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Abstract. It is widely anticipated that the study of variation in the
human genome will provide a means of predicting risk of a variety of
complex diseases. Single nucleotide polymorphisms (SNPs) are the most
common form of genomic variation. Haplotypes have been suggested as
one means for reducing the complexity of studying SNPs. In this paper
we review some of the computational approaches that have been taking
for determining haplotypes and suggest new approaches.

1 Introduction

Genomes can be considered to be a collection of long strings, or sequences, from
the alphabet {A,C,G,T}. Each element of the alphabet encodes one of four pos-
sible nucleotides. With the completion of the sequencing of the human genome,
efforts are underway to catalogue genomic variations across human populations.
Single Nucleotide Polymorphisms or SNPs constitute a large class of these vari-
ations. A SNP is a single base pair position in genomic DNA at which different
nucleotide variants exist in some populations; each variant is called an allele. In
human, SNPs are almost always biallelic; that is, there are two variants at the
SNP site, with the most common variant referred to as the major allele, and the
less common variant as the minor allele. Each variant must be represented in a
significant portion of the population to be useful.

Diploid organisms, such as humans, possess two nearly identical copies of
each chromosome. In this paper, we will refer to a collection of SNP variants
on a single chromosome copy as a haplotype. Thus, for a given set of SNPs, an
individual possesses two haplotypes, one from each chromosome copy. A SNP
site where both haplotypes have the same variant (nucleotide) is called a ho-
mozygous site; a SNP site where the haplotypes have different variants is called
a heterozygous site. The conflated (mixed) data from the two haplotypes is called
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a genotype. Thus, in genotype data, while the nucleotide variants at homozygous
and heterozygous sites are known, the information regarding which heterozygous
site SNP variants came from the same chromosome copy, is unknown. See Fig-
ure 1 for an example of these concepts. Haplotypes play a very important role
in several areas of genetics, including mapping complex disease genes, genome
wide association studies, and also in the study of population histories. Unfortu-
nately, current experimental techniques to infer the haplotype of an individual
are both expensive and time consuming. However, it is possible to determine the
genotype of an individual quickly and inexpensively. Computational techniques
offer a way of inferring the haplotypes from the genotype data.

---------------A----------C----------------A--------------T------G--------
---------------A----------T----------------G--------------T------C--------

Fig. 1. Two sequences from the same region on two nearly identical copies of
a chromosome of an individual. Only the SNPs have been shown with the non-
SNP positions labeled with a “-”. In this example there are five SNPs. The first
and the fourth SNP sites are homozygous, and the remaining three SNP sites
are heterozygous. The individual has the two haplotypes ACATG and ATGTC;
the genotype is A{C, T }{A, G}T {G, C}.

Out of the two nearly identical copies of each chromosome in an individual,
one copy is inherited from the paternal genome and the other copy from the
maternal genome. This simple picture of inheritance is complicated by a process
known as recombination, which takes place during meiosis - a process involved
in the formation of reproductive cells (or gametes) in the parents. During re-
combination, portions of the paternal and maternal chromosomes are exchanged
(Figure 2). Recombination can result in haplotypes in offspring that are different
from those in the parents. The site on the chromosome where a recombination
occurs is called a recombination site. On average, one or two recombinations
occur per chromosome per generation [33].

In population studies, it has been shown that the likelihood that a site will
act as a recombination site is not uniform across a chromosome[33], recombi-
nation sites occur much more frequently than expected in certain chromosomal
regions and much less frequently in other chromosomal regions. Regions of high
recombination site frequency are called recombination hotspots. Several recent
studies [9,29,44] have suggested that human genetic variation consists largely of
regions of low recombination site frequency, delineated by regions of high recom-
bination site frequency, resulting in blocks of SNPs organized in mini-haplotypes.

An assumption that underlies much of population genetics, called the infinite
sites model, requires that the mutation that results in a SNP occur only once
in the history of a population, and therefore, that all individuals with a variant
allele must be descendants of a single ancestor. While the infinite sites model
is clearly a simplification of the true mechanism of genetic mutation, models of
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Fig. 2. An illustration of the recombination process that occurs during meiosis.
Recombination is characterized by a cross-over event in which a portion of a
paternal chromosome is exchanged with a portion of a maternal chromosome.
This can result in the offspring having different haplotypes from those in the
parents.

genetic variation built under this assumption compare favorably with empirical
population genetics studies. Some of the models and algorithms in the text to
follow will assume an infinite sites model.

In this paper we present an overview of some of the computational approaches
that have been taken for determining haplotypes. This survey is split into two
parts, first approaches for haplotype phasing are presented and then approaches
for haplotype assembly.

2 The Haplotype Phasing Problem

In this section, we consider the problem of haplotype phasing: Given a set of
genotypes, find a good set of haplotypes that resolve the set.

Generically the haplotype phasing problem can be posed as:

Haplotype Phasing (generic)
Input: A set G of genotypes.
Output: A set H of haplotypes, such that for each g ∈ G there exists h1, h2 ∈ H

such that the conflation of h1 with h2 is g.

An alternate related problem is haplotype frequency estimation. In this prob-
lem we care primarily about estimating the frequency of each potential haplotype
in the population, and less so about the phasings of particular individuals.

By typing genetically related individuals one can get a better estimate of
haplotypes present since the haplotype pair of a child is constrained by its in-
heritance from his parents [35,36]. This version of the problem is considered
in various software packages [1]. In this paper, we assume that such pedigree
data is not available to us, however recasting the problems presented here in the
presence of pedigree data is a worthwhile avenue of research.

Haplotype phasing has a variety of applications, each of which warrant dif-
ferent methodologies. Coarsely, one can partition haplotype phasing problems
into three classes, based on their tractability:
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Small The number of sites is small enough that solutions requiring exponential
space or time in it would be practical. It is sufficient for analyzing the SNPS
in the vicinity of a single gene.

