The Pagenumber of Genus g Graphs is O(g)
Lenwood Heath and Sorin Istrail

TR 90-21




THE PAGENUMBER OF

GENUS g GRAPHS IS O(g)

Lenwood S. Heath Sorin Istrail
Virginia Polytechnic Institute Wesleyan University

& State University

Abstract. In 1979, Bernhart and Kainen conjectured that graphs of fixed genus g > 1 have
unbounded pagenumber. This paper proves that genus g graphs can be embedded in O(g) pages,
thus disproving the conjecture. An Q(,/9) lower bound is also derived. The first algorithm in the
literature for embedding an arbitrary graph in a book with a non—trivi_al upper bound on the number
of pages is presented. First, the algorithm computes the genus g of a graph using the algorithm of
Filotti, Miller, Reif (1979), which is polynomial-time for fixed genus. Secohd, it applies an optimal-
tirne algorithm for obtaining an O(g)-page book embedding. We give separate book embedding
algorithms for the cases of graphs embedded in orientable and nonorientable surfaces. An important
aspect of the construction is a new decomposition theorem, of independent interest, for a graph
embedded on a surface. Book embedding has application in several areas, two of which are directly

related to the results obtained: fault-tolerant VLSI and complexity theory.

Categories and Subject Descriptors: F.2.2 [Analysis of Algorithms and Problem Complex-
ity]: Nonnumerical Algorithms and Problems—routing and layout; G.2.2 [Discrete Mathemat-

ics]: Graph Theory—graph algorithms
General Terms: Algorithms, Theory

Additional Key Words and Phrases: Book embeddings, graph genus, surface embeddings, homotopy

classes, planar-nonplanar decomposition

A preliminary announcement of this research appeared in Proceedings of the 19th Annual ACM
Symposium on Theory of Computing. ACM, New York, 1987, pp. 388-397.

This research was done while the first author was in the Mathematics Department at the Mas-
sachusetts Institute of Technology. Research supported by Air Force Contract AFSOR-86-0078.

Authors’ present addresses: L. Heath, Department of Computer Science, Virginia Polytechnic Insti-
tute and State University, Blacksburg, VA 24061; S. Istrail, Department of Mathematics, Wesleyan
University, Middletown, CT 06457.




1. Introduction

A (simple, undirected) graph G = (V, E) consists of a finite set of vertices, V, and a set of edges,
E; each edge is a two-element subset of V. Thus a graph has no loops or multiple edges. An edge
{u,v} € E is denoted by (u,v); since G is undirected, (u,v) = (v,u). A book consists of two parts:
a spine, which is a line, and some number of pages, each of which is a half-plane having the spine
as boundary. A book embedding of a graph consists of an ordering of the vertices of the graph along
the spine, and an assignment of each edge to a single page, so that all the edges assigned to a page
can be drawn in the page without crossings. The minimum number of pages in which a graph can

be embedded is its pegenumber.

As an example, consider the complete bipartite graph & on the two sets of vertices I =
{1, u2,us} and V = {v,v2,v3}. This graph is isomorphic to Kz 3, and hence nonplanar. By a
result of Bernhart and Kainen [1], at least three pages are necessary for any nonplanar graph.
Figure 1 illustrates one 3-page book embedding for . The vertices are arranged on the spine in
some order. The first page is the half-plane above the spine. The second page is the half-plane below
the spine. The third page is indicated by dashed lines below the spine. There are 5 edges assigned
to the first page, all drawn in that page so that no two edges cross. There are 3 edges assigned to
the second page, again drawn so that no two edges cross; however, no one of the 3 edges conld have
been drawn in the first i)age without crossing one of the edges already there. There is one {dashed)
edge (u1,v3) assigned to the third page; this edge could not be drawn in either of the first two pages

without crossing an edge already there.

