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Abstract 1 Introduction 

This paper considers the protein structure prediction 
problem for lattice and off-lattice protein folding models 
that explicitly represent side chains. Lattice models of pro- 
teins have proven extremely useful tools for reasoning about 
protein folding in unrestricted continuous space through anal- 
ogy. This paper provides the first i1ustration of how rigorous 
algorithmic analyses of lattice models can lead to rigorous 
algorithmic analyses of off-lattice models. We consider two 
side chain models: a lattice model that generalizes the HP 
model (Dill 85) to explicitly represent side chains on the 
cubic lattice, and a new off-lattice model, the HP Tangent 
Spheres Side Chain model (HP-TSSC), that generalizes this 
model further by representing the backbone and side chains 
of proteins with tangent spheres. We describe algorithms 
with mathematically guaranteed error bounds for both of 
these models. In particular, we describe a linear time per- 
formance guaranteed approximation algorithm for the HP 
side chain model that constructs conformations whose en- 
ergy is better than 86% of optimal in a face centered cubic 
lattice, and we demonstrate how this provides a 70% per- 
formance guarantee for the HP-TSSC model. This is the 
first algorithm in the literature for off-lattice protein struc- 
ture prediction that has a rigorous performance guarantee. 
Our analysis of the HP-TSSC model builds off of the work 
of Dancik and Hannenhalli who have developed an approx- 
imation algorithm for the HP model on the hexagonal close 
packed lattice. Further, our analysis provides a mathemat- 
ical methodology for transferring performance guarantees 
on lattices to off-lattice models. These results partially an- 
swer the open question of Karplus et al. (1994) concerning 
i,he complexity of protein folding models that include side 
chains. 

Lattice models of proteins have proven extremely use- 
ful tools for reasoning about protein folding in unrestricted 
continuous space through analogy [6]. Lattice models sacri- 
fice atomic detail to extract essential principles, make pre- 
dictions, and to unify our understanding of many different 
properties of proteins. One of the important approximations 
made by lattices is the discretization of the space of confor- 
mations. While this discretization precludes a completely 
accurate model of protein structures, it preserves important 
features of the problem of protein structure prediction, like 
the difficulty of the related search problem. Consequently, 
methods that predict the structure of proteins for lattice 
models provide insight into the exact structure of proteins. 

One common way to discretize the structure of proteins 
is to model the protein as a linear chain of beads in which 
each bead represents an amino acid. An example of this 
type of model is the hydrophobic-hydrophilic model (HP 
model) [ll]. This model abstracts the hydrophobic interac- 
tion in protein folding by labeling the beads as hydrophobic 
(nonpolar) or hydrophilic (polar). Although a wide variety 
of methods have been proposed for predicting the structure 
of proteins in linear chain lattice models [6], none of these 
methods can guarantee that they can efficiently predict the 
native structure (which has the lowest free energy) for all 
proteins. 
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Ngo, Marks and Karplus [12] argue that an interesting 
approach to protein structure prediction is the development 
of performance guaranteed approximation algorithms. Ap- 
proximation algorithms might be of significant practial use 
if they can be used to generate crude structures that are fur- 
ther refined with other techniques. We [8, 91 have recently 
described approximation algorithms for a variety of linear 
lattice models that have performance guarantees, including 
the linear HP model studied by Dill and his colleagues. In 
related work, Agarwala et al [l] have demonstrated that per- 
formance guarantees of approximately 60% can be acheived 
for the HP model on the hexagonal close packed lattice. 

This paper describes approximation algorithms for HP 
lattice and off-lattice protein models that explicitly repre- 
sent side chains. The lattice model we analyze represents 
the conformation of a protein using a subclass of branched 
polymers called “branched combs.” This model was pro- 
posed by Bromberg and Dill [3], who argue that linear lat- 
tice models fail to capture properties of protein folding such 
as side chain packing that affect the stability of the native 
protein structure. The HP side chain model that we cou- 
sider treats the backbone of the protein as a linear chain of 
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beads. Connected to each bead on the backbone is a bead 
that represents an amino acid, and each of these beads is 
labeled hydrophobic or hydrophilic. The off-lattice model 
generalizes the lattice model by representing the backbone 
and amino acids as tangent spheres. 