Medium The number of sites is small enough that methods which are polyno-
mial in the number of sites and individuals are practical. Number of indi-
viduals and number of sites may be on the order of 100′s. This size roughly
corresponds to the number of SNPs across a region spanning several genes.

Large Chromosome size, where algorithms which are linear in the number of
SNPs are the only ones practical. The number of sites could be in the tens
of thousands while the number of individuals sampled is small.

Additionally, many of the population genetics assumptions that hold for the
small problems will not extend easily to the medium and large problems where
the effects of recombination become significant. Different measures of success are
appropriate depending on the problem size. Given a set of genotypes with a priori
phasing information, a natural questions to ask is whether the algorithm retrieves
the correct phasing. For small and medium problems, appropriate measures in-
clude the number of haplotypes that are predicted correctly or the difference in
population frequency of the haplotypes in the known and the predicted set. For
very large problems it is likely that these measures will be blunt and all methods
will not perform well. An alternate measure suggested in [37] is the number of
crossovers to explain the correct haplotypes from the predicted haplotypes.

When presenting the problems, we will assume that the genotype information
we have is accurate. However, in practice, this is not the case, current genotyping
technologies will fairly frequently not call genotypes (missing data) and less
frequently miscall a genotype (wrong data). A practical algorithm needs to deal
with these problems, in particular the missing data problem. The discussion
in this paper is in terms of SNP’s, most of the results and methods also will
apply, perhaps with some modification, to studies of alternate genetic variations
(markers) such as microsatellites.

Notation We will follow notation by Gusfield [19] for haplotypes and genotypes.
We will arbitrarily label the two alleles of any SNP 0 and 1. A genotype, repre-
senting a pair of haplotypes, can take three values for each SNP, corresponding
to the observation of {0}, {1}, {0, 1}. To simplify notation we will use 0 for {0},
1 for {1} and 2 for {0, 1}. We will say that a SNP is ambiguous in a genotype if
it has value 2. A genotype is ambiguous if it contains more than one ambiguous
SNP.

We will generally use subscripts for objects associated with haplotypes and
superscripts for objects associated with genotype. For example, the probability
of observing the genotype g in a given population might be given as φg and
the haplotype probabilities as φh. Since superscripts are possibly confused with
exponentiation, explicit parentheses will be placed around exponentiated quan-
tities to disambiguate this.

We will use + to denote conflation and write h + h̄ = g if the conflation
of h and h̄ is g. To capture the notion that two haplotypes combine to make a
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genotype, we will, when convenient to do so, use the Kronecker delta, δg

h+h̄
= 1

if h + h̄ = g and 0 else.
We will denote the number of genotypes with n and the number of SNP sites

with m.

2.1 Clark’s Rule

In a seminal paper[7], Clark proposed a common sense approach to phasing,
that has become known as Clark’s rule. Clark’s rule is an inference method that
resolves genotypes to their haplotype pairs. First, all homozygous and single am-
biguous site genotypes are identified. The haplotypes that phase these genotypes
are completely determined, forming an initial set of haplotypes supported by the
data. Given a set of haplotypes H representing the resolved genotypes, Clark’s
rule finds g ∈ G and h ∈ H such that g = h + h̄ for some h̄. The haplotype h̄ is
added to H . The process continues until either all genotypes are resolved, or no
suitable pair of unresolved genotype and resolving haplotype (g, h) exists.

Note that it may not even be possible to get this algorithm started if there
are no homozygous or single ambiguous site genotypes. Further, there is no
guarantee that a particular sequence of applications of Clark’s rule will resolve
all genotypes. Genotypes that remains unresolved after a maximal sequence of
applications of Clark’s rule are called orphans.

It should be clear from the description of Clark’s rule that it describes a class
of algorithms, each of which uses a different protocol for selecting a genotype-
haplotype pair from which to infer a (typically) new haplotype. Clark’s paper
applies a greedy approach, in which the known haplotypes are tested against
the unresolved genotypes in turn. The first genotype that Clark’s rule can be
applied to is resolved, potentially adding a new haplotype to the set of known
haplotypes for the next iteration.

It is natural to ask for a Clark’s rule application sequence that results in the
fewest number of orphans. Clark’s experiments [7] on real and simulated data
suggest that the sequence of applications of Clark’s rule that resolves the most
genotypes generates fewest incorrect haplotype assignments.

Problem 1 (Minimizing Orphans). Find a sequence of Clark’s rule applications
that results in the fewest orphans.

Biological intuition about the nature of haplotypes present in human popu-
lations prompt us to think about versions of problem 1 that produce solutions
that respect this intuition.

Problem 2 (Maximizing Unique Resolutions). Find a sequence of Clark’s rule
applications that maximizes the number of resolutions subject to the constraint
that the final set of haplotypes must provide a single unique resolution to each
genotype.
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Problem 3 (Minimizing Inference Distance). Find a sequence of Clark’s rule ap-
plications that minimizes the number of Clark’s rule applications necessary to
generate the genotypes’ haplotypes.

Gusfield [19,20] studied a slightly restricted version of this problem, in which
each genotype can participate in at most one Clark’s rule application. Gusfield
showed that finding an optimal Clark’s rule application sequence is NP-hard,
but that in practice, on medium-sized instances, this version of the problem
can be solved by a combination of careful enumeration and linear programming.
Gusfield also evaluated the effectiveness of an algorithm incorporating a greedy
application of Clark’s rule with mixed results.

