
Fast Protein Folding in the Hydrophobic-hydrophilic Model Within Three-eights of Optimal

(Extended Abstract)
*

William E. Hartt

Abstract

We present performance-guaranteed approximation algo-
rithms for the protein folding problem in the hydrophobic-
hydrophilic model, Dill (1985). To our knowledge, our al-
gorithms arethe first approximation algorithms inthe litera-
ture with guaranteed performance for this model, Dill (1994).
The hydrophobic-hydrophilic model abstracts the dominant
force of protein folding: the hydrophobic interaction. The
protein is modeled as a chain of amino acids of length n
which are of two types: H (hydrophobic, i.e., nonpolar)
and P (hydrophilic, i.e., polar). Although this model is
a simplification of more complex protein folding models,
the protein folding structure prediction problem is notori-
ously difficult for this model. Our algorithms have linear
(3n\ time and achieve a three-dimensional motein confor-.,
mation that has a guaranteed free energy w~hin 3/8 of op-
timal, By achieving speed and near-optimality simultane-
ously, our algorithms are consistent with the recently pro-
posed framework of protein folding by Sali, Shakhnovich and
Karplus (1994). Equally important, the folding pathway and
final conformations of our algorithms are biologically plausi-
ble. The algorithms define folding pathways that fit within
the framework of diffusion-collision protein folding proposed
by Karplus and Weaver (1979), and final conformations gen-
erated by the algorithms have significant secondary struc-
ture (anti-parallel sheets, beta sheets, hydrophobic core).
Previous algorithms have employed exhaustive search of pro-
tein sequences and conformation for sequences of length 11
or less. For longer sequences (length ~ 3O), previous algo-
rithms have performed random sampling of sequences for
which exhaustive search of conformations was performed.
Our result answers the open problem of Ngo, Marks and
Karplus (1994) about the possible existence of an approx-
imation algorithm for protein structure prediction in any
well-studied model of protein folding.

●This work was supported by the Applied Mathematical Sciences

program, U.S. Department of Energy, Office of Energy Research, and
was performed at Sandia National Laboratories, operated for the U.S.
Department of Energy under contract No. DE-AC04-76DPO0789.

‘wehart@cs.sandia. gov
‘sclstra@cs. sandia. gov

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyri h! notice and the
Mle of the publication and Its date appear, an %notice is given

that copyin is by permission of the Asso@ation of ComPutin9
TMachinery. o copy othervwse, or to republish, requires

a fee and/or specific permmon.
STOC’ 95, Las Vegas, Nevada, USA
01995 ACM 0-89791 -718-9/95/0005..$3.50

Sorin Istrail$

1 Introduction

A protein is a chain of amino acids residues. Although
linear, under specific conditions it folds into a unique native

three-dimensional structure. Experiments show that pro-
teins unfold when folding conditions provided by the en-
vironment are disrupted and spontaneously refold to their
native structures when conditions are restored. This is the
basis for the belief that prediction of the native structure
of a protein can be done computationally from the informa-
tion contained in the amino acid sequence. Various protein
folds (or conformations) are analyzed in terms of their free
energy. The so called Thermodynamical Hypothesis states
that the native structure of a protein is the one for which
the free energy achieves the global minimum.

In a recent comprehensive review of the computational
aspects of protein folding prediction, Karplus et al. [15] ar-
ticulate one of the basic problems oft he field. “The central
question addressed in this review is this: Is there some clever
algorithm, yet to be invented, that can find the global mini-
mum of a protein’s free-energy function reliably and reason-
ably quickly? Or is there something intrinsic to the problem
that prevents such a solution from existing?” The review
analyzes recent NP-hardness results for the complexity of
simple protein folding models [14, 19]. These results “lend
intellectual rigor to the existing pessimism” concerning the
existence of algorithms for solving global free-energy mini-
mization problems. Karplus et al. note that approximation
algorithms with provable performance guarantees may be an
effective way to cope with these NP-hardness results. They
observe that

Such an approximation algorithm might be of
significant practical use in protein-structure pre-
diction, because exactness is not such a central
issue. If the guaranteed error bound were suffi-
ciently small, an approximation algorithm might
be useful for generating crude structures. If not,
merely knowing that the energy of the optimal
structure is below a certain threshold could still
be of use as part of a larger scheme ... approxi-
mation algorithms can be joined with an existing
stochastic algorithm to form a hybrid that is bet-
ter than either of its components alone.

However, they note that approximation algorithms are not
possible for all NP-hard problems, and pose the following
question

Is there an approximation algorithm for the
global free-energy minimization? ... To our knowl-

157

edge, the possible existence of an approxima-
tion algorithm for protein structure prediction
has not been addressed either on a specific, ad
hoc basis, ... or using the more general tech-
niques introduced by Arora et al. [1].

The results in this paper answer this problem by de-
scribing approximation algorithms for the two- and three-
dimensional hydrophobic-hydrophilic models [5]. In Sec-
tion 3, we describe the complexity measures that we will
use to analyze these approximation algorithms. In Section 2,
we describe the hydrophobic-hydrophilic model and review
previous algorithms used to find low-energy conformations
wit hin it. In Section 4, we analyze the structure of protein
instances. This analysis decomposes protein instances in a
way that naturally leads to a normal form for conforma-
tions of subsequences of a motein. We utilize this normal
form in Sectio~ 5 to descri~e approximation algorithms for
the two-dimensional model. Then we describe approxima-
tion algorithms for the three-dimensional model in Section 6,
and. conclude with a discussion of our results.