Recent interest in book embeddings has been motivated by VLSI design ([3], [20]), and by com-
plexity theory ([6], [16], [19]). In the Diogenes methodology for the design of fault-tolerant arrays
of VLSI processors [20], an array of identical processors is implemented using a book embedding;
each page of the book embedding corresponds to a hardware “stack” in the implementation. Thus
book embeddings of small pagenumber are related to reduced hardware complexity. The Diogenes
methodology assumes as input an arbitrary graph for the array. However, there has been no (non-
trivial) algorithm for embedding an arbitrary graph in a book. This paper presents the first efficient
algorithm to embed an arbitrary graph in a book with a nontrivial upper bound on the pagenumber,

Noteworthy progress has been made for book embeddings of planar graphs. In 1979, Bernhart
and Kainen [1] conjectured that the pagenumber of the class of planar graphs is unbounded. In 1984,
Buss and Shor [2] disproved that conjecture by showing that any planar graph can be embedded in

9 pages. Also in 1984, using other techniques, Heath [12] improved that to 7 pages and developed
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book embedding algorithms for special classes of planar graphs {13]. In 1985, Istrail [15] showed that
planar graphs require no more than 6 pages. In 1986, extending the techniques of [12], Yannakakis

(22] proved that the pagenumber of planar graphs is exactly 4,

Bernhart and Kainen [1] proved that graphs with pagenumber 3 can have arbitrarily large genus.
Looking for a result in the other direction, they conjectured that, by fixing the graph genus, the
corresponding graphs will require an unbounded nmmber of pages. They stated their conjecture in
the very strong form of fixed genus 0 (i, planar graphs). That conjecture, of course, has been

disproved. The more general conjecture, for fixed genus g > 1, has remained open since 1979.

The main result of this paper is the development of new book embedding algorithms for graphs
embedded in a surface of genus g, where g > 1. We show that graphs of genus g have pagenumber
O(g).. This disproves the conjecture of Bernhart and Kainen [1]. The previous upper bound was
O(,/gn) (combining [3] and [7]), where » is the number of vertices in the graph. We also obtain a
- lower bound on pagenumber of (/7). The method used in our algorithms-is not a generalization
of the techniques for embedding planar graphs in books. On the contrary, it relies on a new decom-
position theorem for a graph of genus -g, g 2 1. This decomposition is of independent interest, and

has potential applications distinct from book embeddings,

In this paper, we discuss graphs embedded in books and also graphs embedded in a surface of
genus g. To avoid confusion, we use “layout” for a book embedding and “embedding” for a surface
embedding. We follow the development of White [21] for graphs embedded in surfaces. An orientable
surface of genus g is a sphere with g handles; a handle is a cylinder attached in an “oriented” way to
the boundaries of two disks cut in the sphere. A nonorientable surface of genus g is a sphere with g
cross-caps; a cross-cap is a cylinder attached in a “twisted” way to the boundaries of two disks cut
in the sphere. A connected graph G = (V, E) is embedded in a surface if it is drawn on the surface
without crossing edges. The genus of G, 7(G), is the minimum genus of an orientable surface into
which G is embeddable. The nonorientable genus of G, (&), is analogous for nonorientable surfaces.
The connected components of the complement of an embedding of G are the faces of the embedding.
The embedding is 2-cell if every face is homeomorphic to an open disk. Any embedding of G in an
orientable surface of genus ¥{G) is a 2-cell embedding (Youngs [23] or White [21], Theorem 6-11).
The analogous statement for nonorientable surfaces is not necessarily true; however, we will assume

that all given surface embeddings of graphs are 2-cell.

Six sections follow. Section 2 develops our new decomposition for graphs embedded in surfaces.

Layout algorithms for graphs embedded in orientable and nonorientable surfaces are in sections 3
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and 4, respectively. The analysis of the time complexity of the algorithms is deferred until section
5. Section 6 gives the short argument for an $%(+/9) lower bound for the pagenumber of genus g

graphs. We conclude in section 7 with two conjectures.

2. Decomposition Theorem

In this section, we develop a new decomposition for a connected, undirected graph G = (V, £
embedded in a surface (orientable or nonorientable) of genus g. We let n = |V| throughout. Qur
aim is to choose a planar subgraph Gp = (V, Ep) of G (with a fixed planar embedding that is a

subembedding of the genus g embedding) contaiing all vertices of V so that the following is true:

(A} the remaining edges of E attach to the boundary vertices (vertices on the exterior face) of

Gp.