2.2 Maximum Likelihood

Hardy-Weinberg equilibrium (HWE) is the condition that the probability of
observing a genotype is equal to the product of the probabilities of observing
its constituent haplotypes (see [23]). Under this hypothesis, the probability of
genotype g in the population is related to the haplotype probabilities by the
compact expression

φg =
∑

h+h̄=g

φhφh̄

where φh is the probability of haplotype h in the population.
The maximum likelihood method of [15,24,39,52,16,1] estimates the haplotype

probabilities φH = (φh, φh̄, . . . , φh′) from observed genotype frequencies φ̂G in n
individuals. The approach assumes HWE and a uniform prior on the φh’s. The
likelihood function of the observed is then

L(φH) =
∏

g∈G

(φg)nφ̂g

(1)

where φg =
∑

h+h̄=g φhφh̄. The estimated φH is a maximum of L subject to the
constraints that

∑
h∈H φh = 1 and φh ≥ 0, ∀h ∈ H .

There is a great deal of literature on the maximization of this polynomial,
for example the method of Expectation Maximization is a linearly convergent
method guaranteed to locate a local maximum of L from almost every (feasible)
starting point.

However, a näıve implementation of the EM method requires exponential
space, since there are 2m unknown haplotype probabilities which must be stored
for m variant sites. One notes note that, for n sampled individuals, Ω(n) hap-
lotypes are expected to have significant probability. An efficient way to discover
those haplotypes which contribute significantly to the maximizer of L would
make this approach much more efficient.

Problem 4 (Haplotype Support Problem). Given observed genotype frequencies
φg, and ε > 0, find H ′ ⊂ H , such that one can guarantee that there exists a φH

that is a global maximizer of L and that h /∈ H ′ implies φh < ε.
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The Phasing Polynomial We will now give a combinatorial interpretation of
L. We assume that φG comes from counts of individual observed genotypes, and
thus nφg is integral for each genotype g. We may then formulate L in terms of
a product over n observed individual genotypes gi (1 ≤ i ≤ n), i.e.

L =
n∏

i=1

φgi =
n∏

i=1

(
∑

h+h̄=gi

φhφh̄)

Interchanging product and summation this becomes

L =
∑

h1,h2,···h2n

δg1
h1+h2

δg2
h3+h4

· · · δgn

h2n−1+h2n
φh1φh2 · · ·φh2n

Let an explanation of the genotypes g = (g1, . . . , gn) be a sequence of 2n hap-
lotypes h = (h1, h2, . . . , h2n) such that h2i−1 + h2i = gi. Then the polynomial
above can be more compactly expressed as

L =
∑

h explains g

φh1φh2 · · ·φh2n

with the sum ranging over all explanations of g. The likelihood function is a
polynomial with a term of coefficient 1 for each possible explanation of the ob-
served genotypes. Thus, a solution to the genotype phasing problem corresponds
to a particular term in this polynomial.

The maximum likelihood approach seeks frequencies φH which maximize L.
This problem is known to be NP-hard [26]. Also note that the problem does
not directly address the problem of computing the individual phasings for each
genotype. However, approximations can be made which recover the combinato-
rial nature of the phasing problem.

A Discrete Approximation Let us collect the terms of L, and use a multi-
index P (a vector of non-negative integers indexed by H) to keep track of the
exponents, then

L =
∑

P

K(P , g)
∏

h∈H

(φh)Ph ,

where K(P , g) denotes the number of explanations of the observed genotype
counts g which have P haplotype counts.

Since the φh are constrained to lie between 0 and 1, most of the terms in L
are expected to be small. We may approximate L with its largest term:

L ∼ LMAX = max
P

{
K(P , g)

∏

h∈H

(φh)Ph

}
.
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The maximization of LMAX with respect to the φh is trivial, since any monomial∏
h∈H(φh)Ph in probabilities, φh, is maximized by φh = Ph/(2n). Thus

max
φH

L ∼ LMAX = max
P

{
(2n)−2nK(P , g)

∏

h

(Ph)Ph

}
.

Thus, we see that the maximization of the maximal term of the likelihood poly-
nomial reduces to a discrete problem. The solution of this problem does not
give a phasing, but a collection of possible phasings with identical counts. The
solution may also be a good initial point for an iterative maximum likelihood
method, such as expectation maximization.

The objective function in this optimization problem is

F (P , Nĝk) = K(P , G)
∏

h

(Ph)Ph ,

where
∑

i Pi = 2N , which counts the number of ways to select 2N haplotypes
from a bag with counts P with replacement to form an explanation of the geno-
types G.

We are not aware of any results about the complexity of evaluating F or its
maximum. In fact, there is a feasibility problem to which we have found no easy
answer as well.

Problem 5 (Haplotype Count Feasibility). Given genotypes g = (g1, . . . , gn) and
a vector of counts P over H , decide whether there exists an explanation of g
with counts P .

Problem 6 (Counting Arrangements K(P , g)). Given genotypes g = (g1, . . . , gn)
and a vector of counts P , count how many distinct explanations,
h = (h1, h2, . . . , h2n−1, h2n), exist for g with counts P .

Problem 7 (Maximizing Arrangements). Given g = (g1, . . . , gn), find counts P ,
such that K(P , g)

∏
(Ph)Ph is maximized.

Links to Clark’s Rule One method for breaking ties in the application Clark’s
rule is to allow the haplotype frequencies to serve as probabilities, and randomly
select g’s and h’s to which to apply it. In such a scheme, one would still resolve the
homozygotes and the single-site heterozygotes, since they are unambiguous, but,
when faced with a choice between multiple phasings, one randomly selects the
phasing h, h̄ with probability φhφh̄/φh+h̄. Since this procedure is still strongly
dependent on the order of consideration for the ambiguous genotypes, one draws
them, and re-draws them, uniformly at random, from the sampled individuals.

This process can be viewed as a means to generate a sample from a stationary
point of the maximum likelihood function. To see this, we view the individual
samples as all having some phase, which we rephase through random applications
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of Clark’s rule with random tie-breaking as above. In the continuum limit, new
instances of haplotype h are introduced at a rate

∆φh =
∑

g,h̄:h+h̄=g

φ̂g

φg
φhφh̄ (2)

where φg =
∑

h+h̄=g φhφh̄, while instances of haplotype h are being removed
(by individuals with haplotype h being re-drawn) at a rate

∆φh = −φh.