2 The Hydrophobic-hydrophilic Model

The hydrophobic-hydrophilic model was introduced by
Dill [5] and has been intensively studied [2, 3, 10, 11, 13, 20,
19, 21]. It models a protein as a linear chain of amino acid
residues. Each amino acid can be either of two types: H
(hydrophobic, i.e., nonpolar) or P (hydrophilic, i.e., polar).
For simplicity, we denote H by “l” (black) and P by “0”
(white).

Conformations of proteins are embedded in either a two-
dimensional or three-dimensional square lattice. The lat-
tice simply serves as a tool to discretize the confirmational
space. It accounts for the soft degrees of freedom which
generate different backbone conformations and is consistent
with the so called “excluded volume” condition, namely,
no two residues can occupy the same lattice site. A chain
conformation is represented as a self-avoiding walk on the
two-dimensional or three-dimensional square lattice. Each
amino acid in the chain is represented by occupying one
lattice site, connected to its chain neighbor(s) on adjacent
lattice sites.

In the two-dimensional lattice, every lattice site has four
neighbors, and the number of bond orientations within the
chain for every internal residue is z — 1 = 3. In the three-
dimensional lattice, every lattice site has six neighbors, and
the number of bond orientations within the chain for every
internal residue is z —1 = 5. The value z is called the lattice

coordination number. The conformation space is the set of
all possible internal conformations of a molecule, due to all
the different bond orientations. The sequence space is the
set of all possible sequences of H and P residues. It is con-
venient to distinguish between pairs of amino acids that are
connected neighbors in the chain, i.e., occurring in positions

j’ and j + 1 along the chain, and topological neighbors that

are adj scent in space (in cent act) but not adj scent in the

chain.
The model assumes that the free energy is computed

between the topological neighbors in a conformation. Ev-
ery H H cent act between t orological neighbors has a con-
tact free energy of c(< O). Any other pairwise combina-
tion of H and P has free energy equal to O. This is a very

simple model of the free energy of protein conformations.

However, the model used for prediction in conjunction with

mean-field approximation predicts well the experimentally

measured temperature and solvent dependencies of protein
stability [1O]. Following the Thermod ynamical Hypothesis,
the native structure of a given sequence is the conformation
that achieves minimum free energy.

Dill and others have extensively analyzed the biologi-
cal properties of the hydrophobic-hydrophilic model [2, 3,
10, 11]. For sequences of length 11 or less, their analy-
ses employed algorithms that exhaustively search both the
protein sequences and conformations. For longer sequences
(length ~ 30), they used algorithms that performed ran-
dom sampling of sequences for which exhaustive search of
conformations was performed. Unger and Moult [20, 21]
have applied approximation algorithms to search for mini-
mal free-energy conformations. Their approximation algo-
rithms are genetic algorithms, and they do not provide per-
formance guarantees for their final solutions. Using these
algorithms, they successfully folded a sequence of length 60
on a two-dimensional lattice after approximately 200,000 en-
ergy evaluations [19]. They also folded sequences of length
64 on a three-dimensional lattice [21], though the optimaJ
conformation was not know for the protein instances they
considered. St oloz [18] has developed recursively-based com-
putational methods that can be used to identify a large num-
ber of low energy conformations, instead of simply identify-
ing the globally minimal conformation. These methods are
useful, for example, for analyzing thermodynamic barriers
in the model. Finally, Kleitman and Linial [12] have ana-
lyzed lower bounds for the two-dimensional model (work in
progress).

3 Guaranteed Performance for Approxima-

tion Algorithms

Our research examines approximation algorithms for pre-
dicting the structure of folded proteins that are fast and have
guaranteed performance. The efficiency of an approxima-
tion algorithm insures that it will terminate with a solution
quickly. The guaranteed performance insures that for every
protein instance the energy of the solution will be below a
given threshold in a mathematically provable way.

To our knowledge, our approximation algorithms are the
first to insure both efficiency and provable guaranteed per-
formance for the protein folding problem. Thus they may
be distinguished from previous work with heuristic approx-
imation algorithms that do not have these properties (e.g.
Unger and Moult [20, 21]). Algorithms with guaranteed
performance provide solutions with the given performance
for every problem instance. In contrast, heuristic approxi-
mation algorithms typically perform well for certain prob-
lem instances, while performing less well for other problem
instances. Consequently, an analysis of heuristic approx-
imation algorithms relies on empirical tests to determine
whether they are appropriate in practical settings, In the
context of protein folding, approximation algorithms with
guaranteed performance are very import ant because they
can generate solutions for large (long) protein instances, for
which current heuristic methods cannot generate good solu-
tions within acceptable time limits.

We use computational definitions of efficiency and perfor-
mance to analyze approximation algorithms. An algorithm
is eficient if it terminates with a solution after executing
for a length of time that is polynomial in the length of the
protein instance. For example, if L(s) is the length of a
protein instance s, then the number of steps executed by a
polynomial-time algorithm is proportional to L(s)m for some

158

m greater than zero, This definition places no restrictions
on the amount of memory (space) used by the algorithm,
but the approximation algorithms that we describe use an
amount of space that is polynomial in the length of the pro-
tein instance.