The algorithms we describe generate structures that ap- 
proximate the native folded state by creating compact, low 
energy structures that are near-optimal. Furthermore, these 
algorithms compute these structures in a number of compu- 
tational steps that is linear in the length of the sequence. We 
describe approximation algorithms for the 2D and 3D cubic 
lattices as well as the face centered cubic (FCC) lattice. We 
also describe how any performance guaranteed algorithm for 
the FCC lattice can be used to provide performance guar- 
natees for off-lattice models of protein folding. 

2 Preliminaries 

2.1 The HP Side Chain Model 
The protein folding model analyzed in this paper is a 

hydrophilic-hydrophobic model (HP model). HP models ab- 
stract the hydrophobic interaction process in protein folding 
by reducing a protein to a heteropolymer that represents 
a predetermined pattern of hydrophobicity in the protein; 
nonpolar amino acids are classified as hydrophobic and po- 
lar amino acids are classified as hydrophilic. A sequence is 
s E {o,l)+, where 1 represents a hydrophobic amino acid 
and 0 represents a hydrophilic amino acids. A HP model on 
2D and 3D cubic lattices was proposed by Dill [5]. In this 
model, the protein is represented by a self-avoiding path on 
the cubic lattice, where each vertex on the path represents 
an amino acid. This is one of the most studied lattice mod- 
els, and despite its simplicity the model is powerful enough 
to capture a variety of properties of actual proteins [6]. 

We consider a HP model that uses the model studied 
by Bromberg and Dill [3] to explicitly represent side chains. 
In this model, a conformation C of a protein sequence s 
in a lattice L is an embedding of a catepillar graph where 
vertices are mapped one-to-one to lattice points, and pro- 
t,ein bonds are mapped to the corresponding lattice edges 
(see Figure la). The legs of the catepillar graph represent 
amino acids, and they are labeled either hydrophobic or hy- 
drophilic. The spine of the graph is labeled as the backbone 
of the protein. The energy of a conformation of the pro- 
tein sequence s in L is defined as the sum of the energies of 
the hydrophobic-hydrophobic contacts, each of which con- 
tributes -1 to the total energy. A contact is defined as an 
edge between two amino acids in the embedded catepillar 
graph. 

2.2 The HP Tangent Sphere Models 
We introduce new off-lattice models that provide an off- 

lattice analogue to the HP model and the HP side chain 
model. In these models, the graph that represents the pro- 
tein is is transformed to a set of tangent spheres of equal ra- 
dius. Every vertex in the graph is replaced by a sphere, and 
edges in the graph are translated to constraints that force 
spheres to be tangent in a conformation (see Figure lb). 
Spheres are labeled hydrophobic or hydrophilic, and con- 
tact between hydrophobic amino acids is when the spheres 
for these amino acids are in contact. 

(b) 

Figure 1: Illustration of conformations in (a) the HP side 
chain model (on a cubic lattice) and (b) the HP tangent 
spheres side chain model (black lines represent connections 
between spheres). Gray blocks and spheres represent the 
backbone, white blocks and spheres represent hydrophilic 
amino acids and black blocks and spheres represent hy- 
drophobic amino acids. 

2.3 Computational Complexity 
According to the Thermodynamic Hypothesis the native 

conformation of a protein is the conformation with the min- 
imum energy among the set of all conformations. Thus we 
algorithmicaly formulate the problem of predicting the na- 
tive conformation as finding an efficient algorithm that com- 
putes the native conformation of a sequence s in a lattice L. 
A protein folding algorithm is efficient if for every sequence 
it determines the native conformation in polynomially many 
steps in the length of the sequence. 

It is unknown whether any well studied protein structure 
prediction problem can be solved efficiently, including the 
HP side chain model. Atkins, Hart and Istrail [‘, lo] have 
recently shown that a broad class of protein structure pre- 
diction problems are NP-complete, which means that they 
are practically intractable [7]. Although they consider is a 
broad class of side chain models, their results are not imme- 
diately applicable to the HP side chain model. 