A steady state occurs when the two processes balance, i.e.

φh =
∑

g,h̄:h+h̄=g

φ̂g

φg
φhφh̄

which is a sufficient condition for φH to be a local maximum of the likelihood
function of equation 1. Thus, the haplotypes sampled in this random application
of Clark’s rules are distributed according to some stationary distribution of L.

2.3 Clark’s Rule and Population Models

The observation that the maximum likelihood method could be modeled by a cer-
tain probabilistic application of Clark’s rule was known to researchers, Stephens,
Smith, and Donnelly [50], who proposed a modification of the ML sampling pro-
cedure of the previous section. Their modification introduces an approximate
population genetics model [48] as a prior for observing the set of haplotypes.

Instead of phasing randomly selected individuals with probabilities weighted
by φhφh̄, they proposed a more complicated probability rule, where the weight
of phasing h, h̄ for g is given by

δg

h+h̄
πh(h\h) · πh̄(h\h\h̄) (3)

where h\h is the sequence of haplotypes h with one occurrence of h removed.
The function πh(h) approximates the probability that haplotype h might be
generated either by direct descent or mutation from a population with haplotype
counts of h.

It should be noted that equation 2 applies only when N is much larger than
the number of haplotype variants in the population. Thus it is not strictly ap-
plicable for small populations where a substantial portion of variants occur only
once. It is not an issue for this Markov Chain Monte Carlo (MCMC) approach.

The algorithm they propose is to iteratively modify the explanation of the
given genotypes, selecting the explaining haplotypes h, h̄ for a random individual
with genotype g, and replacing that pair with a pair generated randomly with
weights from equation 3, updating the current frequencies, φH , of the variants
in the sample. Statistics of the sampled set of phasings are then used to select
the phasings of the individuals.
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It remains to define the approximation of πh(h), for which they propose

πh(h) =
∑

h′
(h · h)(I − θ

2N + θ
M)−1

hh′ (4)

where h · h counts the number of occurrences of h in h, θ is an estimate for the
per site mutation rate, I is the identity matrix, and M is the single site mutation
matrix, Mhh′ = 1 iff h and h′ have exactly one mismatch and 0 otherwise. This
is an approximation to the probability that h can come from some h′ after a
geometrically distributed number of single site mutations. This approximation
arose from considering a random population model in [28]. It should be noted
that while the matrix M appears to be of exponential size, an arbitrary element
of (I − θ

2N+θ M)−1 can be computed in O(m) time.
An implementation of this algorithm by Stephens, Smith, and Donnelly is

PHASE [50,49]. An alternative implementation, which more closely follows the
maximum likelihood method was produced by Niu et al [42]. PHASE works well
on medium problems with a small population.

2.4 Parsimony Formulations

Extending Clark’s basic intuition that unresolved haplotypes are to look like
known ones, a variety of parsimony objectives can be considered.

In the context of haplotype phasing, the most parsimonious phasing refers
to the solution that uses the fewest haplotypes. Hubbell [27] showed that this
version of the problem is NP-hard, in general, by a reduction from minimum
clique cover. Gusfield [22] solved the problem via an (exponentially large) integer
programming formulation that is solvable in many cases, even for medium-sized
problems.

Phasing via Integer Programming Integer programming, as employed by
Gusfield [22] to find the most parsimonious phasing, is a very effective solution
technique for optimization problems with combinatorial structure, even when
they are NP-hard. As Gusfield demonstrated, with a suitable integer program-
ming formulation and a powerful solver package, many realistic instances can be
solved. The tractability of such integer programs for a given instance depends
critically on the nature of the integer programming formulation for the problem.

We present two integer programming formulations for the haplotype phasing
problem.

Formulation 1 (Gusfield [22]) Given genotypes G, we define the set of pos-
sible haplotypes Ĥ = {h|∃g, h̄ s.t. g = h + h̄}. Further, for each genotype g ∈ G
we define the set of valid phasings, Pg = {{h, h̄}|g = h + h̄; h, h̄ ∈ Ĥ}.

In this formulation, we use an indicator variable xh for each haplotype h ∈ Ĥ
and an indicator variable ygp for each genotype g ∈ G and p ∈ Pg.
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min
∑

h

xh

s.t.
∑

p∈Pg

ygp = 1, for all g ∈ G,

ygp ≤ xh, and
ygp ≤ xh̄, for all g ∈ G and p = {h, h̄} ∈ Pg

xh ∈ {0, 1} for all h ∈ Ĥ

ygp ∈ {0, 1} for all g ∈ G and p ∈ Pg.

The first constraint of formulation 1 ensures that all genotypes are phased by
some phasing, while the second and third constraints ensure that if a genotype
is phased by some haplotype pair, then those haplotypes are paid for in the
objective function.

In practice, this formulation can be prohibitively large. To solve this inte-
ger program Gusfield shows that for particular problem instances many of the
variables and constraints can be eliminated without changing the nature of the
problem. This brings the size of the integer program down to manageable size
for many instances.

A more explicit formulation of the phasing problem models the resolution of
the ambiguous genotype sites explicitly.

Formulation 2 Given genotypes G = {g1, . . . , gn}, we denote the value at site
i of genotype g ∈ G by g(i). Let Ag be the ambiguous sites of g ∈ G, so that for
all i ∈ Ag, g(i) = 2. Further, let H(g) and H̄(g) represent the first and second
phasing haplotype of g, respectively, so that g = H(g)+H̄(g). Similarly, we denote
the genotype g that haplotype h phases by G(h), so that G(H(g)) = G(H̄(g)). The
phasing haplotypes of G are indexed so that h2i−1 = H(gi) and h2i = H̄(gi).