Two types of performance guarantees are often described
for approximation algorithms [8]: the absolute performance

ratio and the asymptotic performance ratio. Let A(s) be the
energy of the conformation generated for protein instance
s by algorithm A, and let OPZ’(s) be the energy of the
optimal conformation. The absolute performance ratio R~

of algorithm A is given by

Rd = sup{r ~ 1 [RA(s) ~ r,vs},

where Rd(s) = A(s)/0P7’(s). Given N c Z, let SN = {s [

OPT(S) ~ N}, and let l?~ = inf{RA(s) I s c SN}. The
asymptotic performance ratio R~ is given by

If Rd = r, then the value of solutions generated by
algorithm A are withhr a factor of r of the optimum. If
R~ = r, then as A is applied to larger protein instances,
the value of solutions generated by A approaches a factor of
r of the optimum. Since A(s) <0 and OPT(S) ~ O, both
of these ratios are scaled between O and 1 such that a ratio
closer to 1 indicates better performance.

4 Structure Analysis

We represent a protein instance s as a sequence of ele-
ments sl, sz, . . . , SL, where si c {O, 1}. Let L(s) equal the
length of the sequence s. Let M(s) equal the length of the
longest sequence of zeros in s. Finally, let E(s) is the num-
ber of connected neighbors in the sequence, Sj and SJ+l for
which SJ = 1 and SJ+l = 1.

Perhaps the most salient feature of this discrete protein
folding problem is that two elements s, and SJ can be topo-
logical neighbors in a conformation only if Ii – j[is odd.
This has two import ant implications. First, we can decom-
pose a sequence s into a sequence of blocks such that 1‘s
within each block cannot be topological neighbors in any
conformation, but 1‘s between alternating blocks can be
topological neighbors. This description can be used to de-
fine a normal form for sequences that is useful when reason-
ing about approximation algorithms. Second, we can bound
the optimal free energy of a protein instance by counting
the number of 1’s that can be topological neighbors.

4.1 Decomposition

A protein instance s can be decomposed into a sequence
of subsequences that cent ain either O‘s or 1‘s. Thus we
can decompose s into ZOI1 Z] . . . Zh-.l IhZh, where Z, are
sequences of O’s and Ii are sequences of 1‘s. The lengths of
Z, satisfy the constraint

L(Zi) >

{

o i=o, k
I otherwise ‘

while the lengths of Ii satisfy L(li) ~ 1. For example, the se-
quence 010101111010100001010101 can be decomposed such

that

L(Z) = (L(Zo),...,, L(&))

= (1,1,1,1,1,4,1,1,1,0)

and

L(I) = (L(I1),. ... L(~9))

= (1,1,4,1,1,1,1,1,1).

An instance s can also be decomposed into a sequence of
blocks. A block b, has the form bi = 1 or b, = 12,,1 . . . Z,, 1,
where the Z,j are odd-length sequences of O’s and h ~ 1. A
block separator z, is a sequence of O’s that separates two
consecutive blocks, where L(z,) > 0 and L(z,) is even for
i=l$..,, h – 1. Thus s is decomposed into zob] ZI . . . bhZh.

Since L(z,) ~ O, thisdecomposition treats consecutive 1‘s
as a sequence of blocks separated by zero-length block sep-
arators. Let IV(b,) equal the number 1’s in bi. Thus the
sequence

010101 1 1 10101 oooo _
~vwv

can be represented as

L(z) = (1, 0,0,0,4, O)

N(b) = (3,1,1,3,4).

Recall that two 1’s can be topological neighbors only
if there is an even number of elements between them. It
follows from our definition of blocks that two 1’s within a
block cannot be topological neighbors. Further, any pair of
1‘s take from blocks bh and b~ may be topological neighbors
only when Ik – j I is odd, To see this, observe that the length
of each block is odd. If Ik – jl is even, then there are an odd
number of blocks between bj and bk. Since block separators
between blocks have even length, the total distance between
blocks b~ and bk is odd. Consequently, the distance between
any pair of 1’s taken from blocks bh and bj is odd. If Ik - ~1

is odd, then there are an even number of blocks between
bj and bk, so the total distance between blocks bJ and bh

is even. Consequently, the dist ante between any pair of 1‘s
taken from bk and bj is even.

Since 1‘s from a block can only be topological neighbors
of 1‘s from every other block, it is useful to divide blocks
into two categories: z-blocks and y-blocks. For example, let
z, = bz, and let yi = bz, -1. This makes it clear that 1’s from
an x-block can only be topological neighbors to 1‘s from an
y-block. Let B= and By be the number of oblocks and y-

blocks respectively. Further, let X = X(s) = ~~1 N(z,)

and Y = Y(s) = ~~=yl N(~i). We assume that the division
into x- and y-blocks is such that X ~ Y. For example, the
sequence

_-+lO@oooo ~ol:lo)010101 1

Vo Zo ?41 xl !J2

can be represented as ZOyOZIZOZ2Y1ZSZ1z4y2ZE,,where

L(Z) = (1, 0,0,0,4, o)

N(t) = (1,3)

N(y) = (3, 1,4).

A superblock B, is comprised of sequences of blocks as
follows: B, = b,, zil . . . z~,_, bi,. Let Nm(Bi) equal the sum
of N(bj), where bj are z-blocks in Bi. Let NY(B;) equal
the sum of N (bJ), where bj are y-blocks in .Bi. Finally, let
AT(B$) = N=(.Bi) +Nv(Bi).