This paper presents performance guaranteed approxima- 
tion algorithms for the HP side chain model. Two standard 
types of performance guarantees are [7]: the absolute per- 
formance ratio and the asymptotic performance ratio. Let 
ZA(S) be the energy of the conformation generated for pro- 
tein instance s on lattice L with by algorithm 2~, and let 
OPTL(S) be the energy of the optimal conformation of s on 
L. Recall that both ZL(S) and OPTL(S) are nonpositive 
integers for every s. The absolute perjormance ratio R(~L) 
of algorithm 2~ is given by R(ZL)= SUP{T 2 1 IV%&,(S)> T}, 

where Rs,(s) = ZL(S)/OPTL(S). Given N E Z, let Sk = 
{s 1 OPTL(S) 5 N}, and let RgL = inf{Rs,(s) 1 s E Sk}. 
The asymptotic performance ratio R”(~L) 1s given by 

R”(ZL) = sup{r 1 R2= > T, N E Z} = SUP inf Rz,(s). 
N&'+J 
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If R(ZL) = r for a fixed constant r, then the value 
of solutions generated by algorithm 2~ are within a fac- 
tor of r of the optimum. If Rm(2h) = r, then as 2~ is 
applied to larger protein instances, the value of solutions 
generated by 2~ approaches a factor of r of the optimum. 
Here, “large” protein instances have low conformational en- 
ergy at their native state, which may be independent of their 
length. Since 2~(s) < 0 and OPTi, 5 0, both of these 
ratios are scaled between 0 and 1 such that a ratio closer to 
1 indicates better performance. 

3 The HP Side Chain Model on Cubic Lat- 
tices 

This section describes performance guaranteed approxi- 
mation algorithms for the HP side chain model on the 2D 
and 3D cubic lattices. We begin by describing bounds on the 
optimum for these models. Following Hart and Istrail [8], 
we decompose a protein sequence into a series of z- and y- 
blocks, ziylzs z,y, (see Appendix A for further details). 
Within each block, hydrophobic amino acids are seperated 
by an odd number of hydrophilic amino acids, and between 
blocks there are an even number of hydrophilic amino acids. 
For a protein sequence, N,(s) is the number of hydropho- 
bits in s-blocks and N, is t,he number of hydrophobics in 
y-blocks. We say that X = N,(s) and Y = NY(s) and 
assume that the labeling of blocks guarantees that X 5 Y. 

Let 0PTz~(s) be the value of the optimal conformation 
of Y in the 2D model, and let OPTED be the value of 
the optimal conformation of s in the 3D model. In the 2D 
model, every 1 in each z-block can be a topological neighbor 
of at most three other Is, so OPTgn(s) 2 -3X. In the 3D 
model, every 1 in each z-block can be a topological neighbor 
of at most five other Is, so OPTED > -5X. 

3.1 Approximation Algorithms 
We begin by describing Algorithm d, an approximation 

algorithm for the 2D HP side chain model. Algorithm A 
selects a single folding point (turning point) that divides a 
protein instance into subsequences B’ and B”, such that 
NY( B’) is balanced with N,( B”). The conformation for 
these two halves of the protein sequence are constructed 
such that the y hydrophobics in B’ and the 2: hydropho- 
bits in B” are configured face-to-face to form a hydrophobic 
core. 

The folding point is selected using “Subroutine I” from 
Hart, and Istrail [8]. Subroutine 1 selects a folding point 
that balances the hydrophobicity between the z-blocks and 
y-blocks on each half of the folding point. The following 
lemma describes the key property of the folding point that 
is selected. 

Lemma 1 ( [B], Lemma 1) The folding point selected by 
Subroutine 1 partitions a protein instance s into two subse- 
quences B’ and B” such that either 

N,(B’) > [(Y + 1)/21 and N=(B”) 2 TX/21 

or 

N,(B’) 1 [Y/2] and N,(B”) 1 [(X + 1)/2] . 

into z- and y-blocks requires a single pass through the pro- 
tein instance. Subroutine 1 requires a single pass through 
the sequence of blocks, which is no longer than the length 
of the protein instance. The construction of the structures 
for B’ and B” also requires linear time. Thus the computa- 
tion required by Algorithm A is linear. The performance of 
Algorithm A can be bounded as follows. 