In this formulation, we use an indicator variable xga for each ambiguous site
a ∈ Ag and genotype g ∈ G. xga = 0 indicates that the haplotypes H(g) and
H̄(g) have a 0 and 1 at position a of g, respectively; while xga = 1 indicates that
haplotypes H(g) and H̄(g) have a 1 and 0 at position a of g, respectively. The
indicator variable cjj′ is 1 if haplotypes hj and hj′ are different, and 0 if they
are the same. Finally, we use the indicator variable lj to indicate whether or not
haplotype hj is the last use of the haplotype represented by hj.

min
2n∑

j=1

lj

s.t. L(hj, i) − L(hj′ , i) ≤ cjj′ for all j, j′ = 1, . . . , 2n, j < j′, i = 1, . . . , m

L(hj′ , i) − L(hj , i) ≤ cjj′ for all j, j′ = 1, . . . , 2n, j < j′, i = 1, . . . , m

L(h, i) = 0 if g(i) = 0, g = G(h)
L(h, i) = 1 if g(i) = 1, g = G(h)

L(h, i) = xgi if g(i) = 2, g = G(h), h = H(g)
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L(h, i) = (1 − xgi) if g(i) = 2, g = G(h), h = H̄(g)

1 −
∑

j<j′
(1 − cjj′ ) ≤ lj for all j = 1, . . . , 2n,

xga = 0 for all g ∈ G, a = min Ag

xga ∈ {0, 1} for all g ∈ G, a �= min Ag

cjj′ ∈ {0, 1} for all j, j′ = 1, . . . , 2n, j < j′,
lj ∈ {0, 1} for all j = 1, . . . , 2n,

The first and second constraints of formulation 2 enforce the definition of the
cjj′ in terms of the unambiguous sites of each genotype and the settings of the
xga variables, while the last constraint enforces the definition of the lj ensuring
that lj is 1 if all later haplotypes are different.

As with formulation 1, formulation 2 contains many unnecessary variables
and constraints, depending on the particular problem instance that is being
solved. This formulation isn’t particularly suitable for solving with traditional
integer programming solvers, since even when particular c variables are known
to be 1, the relevant x variables can take many possible values.

Problem 8 (Implicit Phasing Integer Program). Reformulate formulation 2 to
eliminate the x variables by instead deriving a sufficient set of constraints on the
c variables from the set of genotypes G.

An intriguing open problem is to determine whether there are practical in-
stances when this problem can be solved efficiently (for example if the perfect
phylogeny condition holds, see section 2.5).

Problem 9 (Restricted Parsimony). Find a restriction on the input to the haplo-
type phasing problem that most real world instances satisfy, for which the most
parsimonious haplotype assignment can be found in polynomial time.

Diversity is another commonly used parsimony objective in population genet-
ics. Haplotype diversity is defined as the probability that two haplotypes drawn
uniformly at random from the population are not the same.

Problem 10 (Haplotype Diversity Minimization). Devise an algorithm for the
haplotype phasing under the objective of minimizing haplotype diversity.

We note that the integer programming formulation 2 above naturally solves
the diversity objective under a suitable cost function. Graph theoretically, this
problem can be posed as constructing a graph with a node for every haplotype
in the observed population (two nodes for each observed genotype), an edge
between every pair of haplotypes that are not equal and then minimizing the
number of edges in the graph.

We observe that Clark’s rule is not effective for parsimony.

Lemma 1. Clark’s rule does not yield an effective approximation algorithm for
parsimony.
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Let nd be the number of distinct genotypes in the G. The trivial algorithm of
arbitrarily phasing each distinct genotype will return a phasing with at most
2nd haplotypes. Ω(

√
nd) is a lower bound on the number of haplotypes as each

genotype is made of at most two distinct haplotypes. A worst case approximation
guarantee is thus O(

√
nd), we will give such an example.






(1111) + (1111)
(1111) + (0011)
(1111) + (1001)
(1111) + (1100)
(1111) + (1010)
(1111) + (0101)
(1111) + (0110)






PC

⇐=






(1111)
(2211)
(1221)
(1122)
(1212)
(2121)
(2112)






PP

=⇒






(1111) + (1111)
(0111) + (1011)
(1011) + (1101)
(1101) + (1110)
(1011) + (1110)
(0111) + (1101)
(0111) + (1110)






Fig. 3. Set of 7 genotypes with 7 haplotype Clark’s rule resolution PC , and 4
haplotype parsimony resolution PP .

Let m be the number of SNPs and let G be comprised of genotype that has
all ones and all

(
m
2

)
possible genotypes that have exactly two 2s and all other

SNPs as 1s. Clark’s inference rule will initially infer the haplotype of all ones
and then infer the

(
m
2

)
haplotypes that have all but 2 SNPs as 1s. The resolution

with the minimum number of haplotypes however has the m haplotypes with all
but 1 SNP as 1. An example when m = 4 is given in Figure 3. 
�

The Hamming distance between a pair of haplotypes is, under the infinite
sites model, the number of mutations that occurred in the evolutionary history
between the pair of haplotypes. If we consider an evolutionary history to be a
tree whose nodes are the unknown haplotype sequences of the observed genotype
sequences, then a likelihood function which approximates it [43] in terms of
Hamming distance is given by:

L(h) ∝
∑

T

∏

e∈Edges(T )

f(D(e)) (5)

where T ranges over all trees on the 2n nodes with unknown haplotypes hi ∈ H ,
1 ≤ i ≤ 2n, e ranges over all 2n − 1 edges in T , D(e) is the Hamming distance
between the hi and hj which are joined by e, and f is a monotonic function. One
reasonable choice might by f(x) = e−βx where β plays the role of the mutation
rate, or one might take f from equation 4.

This sum over all trees of products of edge weights can be evaluated in poly-
nomial time (using Kirchoff’s matrix-tree theorem [5,32]). Methods for sampling
from this and related distributions can be found in [4,8].