Let Exy = E — Ep. An edge e € Ey is essentially nonplanar with respect to Gp in the sense
that e cannot be embedded in the plane with G P without violating (A). As an example, consider
the graph G of Figure 2(a). A choice for Gp is shown in Figure 2(b}. The boundary vertices of
Gp are vy, vo, vs, vy, vs; the nonplanar edges are (vy, v4) and (vs, vs). (v1, v4) is essentially nonplanar
because its addition to Gp would either remove w5 (Figure 2(c)) or v; and w3 (Figure 2(d)) from the
boundary; in either case, the edge (vs, vs) would not be attached to the boundary of Gp as required
by (A). (vs,vs) is similarly essentially nonplanar, (We follow certain conventions in our Figures.
Thin lines represent planar edges; thicker lines represent nonplanar edges. Thin curves represent

paths in the planar part. Shading represents the interior of the planar part.)

Before defining the decomposition, we need a representation for graphs embedded in surfaces
due to Heffter [10] and Edmonds [4). Let ¢ = (V) E) be a connected, undirecied graph. For each
v € V, the neighborhood of v is N(v) = {ul(v,v) € E}. A rotation of G is a set of |V] cyclic
permutations

R={m|v €V and m, is a cyclic permutation of N(v)}

If H = (Vg, Exr) is a subgraph of G, define Nu(v) = {u|(u,v) € Eg}. If m, is a cyclic permutation
of N(v), then define m, & to be the cyclic permutation of Ny (v) that is consistent with the cyclic

order of m,. A rotation R of G induces the subrofation Rp = {7, u|v € Vir} of H.

Rotations represent surface embeddings. By Theorem 3.2.3 of [8], every rotation represents
a unique 2-cell embedding of  in an orientable surface of some genus (not necessarily ¥(G)).

Conversely each embedding of (7 into an oriented surface is represented by a unique rotation (up to
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orientation-preserving equivalence). If G has a 2-cell embedding in an orientable surface, there is a
rotation B of G representing the embedding. Each r, is given by examining the edges {(u, v)|u €
N(v)} on the surface in, say, clockwise order about ». (Remember, the edges of the embedding are
noncrossing, so a clockwise visit of the edges out of v is well-defined.) For our purposes, the key
property of this rotation is that it efficiently represents the boundary of any face of the embedding.
Suppose vy,vs,...,v5, v is the sequence of vertices encountered in traversing the boundary of a
face in counterclockwise order. Then Vigl = o, (v5-1),2 < i < k, and v, = Ty, (V—1). This

representation allows the boundary of any face to be traversed in constant time per edge.

For a graph embedded in a nonorientable surface, a rotation is not quite sufficient to allow
traversing the boundary of each face. In particular, the representation for each edge must include an
orientation ([8], Section 3.2); whether the edge is orientation-preserving or orientation-reversing. In
the case of a nonorientable surface, we take the definition (and representation) of rotation to inchude

an orientation for each edge. Face traversal in constant time per edge is again possible.

Definition. A plenar-nonplanar decomposition of G = (V, E) is a triple (R, Gp,Ex), where R is
a rotation of G representing a surface embedding, Gp = (V, Ep) is a planar subgraph of G, and

Exn = F — Ep, which satisfies these properties
(1) the subrotation R » induces a planar embedding of P

(2) there exists a face Fy of the planar embedding such that each e € Ey is incident to two

vertices on the boundary of Fjy:

(3) Ep is maximal, i.e., no edge of Ky can be added to Gp without violating either property
(1) or (2).
In Figure 3, Gp is represented by the interior of the large oval; the oval itself represents the boundary
of Gp. En = {(us,v:)|1 < i < 9}.

For definiteness, we take Fy to be the exterior face of the planar embedding. (See Figure 4.) We
can imagine traversing the boundary of Fy i, say, clockwise order. Each vertex on the boundary
i3 encountered at least once (multiple fimes if it is an articulation point of Gp); each edge on the
boundary is encountered at least once (twice if it is a cut-edge of G p}. In any case, the traversal of
the boundary defines a directed cycle (which is, in general, not simple). A directed subpath of this
directed cycle is a #race. If the trace T consists of the sequence of vertices vy, vs,. .., v;, then denote
the trace by |

T=uv—te—...— 1y,
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vy and v; are the endpoints of T. The inverse trace to T is
T ! =y — Vg — ... — g,

Le., the trace gotten by traversing T in the opposite direction.