159

4.2 The Normal Form

Given a decomposition of a protein instance into blocks
and superblocks, we can configure the instance into a nor-
mal form that is useful when describing approximation al-
gorithms. The normal form specifies the conformation of
blocks and superblocks. With only mild restrictions, each
block and superblock can be independently configured into
thk normal form.

Figure la illustrates the normal form for the block
10001010001000001. The normal form for a block b, specifies
that the 1’s in b; be placed on a two-dimensional grid such
that the 1‘s lie in along a line, separated by single 0’s. The
single O comes from the odd-length sequence of O‘s between
consecutive 1‘s, and the remaining even-length sequence of
O’s is folded in the remaining dimension. The normal form
specifies that all of these zero-ioops lie on the same “side”
of the 19Sin the block. For example, if the 1?Sare placed
in a vertical line, then all zero-loops lie either to the left or
right of the vertical line. The configuration of a block in
thk normal form is called the block structure of b,. The line
through which the 1‘s of a block are configured is called the
~ace of the block structure.

T--J

Y--J

(c)

o-a-!

L
(d)

Figure 1: Illustrations of normal forms, where left to right
along the sequence is mapped from bottom to top in the
normal form. A bIack box represents a 1 in a ~-block,
a black circle represents a 1 in a z-block, and a white
block represents a O. Figures are (a) normal form block
structure for block 10001010001000001, (b) normal form
b~ock separator structure for 000000, (c) normal form su-
perblock structure for block 1000101000010001001000001,
and (d) normal form z-superblock structure for block
1000101000010001001000001.

Figure lb illustrates the normal form for the block sep-
arator 000000. If the length of a block separator is greater
than two, then we can define a normal form for the biock

separator structure. Block separators are configured such
that the two O’s at its endpoints are vertically or horizon-
tally adjacent. The remaining O’s are looped in the same
manner as the zero-loops in blocks. The face of the block
separator structure is the two O’s at its endpoints.

Figure lC illustrates the normal form for the superblock
1000101000010001001000001. Thenormal form forsuperblocks
uses the block structures of its constituent blocks and block
separators. The block structures are constructed on a two-
dimensional grid such that the face of each block structure
lies along the same line on the grid. Further, all of the
zero-loops from these blocks are placed on the same side of
the faces of the blocks. The structures for block separators
are constructed such that the face of the block separator
is aligned with the faces of the block structures. The con-
figuration of a superblock in this normal form is called the
superblocks tructureof B,. The line through which the 1’s
of a superblock are configured is called the face of the su-
perblock structure.

Itisoften of interest to construct asuperblock structure
that contains 1’s from either z-blocks or g-blocks. We call
such a superblock structure an z-superblock structure if only
l’sfrom z-blocks arein the face, and an y-superblockstruc-

tur-eif only 1’s from y-blocks are in the face. To construct
an z-superblock structure, the block structure is constructed
foreach z-block inthe superblock. The block structures are
constructed on a two-dimensional grid such that the face of
each block structure lies along the same line on the grid.
Consecutive x-blocks are separated by an odd-length se-
quence that contains an y-block (the sequence contains an
y-block, which is odd-length, along with two block separa-
tors, which are even-length, sothetotal length is odd). This
sequence is folded like the odd-length sequences of O’sin the
z-block, which fills in the space between x-blocks and loops
on the same side of the block faces as the zero-loops. The
y-superblock structures are constructed analogously. Fig-
ure Id shows the z-block superstructure for the sequence

1000101000010001001000001
~ ~’

Yl =1 Y2

which is decomposed into blocks yl, Z1 and yz.

5 Folding Sequences in the Two-Dimensional

Model

This section describes approximation methods for the
two-dimensional hydrophobic-hydrophilic model. We begin
by describing bounds on the optimum in two-dimensions.
We then describe two approximation algorithms that gener-
ate solutions that asymptotically are within 1/4 of optimal,
These algorithms are distinguished by differences in their
absolute performance guarantees.

5.1 Bounds on the Optimum

Before describing approximation algorithms for the two-
dimensional hydrophobic-hydrophilic model, we consider a
lower bound on the energy of the optimal conformation.
Consider an instance s as an alternating sequence of a-blocks
zi and y-blocks y,. Let T.(s) be the number of endpoints
that are 1’s in an z-block, and let Tv (s) be the number of
endpoints that are 1‘s in an y-block. We assume that if
X = Y then Tx(s) ~ TV(9).

Every 1 in each z-block can be a topological neighbor of
at most two other 1‘s, except when the 1 is an endpoint of
s, In that case, the 1 may be next to three 1’s. Thus the
optimal energy is at most

OPT(S) > –2X – Ts(s). (1)

160

5.2 Basic Approximation Algorithm

Our first approximation algorithm for the two-dimensional
hydrophobic-hydrophilic model is Algorithm A. Given a
protein instance, Algorithm A selects a single folding point
(turning point) that divides the protein instance into a y-
superblock B’ and an z-superblock B“, such that IVV(B’)
is balanced with Ns (B”) (i.e. the folding point is between
blocks). Superblock structures are generated for the two
superblocks, which ‘(eliminates” the z-blocks from the face
of the superblock structure for B 1 and “eliminates” the y-

blocks from the face of the superblock structure for B“.

Finally, the two superblock structures are folded together to

constitute the “hydrophobic core” [10].

Figure 2 describes the subroutine used to select the fold-

ing point. This subroutine is described separately since it is

used by all of our approximation algorithms. Lemma 1 de-

scribes a property of the resulting fold which is used to pro-

vide performance bounds for the approximation algorithms.