Lemma 2 d(s) 5 - [X/4]. 

The following proposition presents the asymptotic and 
absolute performance guarantees for Algorithm A. 

proposition 1 l/6 2 R"(d) > R(d) 2 l/la. 

We now describe Algorithm B, a oerformance euaran- 
teed approximation method for the 3D HP model with side 
chains. Algorithm B selects a single foldina ooint that di- 
vides the piotein instance into two subsequences B’ and B”, 
such that N,(B’) is balanced with N,(B”). The conforma- 
tion generated by Algorithm B places the y hydrophobics 
in B’ and the z hydrophobics in B” to form a hydrophobic 
core that is a solid block of hydrophobic amino acids with 
dimension 2 x 2 x k (for some k). Each edge of this block 
is formed by interleaving the hydrophobics from B’ and B” 
This interleaving allows each hydrophobic amino acids to 
form contacts with four other hydrophobic amino acids. 

Figure 3 illustrates how the structures for B’ and B” 
are interleaved to form a single column of the hydropho- 
bic core, including an illustration how the folding point is 
formed. Figures 4a and 4b provide high level illust,rat,ions 
of the structures used for B’ and B”. Figure 5a illust,rates 
the application of Algorithm B to a protein sequence, and 
Figure 5b provides an end-view of this conformation that 
illustrates the core formed by Algorithm B. 

Each step of Algorithm B is linear, so Algorithm D re- 
quires linear time. The performance of Algorithm f? can be 
bounded as follows. 

Lemma 3 Let X = [X/2]. If X 1 8 then 

B(s) 5 -4X + 28. 

The following proposition presents the asymptotic and 
absolute performance ratios for Algorithm t?. 

Proposition 2 RF = 4/10 and 4/10 2 RU 2 l/12. 

3.2 Related Results 
Embedded Algorithms for the 3D HP side chain model 
Conformations for the 2D HP side chain model can be triv- 
ially embedded in 3D to generate conformations for the 3D 
HP side chain model. Similarly, a conformation from the 2D 
HP model can be used to construct a conformation in the 3D 
HP side chain model as follows: (1) embed the conformation 
on any 2D plane, (2) create side chains for each monomer, 
all of which are placed on the same adjacent planes, and (3) 
label the side chains with the hydrophobicities of their cor- 
responding backbone monomers, and unlabel the backbone 
monomers. It is possible to show that performance guaran- 
teed approximation algorithms for the 2D HP model and the 
2D HP side chain model can be used to provide performance 
guarantees for the 3D HP side chain model. 

Figure 2 illustrates the conformations generated by Algo- 
rithm A for different types of folding points. Decomposition 
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Figure 2: Illustration of the different folding points used for different block separators z; at the folding point, for (a) I(.zl) = 0, 
(b) I(z,) = 2, and (c) I(zl) 2 4. 

D C B C 

A B A D 

(a) (b) 

Figure 3: Illustration of how a single column of hydrophobics 
is formed by Algorithm B. This figure also illustrates the 
conformation of the folding point. 

Figure 4: A graphic illustration of the general structure of 
the subsequences B’ and B” in (a) and (b) respectively. 
The gray planes illustrate the position of the backbone of 
the loops of nonhydrophobics. The labels A, B, C and D 
indicate the order that B’ and B” thread the planes, starting 
from the folding point between the A planes. 
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(4 (b) 

Figure 5: Illustration of the entire conformation generated by Algorithm f?: (a) a view from the side and (b) a view from t,he 
top highlighting the. hydrophobic core. 

Variable Length Side Chains A natural extension of the 
side chain model that we have considered is to include no- 
tions of volume into the side chain formulation. One way of 
doing this would be to model the volume of a side chain by 
varying the length of the legs of the catepillar graph. All 
of the vertices in the legs are labeled hydrophobic or hy- 
drophilic, but not necessarily uniformly within a given leg. 
If we assume that this chain has a bounded length, ,0, then a 
simple modification of Algorithm A leads to a performance 
guarantee in terms of l//3. The blocks in this modified al- 
gorithm are based on the amino acid vertices adjacent to 
the protien’s backbone. The structures for B’ and B” are 
expanded to allow side chains of up to length /3 to fit into 
each “zero loop” to either side of the hydrophobic core, and 
the side chains within the core turn immediately to form hy- 
drophobic contacts. The analysis of this algorithm gives a 
performance guarantee of &. Following arguments similar 

to those mentioned in the previous paragraph, this algo- 
rithm also provides a performance guarantee for the 3D HP 
side chain model. 