For example, in Figlire 4, the directed cycle for a clockwise traversal of the boundary of Fy
beginning at w; is

Wy, W, W3, We, Ws, We, W7, Wa, Ws, Wq, We, W;.

w1, we, wy, and wy are articulation points of Gp and occur twice in the directed cycle. (w1, we) and

(w4, ws) are cut edges of Gp and are traversed twice (once in each direction}. A sample trace is
T:w2—+w3~—->w4——>w5«—>w6

which has inverse
T'1=w6—+w5-+w4——>w3——>w2.
The following is not a trace of Gp
W3y — Wy — Wo

because wy does not follow wy in a clockwise (or counterclockwise) traversal of the boundary of Gp.

Given a planar-nonplanar decomposition (R,Gp, En) of G, cur next aim is to define a partition
of By into equivalence classes. We assume we have a 2-cell embedding of G into a surface such that
ft is a rotation consistent with the embedding. Suppose that (u1,21), (u2,v2) € By are part of the
boundary of the same face F of the embedding of G. (Notice that since {(u1,v1), (u2,vs) € Ep, the

face F is not a face of Gp.) Then (u1,v1) and (ug,v,) are homotopic (with respect to Fyif
(1) (u1,v1) and (un, va) are the only edges of Ex on the boundary of F;

(2) there are traces Ty, = ug —~ ... — uy and T, = vy — ... -— g such that both T, and T, lie

on the boundary of F.

If (u1,v1) and (ug, v9) are homotopic by this definition, then the entire boundary of F consists of
(w1, v1), (u2,v2), Ty, and To. (The notion of homotopy in this paper is intimately related to the
notion of homotopy in topology ([11], [18]) in the following sense. If we “shrink” the planar part to
a point and take that point as the base of the homotopy, then two nonplanar edges are homotopic
in our sense if and only if they are homotopic in the topology sense.) The relation =; is defined to

be the reflexive, symmetric, and transitive closure of the homotopy relation; =; is an equivalence
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relation on Ex. Each equivalence class is a homotopy class. In Figure 3, the three homotopy classes

are {(ulﬁvl): (u2: IJ2)= ('Lt3, 7)3)}’ {(u‘h ?}4)1 (H5J v5)1 (?"'Gx 'UG)}’ and {(u'?: "'-”7)’ (US: US); (UQ: UQ)}-

We translate the fact that =, is transitive into the language of traces in the following Lemma.,

Lemma 1. If C is a homotopy class, then the elements of ¢ can be ordered
(ul’vl)) ey (Uk,'l)k)

and two traces 7] and 7T defined such that
(1) for 1 <i<k—1, (u,v) is homotopic to (wi41,v541) with corresponding traces Ty, and
T
(2) 11 is the concatenation of

Tﬂl:TMza e :Tuk-l

and 75 is the concatenation of

nuT‘Uz}---aﬁk-—l'

Note that u;, u;41 need not be distinct, and v;, %;41 need not be distinct. However, u; = u;41, and

Vi = ;41 is not allowed, as G may not have multiple edges.

As the boundary of the planar graph is traversed in a consistent direction, each of the two traces
{defined by Lemma 1) of a homotopy class is encountered exactly once. If each trace is traversed in
the same order, the homotopy class is nonorientable. If the traces are traversed in opposite orders, the
homotopy class is orientable. In Figure 3, 1(u1,v1), (u2,v2), (us, v3)} and {(u7,97), (us, vs), (ug, v9)}

are orientable homotopy classes, while {(u4, vq), (us, vs), (us, vg)} Is a nonorientable homotopy class.

Lemma 2. If G is 2-cell embedded in an orientable surface, then every homotopy class of any

planar-nonplanar decomposition of 7 is orientable.

Proof: Say that a closed curve on an orientable surface is collapsible if it does not cross itself (but
can touch itself) and is homotopic to a point. We use the fact that a collapsible closed curve has
a consistently defined interior and exterior. Let G be embedded in an orientable surface S, and fix

any planar-nonplanar decomposition of G.