A Survey of Computational Methods for Determining Haplotypes 39

If we take f(x) = e−βx, then we can interpret equation 5 as a partition
function from statistical mechanics,

Z(h; β) =
∑

T

e−βE(T,h)

where E(T, h) is the sum of the Hamming distances on all the edges in T .

Problem 11 (Partition Function Maximization). Devise an algorithm which max-
imizes

Z(h; β) =
∑

T

e−βE(T,h) (6)

over all h explaining g.

This problem has two asymptotic regimes.
The first is the low temperature regime β → ∞, where, one can approximate

the summation with maximization,

Z(h; β ∼ ∞) ∼ max
T

e−βE(T,h)

= exp{−β min
T

E(T, h)}

and approximate the partition function with the minimum weight tree.

Problem 12 (Tree Minimization). Devise an algorithm which finds

min
T,h

E(T, h) (7)

over all h explaining g and all trees T .

The second is the high temperature regime β ∼ 0

Z(h; β) ∼
∑

T

(1 − βE(T, h)) = (2n)2n−2(1 − 1
2n

∑

h1,h2∈h

D(h1, h2))

where D(h1, h2) is the Hamming distance between h1 and h2. In this extreme,
the approximate problem is the minimization of the sum of all pairwise Hamming
distances.

Problem 13 (Sum of Pairs Hamming Distance Minimization). Devise an algo-
rithm which finds

min
h

∑

h1,h2∈h

D(h1, h2) (8)

over all h explaining g and all trees T .

Figure 4 gives an example where the sum of pairs Hamming distance mini-
mization does not yield the same phasing as parsimony.

At the time of this writing, we are not familiar with any progress on these
problems.
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(11111111) + (11111100)
(11111111) + (11111001)
(11111111) + (11110011)
(11111111) + (11001111)
(11111111) + (10011111)
(11111111) + (00111111)






PP

⇐=






(11111122)
(11111221)
(11112211)
(11221111)
(12211111)
(22111111)






PH

=⇒






(11111101) + (11111110)
(11111011) + (11111101)
(11110111) + (11111011)
(11011111) + (11101111)
(10111111) + (11011111)
(01111111) + (10111111)






Fig. 4. Set of 6 genotypes with 7 haplotype parsimony phasing PP , and 8 hap-
lotype minimum sum of paired Hamming distances phasing PH .

2.5 Perfect Phylogeny

The concept of a perfect phylogeny [11,46,3] has also been used to formulate
constraints on haplotype phasings. A (binary) perfect phylogeny is defined as
follows: Let S be a set of n sequences (haplotypes) each drawn from Σm, where
the alphabet Σ = {0, 1}. We say that S admits a perfect phylogeny if there
exists a tree T with n leaves that has the following properties: (1) Each leaf of
T is uniquely labeled with a sequence from S, (2) Every internal node v in T is
labeled with a sequence from Σm, and (3) For each sequence position i (where
1 ≤ i ≤ m) and for each a ∈ Σ, the set of nodes whose sequence labels each
have the symbol a at position i, forms a subtree of T . The tree T is said to be
a perfect phylogeny for S.

Gusfield [21] introduced a haplotype phasing problem that was motivated by
studies on the haplotype structure of the human genome that reveal the genome
to be blocky in nature ([9,25,47,17]), i.e., these studies show that human genomic
DNA can be partitioned into long blocks where genetic recombination has been
rare, leading to strikingly fewer distinct haplotypes in the population than previ-
ously expected. This no-recombination in long blocks observation together with
the standard population genetic assumption of infinite sites, motivates a model
of haplotype evolution where the haplotypes in a population are assumed to
evolve along a coalescent, which as a rooted tree is a perfect phylogeny. Infor-
mally, this means that each SNP changed from a 0 to a 1 at most once in this
rooted tree (here we are assuming that 0 is the ancestral state for a SNP). This
motivates the following algorithmic problem called Perfect Phylogeny Haplotyp-
ing problem (PPH) - given n genotypes of length m each, does there exist a set
S of at most 2n haplotypes such that each genotype is explained by a pair of
haplotypes from S, and such that S admits a perfect phylogeny?

In [21], it was shown that the PPH problem can be solved in polynomial
time by reducing it to a graph realization problem. The algorithm runs in
O(nmα(nm)), where α is the inverse Ackerman function, and hence this time
bound is almost linear in the input size nm. The algorithm also builds a linear-
space data structure that represents all the solutions, so that each solution can be
generated in linear time. Although the reduction described in [21] is simple and
the total running time is nearly optimal, the algorithm taken as a whole is very
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difficult to implement, primarily due to the complexity of the graph realization
component.

Following the work in [21], additional algorithms [2,14] have been proposed
to solve the PPH problem that are simpler, easy to program and yet still effi-
cient. These algorithms also produce linear-space data structures to represent all
solutions for the given instance. Though they use quite different approaches, the
algorithms in [2] and [14] take O(nm2) time. In [2], a non-trivial upper bound on
the number of PPH solutions is also proved, showing that the number is vastly
smaller than the number of haplotype solutions when the perfect phylogeny re-
quirement is not imposed; furthermore, a biologically appealing representation
is proposed that aids in visualizing the set of all solutions. In [14], an approach
is also provided to deal with parent-child genotype data.

There are several interesting questions posed as a result of the works of
[21,2,14]. We list three of them here.

Problem 14 (Optimal PPH). Can the PPH problem be solved in O(nm)? If so,
is a practical algorithm possible?

Problem 15 (PPH with missing data). Devise solutions to deal with missing data
and errors in the input.