4 The HP Side Chain Model on the FCC 
Lattice 

We now describe Algorithm C, a performance guaranteed 
approximation method for the HP model with side chains on 
the face centered cubic lattice. Algorithm C builds upon the 
analysis of Dancik and Hannenhalli [4] that describes an ap- 
proximation for the HP model on the FCC lattice. Figure 6 
illustrates the packing of vertices in a FCC lattice. The cen- 
ter of each sphere represents the location of a single vertex, 
and contacts between spheres represent edges between ver- 
tices. The gray spheres illustrate a layer of the FCC lattice, 
which is composed of two adjacent horizontal planes of ver- 
tices. The bold spheres illustrate a vertical column of this 
lattice. 

Let N(s) equal the number of hydrophobics in a sequence 

Figure 6: Illustration of the general structure of the FCC 
lattice, highlighting a layer (in gray) and a column (bolded 
spheres). 

s. Algorithm C divides s into eight subsequences such that 
each subsequence contains approximately N(s)/8 hydropho- 
bits. Each subsequence B, is configured such that all of the 
hydrophobics in B, are placed together in a single column. 
Consecutive hydrophobics in B, are in contact within this 
column. These eight columns are configured to form a 2 x 4 
solid hydrophobic core that contains no hydrophilics (see 
Figures 7 and 9). 

To form these columns of hydrophobics, we configure the 
loops of hydrophobics such that they never intersect. Fig- 
ure 7 illustrates the configuration of these loops for half of 
the conformation (the other half can be constructed sym- 
metrically). Note that the structure of the loops differs for 
each of the four columns. Figure 8 illustrates the struc- 
ture of the each of the columns for hydrophilic loops of all 
lengths (these structures can be extended in a regular fash- 
ion for loops of length six or more). The structure shown 
in Figure 10 illustrates how a single layer of the columns is 
configured. Each column is constructed by forming loops of 
hydrophilics that lie within a single layer. The hydrophilic 
loops for subsequent hydrophobics are disjoint because each 
hydrophobic along a column utilizes a disjoint layer to form 
its loop (see Figure 11. 

141 



. . 

. . . 

. . 

. . . 

Figure 7: Illustration of the general structure of Algorithm C 
for a single layer of the FCC lattice. The points on this 
figure represent columns on the lattice. The loops of hy- 
drophilics for four of the columns are illustrated; the other 
four columns have a complementary structure. Solid lines 
represent the path of the backbone within a single layer, and 
dashed lines represent the path of the backbone between ad- 
jacent layers. The curved lines represent the positions of the 
side chains. The interactions between the eight hydropho- 
bic columns are highlighted with either one or two lines, 
indicating the number of contacts each hydrophobic makes 
between a pair of columns. 

The construction of the conformations for each column 
can proceed sequentially, so Algorithm C requires linear time. 
Note that unlike the approximation algorithms for the cubic 
lattice, Algorithm C does not require a global calculation of 
the folding point. The only global information needed for 
this algorithm is the computation of the total number of hy- 
drophobics in the sequence. The following lemma describes 
the performance guarantee for Algorithm C. 

Lemma 4 C(s) 5 -3lN(s)/8 + 69. 
Proof. Let K = [(N(s) - 6)/8], which represents the 

minimal height of each column of hydrophobics. The -6 
term accounts for the fact that a single hydrophobic might 
need to be sacrificed to connect the columns on each side of 
the core. Now within each column there are li- 1 hydropho- 
bic contacts. There are 10 interactions between columns in 
the core that contribute 2K - 1 contacts and there are 3 
interactions between columns that contribute K contacts. 
Thus we have 

C(s) 5 -8(K - 1) - lO(2K - 1) - 3K 

= -3lh’+ 18 = -31 [(N(s) - 6)/S] + 18 

5 -3lN(s)/8 + 69. 