Lemma 1 The folding point selected by Subroutine 1 par-

titions a protein instance s into two superblocks B’ and B“

such that either

N,(B’) z ~~1 and Nm(B”) >1$1, (2)

Figure 3 formally defines Algorithm A. Figure 7a iUus-
t rates the application of Algorithm A.

1.

2.

3.

Label the blocks of s with z, and y, such that X s Y
and if X = Y then T.(s) > Tv (s). Apply Subroutine 1
to select a folding point.

Construct the z-superblock structure for B“ and con-

struct the ~-superblock structure for B’.

Fold the two superblock structures together face-to-
face.

Figure 3: Algorithm A

Note that each step of Algorithm A is linear. Decompo-
sition into z- and y-blocks requires a single pass through the

protein instance. Subroutine 1 requires a single pass through
the sequence of blocks, which is no longer than the length of
the protein instance. Finally, the superblock structures for
B’ and B“ and final conformation can be constructed with a
single pass through the protein instance. Thus there are on
the order of 3L (s) computations required by Algorithm A
which is linear in L(s).

Let A(s) represent the energy of the final conforma-
tion generated by Algorithm A. The performance of Al-
gorithm A can be bounded as follows.

Lemma 2

A(s) <
{

- [x/21 , E(s) = O

-[x/21+1 ,E(s)>o “

Proposition 1 uses Lemma 2 to prove asymptotic and

absolute performance ratios for Algorithm A.

Proposition 1 R~ = 1/4 and RA = O.

Note that Rd(s) = O for all s such that X(s) = 1 or

X(g) = 2. We expect that these sequences occur quite in-
frequently in practice, so the empirical performance of AL
gorithm ..4 should be much better than the absolute perfor-
mance ratio suggests.

5.3 Improved Two-Dimensional Approxima-

tion Algorithm

Figure 4 describes Algorithm k?, an approximation al-
gorithm for the two-dimensional model which has a better
absolute performance ratio than Algorithm A. Algorithm L?
modifies the final conformation generated by Algorithm A to
create additional topological neighbors between hydropho-
bic amino acids, which enables tighter performance guaran-
tees. Figure 6 illustrates the application of Algorithm B on
four sequences which show the different modified folds per-
formed by Algorithm B. Figure 7b illustrates the application
of Algorithm B.

Each step of Algorithm B is linear, so Algorithm B re-
quires linear time. Let B(s) represent the energy of the final
conformation generated by Algorithm B. The performance
of Algorithm B can be bounded as follows.

10001000100010001001000100010001

T

...
~~

Bit B1

(a)

10001000100010001001000100010001

~lt ~)
(b) (c)

Figure 5: Illustration of Step 2 of Algorithm B: (a) initial
decomposition into B’ and B“, (b) modified decomposition,
and (c) conformation using new folding point, wit h a dashed
line indicating the folding point.

Lemma 3

B(s) < – [(x+ 1)/21.

Proposition 2 uses Lemma 3 to prove asymptotic and

absolute performance ratios for Algorithm B.

Proposition 2 RF = 1/4 and 11~ = lf4.

6 Folding Sequences in the Three-Dimensional

Model

ThL s.ction d..crib.. -pp,.4mwt& method. for the
three-dimensional hydrophobic-hydrophilic model. We be-
gin by describing bounds on the optimum in three-dimensions,
Next we show how performance guarantees for algorithms

161

Let cond(a, b, A, B) ~ (a < b) OR ((a = b) AND (A < B)). For a partition (Bl, l%), let mzv = min(N.(Bl), Nv(l%))t
my= = min(NY(Bl), N=(B2)), III=Y = max(N~(Bl), Ng(.B2)), and Mv. = max(~y(ll), Nr(B2)).

Decompose s into blocks, such that s = zobl Z1 b, . . . bk zk, and do the following.

B1 = zoblzl B2 =b2z2... bkzk

if (mzY > mvz)
B’=B2 B1’=B1 e=m.y E=M.Y

else
B’=& B“=B2 e=mvz E=MVZ

endif
for i in 3:k

B1 = ZObI . .. bl-lz$-l B, = bt~t . .. bkZk

if (cond(e, msY, E, Mmv))

B’=B2 B“=B1 e=m=y E=M=Y

endif
if (cond(e, m~z, E, Mvc))

B’ = BI B“=B2 e=mu= E= MY.

endif
endfor

Fizure 2: Subroutine 1

1. Label the blocks of s with ~~ and yi such that X ~ Y and if X = Y then T=(s) ~ Tu (s). Apply Subroutine 1 to select
a folding point.

2. Let zi be the block separator at the selected folding point. Construct the folding point aa follows.

(a) If NV(B’) = NS(B”) or L(a) >0, then construct the standard folding point with z,.

(b) If IVY(B’) > N=(B”) and L(z,) = O, then redefine B’ to exclude the 1 that is adjacent to z~ and construct the
standard folding point with the sequence between ends of B’ and B“ (see Figure 5).

(c) If IVY(B’) < N=(B”) and .L(zi) = O, then redefine B“ to exclude the 1 that is adjacent to z: and construct the
standard folding point with the sequence between ends of B’ and B“.

3. Construct the z-superblock structure for B“ and construct the ~-superblock structure for B’.

4. Do one of the following:

(a) If N,(B’) = N=(B”) then refold the last 1 from the face of the two superblocks as illustrated in Figure 6a. Fold
the last 1 from the z-superblock onto the end of the y-superblock, and fold the last 1 from the y-superblock around
the last 1 from the z-superblock.