"Io obtain a contradiction, suppose C is a nonorientable homotopy class with traces Ty and T3,
If either trace consists of a single vertex, then €' may also be taken to be an orientable homotopy

class. Otherwise, by Lermma 1, there exists a subtrace u; — Uiy, U F wqq of 71, and a subtrace
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Yj — Ujp1,V; # vj41 of Ty, such that (i, ¥;), (Ui1,v541) € C, and such that either (ui,vj41) € C
1s on a face with (u;,v;) and on a face with (ig1,9541), or (us,v;) and (uip1,vj41) are on the
same face (see Figures 5 and 6). In the latter case, (w4, 241) may be added to C' without changing
the remainder of the planar-nonplanar decomposition; therefore, we may assume that the edge is

present.

The cycle

Y1 = (6, wiga)s (Uin1, v541); (541, 05), (27, )
is a simple closed curve on the surface S. Since (4, Yiy1,V541) is a face, and (u;, vj,vj41) is a face, 1y
is collapsible. Let v, be the boundary of Gp. It too is collapsible. If we traverse 72 on S clockwise,
we visit the vertices wuy,u;4, ¥j,vj41 In precisely this cyclic order. Since the interiors of 1 and 7y,
are disjoint, traversing v1 on § counterclockwise visits these vertices in the same order. But this is

a contradiction—(u;+1,v;) is not an edge that belongs to 1. (|
We now bound the number of homotopy classes as a function of the genus of the surface.

Lemma 3. If G = (V, E) is 2-cell embedded in an orientable surface of genus g,¢ > 1, then any

planar-nonplanar decomposition of (¢ has at most 6g — 3 homotopy classes.

Proof: Let (R,Gp,En) be a decomposition of . Then En # 0 (otherwise, G is planar). Draw
a circle around the planar embedding of Gp (see Figure 7). The circle intersects cach edge of Ey
in exactly two points. Place a new vertex at cach such intersection, and eliminate all of Gp. A
new graph H is the result, with a 2-cell embedding having the same number of homotopy classes
as G. The planar part of H is the circle; the nonplanar part consists of the nonplanar edges of G,
a8 truncated. If two edges of H came from two homotopic, nonplanar edges of 3, then these edges
are incident to a face F' of H bounded by a 4-cycle and are homotopic in . We can contract A
along the two planar edges incident to F, thus eliminating F, and obtaining a graph H' with a 2-cell
embedding having the same number of homotopy classes. Continuing in this way, we reach a graph
I* which has the same number of homotopy classes as G and where each class contains a single
edge: It is possible that H* has only two vertices. In that case, (7 has only one homotopy class, and

the result is trivially true. Thus we may assume that H* has at least 4 vertices,
For the embedding of H* = (V*, E*), let v = [V*|, e = |E*|, h =# homotopy classes, and f=#
faces. By Euler’s identity for surfaces of genus g,
v—e+ f=2-2g.

8




H* is regular trivalent, so 3v = 2¢. Since there is only one nonplanar edge in each homotopy class,
v = 2h. The interior face of H* has v incident edges. The remaining f — 1 faces have at least 6§
incident edges each, since planar and nonplanar edges alternate and if a face had only 4 incident

edges, the two nonplanar edges would be homotopic. By counting edges incident to faces, we have
6(f —1)+ v < 2e.

From this inequality and the preceding equations, we obtain

We immediately obtain our Decomposition Theorem for orientable genus:

Theorem 4. Every graph of orientable genus ¢ has a planar-nonplanar decomposition with O(g)

homotopy classes. In fact, any decomposition has O(g) homotopy classes.
Lemma 3 has an analog for nonorientable surfaces:

Lemma 5. If G = (V, E) is 2-cell embedded in a nonorientable surface of genus g,9 > 1, then any

planar-nonplanar decomposition of (@ has at most max(1,3g — 3) homotopy classes.

Proof: Same as Lemma 3 except Euler’s identity for the nonorientable case is

v—e+f=2—4. A

This gives us the Decomposition Theorem for nonorientable genus:

Theorem 6. Every graph of nonorientable genus g has a planar-nonplanar decomposition with

O(g) homotopy classes. In fact, any decomposition has O(g) homotopy classes.