The above problem is important as real data, very often, contains both miss-
ing data and errors. There are several directions that one could pursue here. For
example, as in [14], one could study the complexity of the problem of removing
a minimum number of genotypes so that the phasing of the remaining genotypes
admits a perfect phylogeny. Alternatively, one could ask the question, can each
missing value be set to one of 0, 1, or 2 so that the resulting instance has a
perfect phylogeny? Halperin and Karp [12] study this problem in a framework
where the data are assumed to be generated by probabilistic models. Their re-
sults include a quadratic-time algorithm for inferring a perfect phylogeny from
genotype data (with missing values) with high probability, under certain distri-
butional assumptions.

The above problem is important as real data, very often, contains both miss-
ing data and errors. There are several directions that one could pursue here. For
example, one could ask the question, can each missing value be set to one of 0, 1,
or 2 so that the resulting instance has a perfect phylogeny? Alternatively, as
in [14], one could study the complexity of the problem of removing a minimum
number of genotypes so that the phasing of the remaining genotypes admits a
perfect phylogeny.

Problem 16 (PPH with recombination). What is the complexity of the problem
when small deviations from the no-recombination model are allowed?

For instance, allowing for a small number of recombination events, can we
still phase the genotypes efficiently in this framework? Allowing recombination
events means that the solution is no longer a tree but a network (i.e. a graph
with cycles) [51].



42 B.V. Halldórsson et al.

Recently, several approaches have been presented that explicitly model re-
combination [18,13,31].

Further work on haplotype phasing under the perfect phylogeny assumption
has been Damaschke [10], by making the assumption that each haplotype has
frequency at least 1

m a probabilistic algorithm is given that determines a phasing
in time O(mnpolylog(m)).

3 Haplotype Assembly

The need to infer haplotypes directly from genotypes is based on the assumption
that biotechnologies for haplotype determination are unlikely to be available in
the short term. This may not be the case. Various approaches to single molecule
sequencing have been described recently [40,41,6] and some of these may mature
to the point that phasing based solely on genotype analysis becomes unnecessary.

An increase in the current read length (∼ 500) in a sequencing reaction to a
few thousand basepairs, make it possible to phase large regions of a chromosome.
Assuming that a SNP occurs every 1000 basepairs, many fragments will contain
multiple SNPs. Consider a sequence assembly containing fragments f1, f2, f3

from a single individual. If f1 and f2 differ in a SNP, they must come from
different chromosomes. Likewise if f2, and f3 also differ in (some other) SNP, they
come from different chromosomes. However, for a diploid organism, this must
imply that f1 and f3 come from the same chromosome, and we have therefore
phased the individual in this region (see Figure 5).

If reads have a length L and the distance between SNPs is exponentially
distributed with a density ρ, then, with high coverage, the probability of being
able to resolve the phase of two adjacent SNPs is (1 − e−ρL), which is close
to 0.99 even for ρL = 5. Thus, an order of magnitude increase in the current
average read length could result in a haplotype resolution by haplotype assembly
of groups on the order of 100 SNPs. Even current technology can produce reads
of over 1000 basepairs, by creating a gapped read, where only the ends of the
fragment are actually read, leaving a large gap in the middle.

Formally, define a SNP matrix M with rows representing fragments, and
columns representing SNPs. Thus M [f, s] ∈ {0, 1,−} is the value of SNP s in
fragments f . Gapped reads are modeled as single fragments with gaps (−) in
SNPs that in the gap. Two fragments f and g conflict if there exists SNP s
such that M [f, s] = 0, and M [g, s] = 1 or vice-versa. Based on this, a SNP
matrix M can be used to define a fragment conflict graph GF . Each fragment
is a node in GF . Two nodes are connected by an edge if they have different
values at a SNP. It is easy to see that GF is bipartite in the absence of errors.
In the presence of errors, we can formulate combinatorial problems that involve
deleting a minimum number of nodes (poor quality fragments), or edges (bad
SNP calls), so that the resulting graph is bipartite (can be phased trivially).
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Fig. 5. An illustration of the construction of long-range haplotypes from assem-
bly data. A) the fragment assembly of a diploid organism. B) the identification
of SNPs. C) the partitioning of the fragments into two consistent groups, intro-
ducing a long-range phasing.

In [45,34], the following is shown:

1. The minimum fragment removal and minimum SNP removal problems are
tractable if the underlying matrix M has the consecutive ones property, i.e.,
there is no gap within a fragment.

2. They are NP-hard in the case of gaps, even when limited to at most one
gap per fragment. The problems are shown to be tractable under a fixed
parameter. That parameter being the total length of gaps in a fragment.

The algorithms are thus not tractable for dealing with the case of fragments with
gaps, and it is an interesting open problem to design heuristics/approximations
that give good results in practice. Some branch and bound heuristics were re-
ported to work very well on real and simulated assembly data in [38]. Li et al. [30]
give a statistical reformulation of this problem.

A fairly immediate extension to this problem, is the problem of simultane-
ous assembly multiple haplotypes. This will occur when studying multiploidal
organisms or when simultaneously assembling related organisms, or a pooled set
of individuals. For practical consideration it may be easier to sequence multiple
related organisms simultaneously, for example to assemble different strains of a
bacteria simultaneously.

Problem 17 (Multiploidal Haplotype Assembly). Devise an algorithm for assem-
bling multiple haplotypes simultaneously.
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4 Discussion

While the subject of haplotype phasing, or frequency inference may be of interest
on purely statistical and mathematical grounds, the desired end result generally
is an understanding of the implications of genetic variation in individual pathol-
ogy, development, etc. As such, these variances are one part of a larger set of
interactions which include individual environment, history, and chance.

Although the media often carries stories of “genes” (actually alleles) being
found for some popular diseases, biologists agree that such stories are rather the
exception than the rule when it comes to disease causation. It is suspected to be
more the case that an individual’s genetic variations interact with each other as
well as other factors in excruciatingly complex and sensitive ways.

The future open problems of SNP analysis are those regarding the interac-
tions of genetic variation with external factors. Substantial progress in multifac-
torial testing, or a tailoring of current multifactorial testing to this setting, is
required if we are to see an impact of haplotype analysis on human health care.