(b) If INY(B’) - N=(B”)! >1 and the superblock with the shorter face ends with a 1 on the face, then wrap the
superblock with the longer face so it wraps around the end of the shorter superblock (see Figure 6b),

(c) If INY(B’) – NZ(B”)I = 1, or INV(B’) – N.(B”)I >1 and the superblock with the shorter face does not end with a
1 on the face, then modify the fold the of the superblock with the longer face so it wraps on top of the superblock
with the shorter face (see Figure 6c).

Figure 4: Algorithm B

162

(a)

M
(b) (c) (d)

Figure 6: Applications of Algorithm B to examples that illustrate the different processing done in the last step of the algorithm:
(a) Step 4a, (b) Step 4b and (c) Step 4c. Figure (d) illustrates the application of Algorithm B when a modified folding point
is selected.

wplied for the two-clirnensional model can be used to pro-
vide performance guarantees for the three-dimensional model.
Finally, we describe an approximation algorithm that gener-
ates solutions that asymptotically are within 3/8 of optimal.

■

1

[1

I t

[1

I

■

I I ■ I

(a)

I[1
II II

[1

c1

r1

(b)

Figure 7: Examples of the application of (a) Algorithm A
and (b) Algorithm B.

6.1 Bounds on the Optimum

In the three-dimensional model, each 1 in an z-block can
be a topological neighbor of at most four other 1‘s, except
when the 1 is at an endpoint ofs. In that case, the 1 can be
a t orological neighbor of five other 1‘s, Thus the free energy
can be bounded as follows

OPT(S) > –4x – T=(s). (4)

Let OPT2D (s) be the value of the optimal conforma-
tion of s in the two-dimensional model, and let 0PT3D (s)

be the value of the optimal conformation of s in the three-
dimensional model. The following theorem relates these val-
ues, showing that 0PT3D (s) is within a constant factor of
OPT2D (S).

Theorem 1 QPTzD(s) ~ OPT3D (s) ~ 80PT2D (s).

The upper bound on OPT3D (s) is tight (e.g. consider

the sequence 1001). It is not clear whether the lower bound

is tight, since the proof of the lower bound uses the absolute

performance guarantee for Algorithm &?. Consequently, imp-

roved approximation methods for the 2D HP model would

improve this bound.

6.2 Extension of Results for Two-dimensional

Approximation Algorithms

The approximation algorithms for the two-dimensional
model can clearly be used to generate conformations for the
three-dimensional model. Using the bounds on OPT3D (s)

provided by Theorem 1, we can bound the values of an
algorithm’s absolute and asymptotic performance guaran-
tees for the three-dimensional model, given its performance
guarantees for the two-dimensional model. Let ZZD (Z3D)
refer to the application of a generic Algorithm Z in the two-
dimensional (three-dimensional) model, and let SfiD = {S \

