 61.5 | 64.7 | 71.4
95 88 89 | 133
61 64 74 | 155
31 33 35 82
1 5 12 53

Figure 7: Branch—and—Cut performance. More than one heuristic can find the best value.

(10]

(11]

(12]

(13]

(14]

| Family | Style [Residues | Seq. Sim. | RMSD [Proteins |

1 alpha-beta 124 15-30%
2 beta 99 35-90%
3 alpha-beta 250 30-90%
4 170 7-710%

< 3A | 1b00, 1dbw, 1nat, 1lntr, lqmp, 1rnl,
3cah, 4tmy

< 2A | 1baw, 1byo, 1kdi, 1nin, 1pla, 2b3i,
2pcy, 2plt

< 2A | 1amk, 1aw2, 1b9b, 1btm, 1hti, 1tmh,
1tre, 1tri, lydv, 3ypi, 8tim

< 4A | 1b71, 1bcf, 1dps, 1fha, lier, 1rcd

Figure 8: The Skolnick set.

D. Goldman, S. Istrail and C. Papadimitriou,
Algorithmic Aspects of Protein Structure
Similarity, Proceedings of the 40th Annual IEEE
Symposium on Foundations of Computer
Science, 512-522, 1999.

D. Goldman, PhD. Thesis, Dept. of Computer
Science, UC Berkeley, 2000.

A. Lucas, K. Dill and S. Istrail, Contact maps
and the computational statistical mechanics
aspects of protein folding (in preparation).

R. B. Hayward, Wealky Triangulated Graphs, J.
of Comb. Theory, Series B, (39)200-209, 1985.
R.B. Hayward, C. Hoang and F. Maffray,
Optimizing Wealky Triangulated Graphs, Graphs
and Combinatorics, 1987.

L. Holm and C. Sander, 3-D lookup: fast protein
structure searches at 90% reliability, Proceedings
of the ISMB 1995, p. 179-187, AAAI, 1995.

D. S. Johnson and M. A. Trick eds, Cliques,
Coloring, and Satisfiability, Dimacs Series in
Discrete Mathematics and Theoretical Computer
Science, the American Mathematical Society,
1996.

Kabash-W., A solution for the best rotation to
relate two sets of vectors, Acta Cryst. A32,
922-923, 1978.

H. P. Lenhof, K. Reinert, M. Vingron, A
Polyhedral Approach to RNA Sequence Structure
Alignment, J. Comp. Biol., 5(3):517-530, 1998.
A. Lesk, 11th Lipari International Summer
School in Computational Biology, 1999.

G. L. Nemhauser and L. Wolsey, Integer and
Combinatorial Optimization, J. Wiley and Sons,
1988.

G. L. Nemhauser and L. E. Trotter, Vertex
packings: Structural properties and algorithms,
Mathematical Programming, 8:232—248, 1975.

A. Raghunathan, Algorithms for Weakly
Triangulated Graphs, UC. Berkeley, Tech. Rep.
CSD-89-503, 1989.

[23] I. Eidhammer and I. Jonassen and W. R. Taylor,
Structure Comparison and Structure Prediction,
to appear J. Comp. Biol., x(x), 2000.

[24] D. E. Goldberg, Genetic Algorithms in Search,
Optimization and Machine Learning. Reading:
Addison-Wesley, 1989.

[25] J. H. Holland, Adaptation in Natural and
Artificial Systems, Cambridge, MA: MIT Press,
1992.

Acknowledgments

Thanks to Alberto Caprara for useful discussions, and
to Ross Lippert for helping throughout the project. The
work of the first author was partially supported through
project MURST on Computational Biology, while visit-
ing Sandia National Labs, Albuquerque, NM.

202