5 Acknowledgements

We would like to thank Mark Adams, Sam Broder, Michelle Cargill, Andy Clark,
Francis Kalush, Giuseppe Lancia, Kit Lau, Itsik Pe’er, Russell Schwartz, Roded
Sharan, Hagit Shatkay, Francisco de la Vega and Mike Waterman for many
valuable discussions on this subject.

References

1. G.R. Abecasis, R. Martin, and S. Lewitzky. Estimation of haplotype frequencies
from diploid data. American Journal of Human Genetics, 69(4 Suppl. 1):114, 2001.

2. V. Bafna, D. Gusfield, G. Lancia, and S. Yooseph. Haplotyping as a perfect phy-
logeny. A direct approach. Journal of Computational Biology, 10(3):323–340, 2003.

3. H. Bodlaender, M. Fellows, and T. Warnow. Two strikes against perfect phy-
logeny. In Proceedings of the 19th International Colloquium on Automata, Lan-
guages, and Programming (ICALP), Lecture Notes in Computer Science, pages
273–283. Springer Verlag, 1992.

4. A. Broder. Generating random spanning trees. In Proceedings of the IEEE 30th
Annual Symposium on Foundations of Computer Science, pages 442–447, 1989.

5. S. Chaiken. A combinatorial proof of the all-minors matrix tree theorem. SIAM
Journal on Algebraic and Discrete Methods, 3:319–329, 1982.

6. E. Y. Chen. Methods and products for analyzing polymers. U.S. Patent 6,355,420.
7. A. G. Clark. Inference of haplotypes from PCR-amplified samples of diploid pop-

ulations. Molecular Biology and Evolution, 7(2):111–122, 1990.
8. H. Cohn, R. Pemantle, and J. Propp. Generating a random sink-free orientation

in quadratic time. Electronic Journal of Combinatorics, 9(1), 2002.
9. M. J. Daly, J. D. Rioux, S. F. Schaffner, T. J. Hudson, and E. S. Lander. High-

resolution haplotype structure in the human genome. Nature Genetics, 29:229–232,
2001.



A Survey of Computational Methods for Determining Haplotypes 45

10. Peter Damaschke. Fast perfect phylogeny haplotype inference. In 14th Symposium
on Fundamentals of Computation Theory FCT’2003, Malm, LNCS 2751, pages
183–194, 2003.

11. W. H. E. Day and D. Sankoff. Computational complexity of inferring phylogenies
by compatibility. Systematic Zoology, 35(2):224–229, 1986.

12. Richard M. Karp Eran Halperin. Perfect phylogeny and haplotype assignement.
In Proceedings of the Eigth Annual International Conference on Computational
Molecular Biology (RECOMB), 2004. To appear.

13. Lauri Eronen, Floris Geerts, and Hannu Toivonen. A markov chain approach to
reconstruction of long haplotypes. In Pacific Symposium on Biocomputing (PSB
2004), 2004. To appear.

14. E. Eskin, E. Halperin, and R. M. Karp. Large scale reconstruction of haplotypes
from genotype data. In Proceedings of the Seventh Annual International Conference
on Computational Molecular Biology (RECOMB), pages 104–113, 2003.

15. L. Excoffier and M. Slatkin. Maximum-likelihood estimation of molecular hap-
lotype frequencies in a diploid population. Molecular Biology and Evolution,
12(5):921–927, 1995.

16. D. Fallin and N.J. Schork. Accuracy of haplotype frequency estimation for biallelic
loci, via the expectation-maximization algorithm for unphased diploid genotype
data. American Journal of Human Genetics, 67(4):947–59, 2000.

17. L. Frisse, R. Hudson, A. Bartoszewicz, J. Wall, T. Donfalk, and A. Di Rienzo.
Gene conversion and different population histories may explain the contrast be-
tween polymorphism and linkage disequilibrium levels. American Journal of Hu-
man Genetics, 69:831–843, 2001.

18. Gideon Greenspan and Dan Geiger. Model-based inference of haplotype block vari-
ation. In Proceedings of the Seventh Annual International Conference on Compu-
tational Molecular Biology (RECOMB), pages 131–137, 2003.

19. D. Gusfield. A practical algorithm for optimal inference of haplotypes from diploid
populations. In Proceedings of the Eighth International Conference on Intelligent
Systems for Molecular Biology (ISMB), pages 183–189, 2000.

20. D. Gusfield. Inference of haplotypes from samples of diploid populations: Com-
plexity and algorithms. Journal of Computational Biology, 8(3):305–324, 2001.

21. D. Gusfield. Haplotyping as perfect phylogeny: Conceptual framework and efficient
solutions (Extended abstract). In Proceedings of the Sixth Annual International
Conference on Computational Molecular Biology (RECOMB), pages 166–175, 2002.

22. D. Gusfield. Haplotyping by pure parsimony. In Proceedings of the 2003 Combi-
natorial Pattern Matching Conference, pages 144–155, 2003.

23. D. L. Hartl and A. G. Clark. Principles of Population Genetics. Sinauer Associates,
1997.

24. M. E. Hawley and K. K. Kidd. HAPLO: A program using the EM algorithm to
estimate the frequencies of multi-site haplotypes. Journal of Heredity, 86:409–411,
1995.

25. L. Helmuth. Genome research: Map of the human genome 3.0. Science,
293(5530):583–585, 2001.

26. E. Hubbell. Finding a maximum likelihood solution to haplotype phases is difficult.
Personal communication.

27. E. Hubbell. Finding a parsimony solution to haplotype phase is NP-hard. Personal
communication.

28. R. R. Hudson. Gene genealogies and the coalescent process. In D. Futuyma and
J. Antonovics, editors, Oxford surveys in evolutionary biology, volume 7, pages
1–44. Oxford University Press, 1990.



46 B.V. Halldórsson et al.
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