163


~~~zD(S) < i?} (SfiD = {s I OPTSD(S) < N}). The follow-
ing two propositions provide bounds on RZ3D and R~aD.

Proposition 3 If tcl ~ R~2D < m then 61/8 S Rz,~ <
~2.

Proposition 4 If ICl s R; s ~z then icl/8 S R~,D <
2D

it/2.

For specific algorithms, these bounds can be tightened.
For example, the following proposition shows that Algo-
rithm f? has a one-eigth bound in the three-dimensional
model.

Proposition 5 R~,~ = 1/8 and R~,D = 1/8.

6.3 Iterative Approximation Algorithm

Our approximation algorithm for the three-dimensional
model, Algorithm C, constructs a conformation in an “it-
erative” fashion by dividing the z- and y-superblocks into
K subpieces each. The faces of the 21S new superblocks
are configured in z-y planes such that the tops of the faces
form a rectangular array of width two in the x-z plane. This
configurate ion places the face of each super block adj scent to
three other superblocks, except for the superblocks at the
corners of the rectangular array, which are adj scent to two
other superblocks.

Figures 8a and 8b illustrate the two different types of
planes used to construct a final configuration. These differ
only in the way they connect the current plane to the next
plane. The n-th plane connects to the next plane by con-
necting to either the top or bottom of the next plane, Fig-
ure 8C illustrates a finaJ conformation after K planes have
been connected together. Figure 8d shows the relative loca-
tions of 1‘s in the protein inst ante with dashed lines between
topological neighbors.

Algorithm C is formally defined in Figure 9. Algorithm C
partitions the z- and y-superblocks into h’ superblocks of
length J that are seperated by blocks of length 1 or 3 alterna-
tively. If L = min(Nx(B”), NY(B’)), then -L ~ KJ+21Y– 1.
This bound can be tight, so this is the greatest lower bound
on L possible. Now given K, we can let J be

J= L–2K+1

[ JK “

To allow both K and J to grow as X increases, we let
K = lf(L)j, where ~ is a monotonically increasing function
such that ~(z) < z. Figure 10 illustrates the application of
Algorithm C.

Each step of Algorithm C is linear, so Algorithm C is re-
quires linear time. Let C(s) represent the energy of the final
conformation generated by Algorithm C. The performance
of Algorithm C can be bounded as follows.

Lemma 4 Let ~ = [X/21, Let ~- = l~(X)~ and ~ =
X/~ – 3. If X >5 then

c(s) < –311-.7+ 21+ 1.

Theorem 2 uses Lemma 4 to prove the asymptotic per-
formance ratio for Algorithm C.

Theorem 2 If ~(z) = ~ then R? = s/8.

The choice of ~(z) = @ makes the asymptotic conver-
gence of Algorithm C nearly as fast as possible. The optimal
selection for # is approximately 1l@/18,

7 Discussion

For lack of space, we have omitted a discussion of several
other algorithms. For example, we have developed dynamic
programming methods for the two-dimensional model. This
algorithm has a poor worst-case behavior, but in practice it
works much better than the simple single-fold algorithms in
two-dimensions.

Garey and Johnson [8] note that the relative importance
of the asymptotic and absolute performance ratios typically
depends on the problem being considered. For protein fold-
ing, we expect that the asymptotic performance ratios will
be more important since the most difficult protein instances
to analyze are precisely those which have a native state with
very low free energy, and the actual performance ratio ap-
proaches the asymptotic performance ratio for these protein
instances. The values of solutions generated by most of our
approximation algorithms differ from the asymptotic per-
formance ratio by an additive constant to the numerator of
the ratio, so they asymptotic performance ratio should ac-
curately estimate the true performance ratio even for even
protein instances with moderately low free energies. The
exception is Algorithm C, which has an additive square-root
factor.

Karplus et al. [15] observe that approximation algorithms
with provable guarantees are one way to cope with the NP-
hardness of protein folding problems. This observation re-
sponds to recent NP-hardness results for a number of mod-
els of protein folding [7, 19, 14]. While the hydrophobic-
hydrophilic model is a special case of the lattice model con-
sidered by Unger and Moult [19], to our knowledge there is
no proof that folding proteins in the hydrophobic-hydrophilic
model is NP-hard. While it is possible that a polynomial
time algorithm exists for this problem, we conjecture that it
is in fact NP-hard.

A related problem which we also conjecture to be NP-
hard, is the Hydrophobic-Core Compactness Problem. This
objective of the problem is to maximize the number of 1‘s
in a conformation that are topological neighbors to two or
more 1‘s. Approximation algorithms for this problem could
also be of interest, since solutions to this problem have a
dense hydrophobic core.

We conclude by discussing the biologically plausibility of
our algorithms. Figure 11 symbolically illustrates the fold-
ing pathways that Algorithm A and Algorithm C use to fold
a protein instance. The final conformations generated by the
algorithms have significant secondary structure. The block
structures reminiscent of helixes. The face-to-face foldings of
the superblock structures are similar to anti-parallel sheets
since the directionality of one half of the fold is opposite that
of the other. A hydrophobic core arises in both the two-
and three-dimensional algorithms from the adj scent faces of
the superblock structures, which result in an aggregation of
1‘s. Finally, the three-dimensional algorithms fold the su-
perblock structures in a zigzag fashion (in the x-z plane) is
similar to the packing that occurs in beta sheets.

The approximation algorithms suggest pathways described
in phases that may happen during protein folding. Figure 11
schematically illustrates these phases. Figure 1la presents a
protein in an unfolded state. Figure 1lb describes the phase
in which the sequence is decomposed into blocks that are
functionally self-contained, and which separated by block-
separators which are even-length sequences of O‘s. These
are the helix-like structures. Implicit in this decomposition
is the alternation of such blocks which divides them into
x- and y-blocks according to our algorithms. Note that this

164



(a) (b)

●

(c) (d)

Figure 8: Example of an application of Algorithm C to a sequence of length 202, showing (a) the configuration of the z- and
y-superblocks moving up, with connections to the next z-y plane at the top of the superblocks, (b) the configuration of the

z- and y-superblocks moving down, with connections to the next z-y plane at the bottom of the superblocks, (c) the final
conformation of the sequence and (d) the relative positions of 1‘s in final conformation, with dashed lines between topological