A trivial bound of OPT(s) 1 -llN(s)/2 is easy to es- 
tablish by noting that each hydrophobic side chain can make 
at most 11 hydrophobic contacts, each of which must be 
shared. We can improve this bound by observing that there 
are four contact points with a side chain that also form con- 
tacts with the backbone at the side chain. The implies that 
each hydrophobic side chain forces four conflicts [4]. If a con- 
tact point is empty or contains a backbone or hydrophilic, 
then the current side chain does not make 11 contacts. If the 
contact point contains a hydrophobic then that hydrophobic 
side chain cannot make 11 contacts. This observation can 
be used to prove the following lemma. 

Lemma 5 OPT(s) 1 -9N(s)/2. 
Proof. (Sketch) Consider a hydrophobic side chain. The 

hydrophobic on this side chain can make at most 11 hy- 
drophobic contacts. Four of points where the side chain 
makes a contact have the property that they also form a 
contact with the backbone to the hydrophobic side chain. 
These points are so called “conflicts.” If a hydrophobic is at 
a conflict point, then although it forms a contact with the 
side chain, it also loses a possible contact through its contact 
with the backbone. If, however, a nonhydrophobic is at a 
contact point, then the hydrophobic side chain loses a pos- 
sible contact. Thus each of these conflicts removes a single 
hydrophobic contact from the set of all possible hydropho- 
bic contacts. Since a conflict can be “shared” between two 
hydrophobic side chains, this means that OPT(s) 2 -( 11 - 
4/2)/2 = -912. a 

Combining Lemmas 4 and 5, we get the following per- 
formance guarantee for Algorithm C. 

Proposition 3 RF 2 31/36. 
Proof. Lemma 4 we have C(s) < -3lN(s)/8+69. Thus 

C(s) 
Rc(s) 2 ~ 

OPT(s) ’ 

-3lN(s)/8 + 69 31.,(s) - 522 

-9N(s)/2 = 36N(s) 

For s E SK, K 2 OPT(s) > -9N(s)/2, so N(s) > -2X/9. 
Since 31~~$~;zz is monotonically increasing for N(s) 2 0, 
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it follows that 

31( -21</9) - 522 
RC(.T) 2 ~ - 

:31K + 2349 

36(-211-/g) 36K 

Thus 
Rg > (31Zi + 2349)/(361<) 

Kgf = sup{r ( R$ 2 r, I< E Z} 
> - lim (311i + 2349)/(36K) = 31/36. 

Ii - x 

Figure 11: Illustration of the structure of loops along a single 
column in Algorithm C. 

5 Algorithmic Performance for Off-Lattice 
Models 

The class of tangent spheres models (with or without side 
chains) has the property that it can be analyzed rigorously 
by transferring algorithmic analyses from various lattice HP- 
models to the off-lattice setting. In this section we focus on 
the tangent spheres model with side chains and show how 
a conformation created by Algorithm C on the FCC lattice 
provides a performance guarantee for this model off-lattice. 
The linear chain tangent spheres model can be similarly 
analysed. For example, we can prove t,hat the hexagonal 
close packed lattice algorithm of Dan&k and Hannenhalli [4] 
has at least 46.7% of optimal off-lattice performance. 

To analyze the performance of the off-lattice tangent 
spheres side chain model, we begin by deriving lower bounds 
on the number of possible contacts that each hydrophobic 
side chain can make. It is well-know that for a set of iden- 
tical spheres in 3D the maximum number of spheres that 
can be tangent to a single fixed sphere is 12. This is the so 
called the kissing number. From this we can conclude that 
a hydrophobic side chain can be tangent to only 11 other 
hydrophobic side chain, since one position is taken by the 
backbone sphere connected to it. As contacts are binary (be- 
tween two spheres), each side chain can contribute at most 
11/2 contacts by reasoning abstractly in the worst case. 