neighbors highlighting the hydrophobic core.

165



1. Label the blocks of s with y, and x, such that X s Y and if X = Y then T.(s) z Tv (s). Apply Subroutine 1 to select
a folding point (B’, B“).

2. Let f(z) be a monotonically increasing function such that ~(z) < z. Let ~ = [j(min(N.(B”), N,(B’)))], and let

J=
I

min(iV=(B~/ ), Nv(B~))-2K+l

K
1

If K = 1 or J <2, then apply Algorithm U. Otherwise, continue.

3. Configure the folding point and perform the following iteration

Fori=l,2,. ... K
If t is odd

Construct an x-superblock of length J from B“ and
an g-superblock of length J from B’

Configure the two superblock face-to-face in the current z-y plane,
moving up

If t < K then construct the connections to the next z-y plane
as illustrated in Figure 8a

If t is even
Construct an z-superblock of length J from B“ and

an y-superblock of length J from B’
Configure the two superblock face-to-face in the current z-y plane,

moving down
If t < h’ then construct the connections to the next z-y plane

as illustrated in Figure 8b

Figure 9: Algorithm C

‘Sii

‘*

Figure 10: Application of Algorithm C to a sequence of length 500.

166



d %3
(a)

(b)

4

(e)

1’I
.......,,,,,.,,,,,,,.......

,,,’ ,,,
,.,

[11

. . . . . . .

. . . . . .,. ,.,

,., ,..’
. . . . . ..

,., ,.,
,,. ...

! (f’ )

(e’)

Y(g’)

Figure 11: Folding pathway: Symbolic illustration of folding pathways consistent with Algorithms A and C (a) initial (random)
conformation, (b) initial conformation decomposed into blocks (rectangular blocks), (c) conformation with identified folding
point (at arrow), (d) conformation after block structures constructed for z-blocks and y-blocks (zero-loops represented by
rectangles attached to blocks). For Algorithm A, (e) final conformation of Algorithm A after block superstructures constructed
for each half of the fold (loops represent block-separators and blocks that are removed from the superblocks’ faces). For
Algorithm C, (e’) blocks on both halves of the folding point are split into A’ superblocks (represented by the thin and thick
dashed lines on the inside of the sequence), (f’) superblock structures are aligned vertically on a rectangle in the z-z grid
(dotted lines illustrate the three-dimensional configuration of the superblock structures), and (g’) superblock structures are
connected to form the final conformation.

167



step uses only short-range interactions. Figure 1lC describes
long-range interactions. This step balances the bondable
hydrophobicity by finding a position in a sequence, called
the folding point, which is a position between two consec-
utive blocks. The bondable hydrophobicity is measured by
matching the number of 1’s in the y-blocks on one half of
the folding point with the number of l’sin the x-blocks on
theother half of the folding point. Note that oneach half of
the folding point, only x-blocks or y-blocks are selected for
bonding. In Figure Ildis shown howtheblock structure is
constructed for each block that was selected.

Figure lle finishes the fold for Algorithm A by align-
ing the block structures on each half of the folding point,
creating a common x-face and, similarly, a common y-face.
The unselected blocks are looped opposite the face to con-
nect consecutive x-blocks and y-blocks respectively. Finally,
the common faces are placed face-to-face and the block-
separator between the x-face and y-face is folded in the ob-
vious manner.

Figure he’ illustrates how the two halves of the fold are
split into superblocks by Algorithm C. Figure llf’ shows
the three-dimensional configuration of the faces of the su-
perblocks such that the faces form a rectangular array on
the z-z plane. Finally, figure llg’ shows how the faces of
the superblocks are connected with connections that alter-
nate between the top of the faces and the bottoms of the
faces. The final conformation of each pair of superblocks
in the rectangular array is analogous to the conformation
illustrated in Figure he.

Acknowledgements

We thank Ron Unger for bringing this protein folding

problem to our attention. We also thank David Lipman for

encouragement and pointers to the literature,

References

p]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

S. Arora, C. Lund, R. Motwani, and M. Sudan. Proof
verification and intractability of approximation prob-
lems, 1994. Preliminary version.

H. S. Chan and K. A. Dill. Origins of structure in globu-
lar proteins. In Proc. Nati. A cad. Sci. USA, volume 87,
pages 6388–6392, August 1990.

H. S. Ghan and K. A. Dill. Polymer principles in protein
structure and stability. Annual Reviews of Biophysics

and Biophysical Chemistry, 20:447–490, 1991.

T. E. Creighton, editor. Protein Folding. 1993.

K. A. Dill. Biochemistry, 24:1501, 1985.

K. A. Dill, November 1994. Personal communication.

A. S. Fraenkel. Complexity of protein folding. Bulletin

of Mathematical Biology, 55(6):1199–1210, 1993.

M. R. Garey and D. S. Johnson. Computers and In-

tractability - A guide to the theory of NP-completeness.

W.H. Freeman and Co., 1979.

M. Karplus and D. L. Weaver. Diffusion-collision model
for protein folding. Biopoi~mers, 18:1421, 1979.

K. F. Lau and K. A. Dill. A lattice statistical mechan-
ics model of the conformation and sequence spaces of
proteins. Macromolecules, 22:3986–3997, 1989.

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

K. F. Lau and K. A. Dill. Theory for protein muta-
bility and biogenesis. In Proc. Natl. Acad. Sci. USA,

volume 87, pages 638–642, January 1990.

N. LiniaJ, November 1994. Personal communication.

D. Lipman and J. Wilber. Proc. Royal Society of Lon-

don, 245(8), 1991.

J. T. Ngo and J. Marks. Computational complexity of
a problem in molecular structure prediction. Protein
Engineering, 5(4):313-321, 1992,

J. T. Ngo, J. Marks, and M. Karplus. Computa-

tional Compiezity: Protein structure prediction and the

Levinthal paradox. Birkhauser, 1994.

R. H. Pain, editor. Mechanisms of Protein Folding.

Oxford University Press, 1994.

A. Sali, E. Shakhnovich, and M. Karplus. How does a
protein fold? Nature, 369:248–251, 1994.

P. Stolotz. Recursive approaches to the statistical
physics of lattice proteins. In L. Hunter, editor, Proc. of

the .27th Hawaii Int!. Conf. on System Sciences, pages
316–325. IEEE Computer Society Press, 1994. Vol. 5.

R. Unger and J. Moult. Finding the lowest free en-
ergy conformation of a protein is a NP-hard problem:
Proof and implications. Bulletin of Mathematical BioL

ogy, 55(6):1183–1198, 1993.

R. Unger and J. Moult. Genetic algorithms for pro-
tein folding simulations. Journal of Molecular Biology,

231(1):75-81, 1993.

R. Unger and J. Moult. A genetic algorithms for three
dimensional protein folding simulations. In Proceedings

of the 5th International Conference on Genetic Algo-

rithms (ICGA-93), pages 581–588. Morgan Kaufmann,
1993.

168