The tangent spheres side chain model generalizes the HP 
model in the sense that for any lattice a conformation in 
that lattice represents a possible off-lattice conformation. 
To provide a performance guarantee for the off-lattice, we 
apply Algorithm C to generate a conformation on the FCC 
lattice, which is guaranteed to have an energy of no more 
than -3lN(s)/8+69. Using the lower bound of -llN(s)/2 
on the value of the optimum, it follows that Algorithm C 
provides an asymptotic performance ratio of 31/44 > 70%. 

Our analysis of the lower bound is actually quite opti- 
mistic. We conjecture that a stronger analysis can improve 
the performance guarantee to over 77Y0 of optimal. This 
conjecture is based on our belief that if an amino acid has 
11 contacts then there is at least one contact that is suf- 
ficiently close to the backbone of the side chain to form a 
“conflict” that prevents that sphere from making 11 contacts 
itself. If this is true then each side chain contributes at most 
5 contacts, thereby giving the stated performance guaran- 
tee. Furthermore, we suspect that the notion of a conflict 
can be extended in this fashion to provide even stronger 
performance guarantees. 
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A Protein Sequence Structure on Cubic Lat- 
t ices 

This section summarizes key definitions concerning the 
structure of protein instances from Hart and Istrail [8]. Let 
s = sl,...,sm be a protein instance, s, E (0, I}, where 
l’s correspond to hydrophobics and O’s correspond to hy- 
drophilics. Let I(s) equal the length of the sequence s. Let 
M,,,(s) equal the length of the longest sequence of zeros in 
s, and let M,,,(s) equal the length of the shortest sequence 
of zeros in s. 

An instance s can be decomposed into a sequence of 
blocks. A block b, has the form b, = 1 or b, = 1Z,, 1.. . Z,, 1, 
where the Z,, are odd-length sequences of O’s and h 2 1. A 
block separator .zt is a sequence of O’s that separates two 
consecutive blocks, where E(z,) 2 0 and I(z,) is even for 
i = l,..., h - 1. Thus s is decomposed into ze blz1 bh zh. 
Since l(.zl) 2 0, this decomposition treats consecutive l’s 
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Figure 8: Illustration of the structure of hydrophilic loops between subsequent hydrophobics in Algorithm C. Labels correspond 
to the labels of the loops in Figure 7. The points on this figure represent columns on the lattice. Solid lines represent the 
path of the backbone within a single layer, and dashed lines represent the path of the backbone between adjacent. 
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Figure 9: .4 conformation generated by Algorithm C for a long sequence. Black spheres represent hydrophobic side chains. 
dark gray spheres represent hydrophilic side chains and light gray spheres represent, the backbone. The path of the backbone 
is marked by dark lines. 

Figure 10: A conformat.ion generat,ed by Algorit.hm C t,hat, illustrates the placement of hydrophilic loops. 
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as a sequence of blocks separated by zero-length 
arators. Let N(b,) equal the number l’s in b,. 
sequence 

block sep- 
Thus the 

010101 1 1 101010000~01~10~ 
-v-v 

bl bz b3 b4 bs 

can be represented as Z(z) = (l,O, 0,0,4,0) and N(b) = 

(3,1,1,3,4). 
Note that two l’s can be endpoints of a contact edge only 

if there is an even number of elements between them [8]. It 
follows from our definition of blocks that two l’s within a 
block cannot be in contact. Further, any pair of l’s take 
$oomddblocks bk and b, may be in contact only when jk - jl 

Since l’s from a block can only be in contact of l’s from 
every other block, it is useful to divide blocks into two cat- 
egories: x-blocks and y-blocks. For example, let z, = bz, 
and let yt = &%-I. This makes it clear that l’s from an 
x-block can only be in contact with l’s from an y-block. 
Let B, and B, be the number of z-blocks and y-blocks 

respectively. Further, let X = X(s) = c;“,; N(zi) and 

Y = Y(s) = CI”=yl N(y,). We assume that the division into 
Z- and y-blocks is such that X 5 Y. For example, the se- 
auence 

1 

010101 1 ~~&~0000~010_10~ 

YO f0 Yl =I Y2 

can be represented as ZO~OZ~~O~ZYI~~~~~~YZ~S, where l(z) = 

(I,o, o, 0,4, 0), N(z) = (1,3), and N(Y) = (3,1,4). 
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