3. Algorithm for Orientable Surfaces

Our algorithm (O-LAYOUT) for the layout of a connected graph embedded in an orientable
surface has two stages. The first stage (DECOMPOSE) takes as input a graph G with a 2-cell
embedding in a surface of genus g and produces as ontput a planar-nonplanar decomposition com-

patible with the surface embedding. The second stage (O-PAGES) takes as input a planar-nonplanar
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decomposition of G having only orientable homotopy ¢lasses and produces as output a book embed-
ding of 7 in O(yg) pages. The first stage is the same for orientable and nonorientable surfaces. The

second stage depends on the specific properties of the output of the first stage.

The first step of DECOMPOSE (see ALGORITHM DECOMPOSE) triangulates the surface
embedding of 7, obtaining a graph Gy = (Vr, Er). Gt is obtained by adding new vertices and
edges to the embedding of G; we must be careful not to create any loops or multiple edges. All faces
of the embedding of G are triangles. Consider any non-triangular face F of G; there are On+g)
such faces, Add a vertex vp in the face F; this adds O(n + g) vertices. Add an edge from vy to
each vertex on the boundary of F'; this adds O(n+ g) edges. If some vertex v oceurs multiple times
on the boundary of F, this creates multiple edges. If this occurs, consider one such edge (v, vp)} and
the two triangles it is in; let the triangles be (v1,v,vF) and (vs, v, vr). Then vy # v, for otherwise
(v,v1) and (v, v2) would be multiple edges in G. Subdivide (v, vp) by adding a new vertex vs, and
by replacing (v, vp) by the path v,v,, vp. Triangulate the two faces by adding the edges (vs,v1) and
(vs,v2). O(n + g) edges are added. There are O(n + g} edges in Gp.

One triangle is chosen as the initial planar part, and faces are added to the planar part incre-
mentally, as possible. At any stage, Gp = (Vp, Ep) represents the planar part constructed so far.
En always represents Ey — Ep, those edges éutside the current planar part. Ey can be partitioned
into two parts. The first part consists of the essentially nonplanar edges, which have both endpoints
in Vp (necessarily on the boundary of G p) and which can never become edges of G p. The second
part consists of those edges that have at most one endpoint in Vp and that still have the potential

to become edges in Gp.

Fix a clockwise orientation for the current boundary of Gp. If v; — V; — v 18 & trace of Gp
with no edge of En incident to v;, then (u;, ) € Er is called a safe edge (see Figure 8). If v; — v
is a trace of Gp, v; € V — Vp, and (vi,v5,v;) is a face of the embedding, then v; is a safe verter
with respect to v; — v; (see Figure 9). Clearly, in a planar-nonplanar decomposition of G, there
are no safe edges (adding a safe edge preserves planarity, contradicting the maximality of Gp), and
there are no safe vertices (V — Vp = @), Normally, DECOMPOSE chooses safe vertices (steps (7-8))
- and safe edges (steps (14-16)) to add to Gp. Whenever this is not possible, the algorithm choose
some (unsafe) vertex adjacent to a boundary vertex of Gp. The algorithm “ages” the edges, vertices,
and blocks (biconnected components) of Gp; those added later are newer, those added earlier are
older. This aging is used explicitly in step (9) and in the discussion following. Step (9) chooses the

newest vertex w’ on the boundary of 'p that is adjacent to at least one vertex in V — Vp. Among
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(1)
(2)
()
(4)
(®)
(6)
(7)
(8)
(9)
(10)
(11)
(12)
(13)
(14)
(15)
(16)

Gr = (V, Er) — a surface triangulation of G
Gp = (Vp, Ep) «— some face of Gp
while Vp # V do
if 3 safe vertex vy (with respect to v; — v;)
then (* add a safe vertex *)
Vp — VpU{u}
Ep — Ep U{(vi,ve), (v, )}
else (* start a new block *)
w' «~ newest vertex in Vp incident to a vertex in V — Vp
w+ verteX in V — Vp adjacent to w’ (% see text *)
Vb «— Vp U{w}
Ep — Ep U {(w,w'}}
while 3 safe edge (v;,v;) € Ex do
Ep — EpU{(v;,v1)} (* add a safe edge *)
enddo
enddo

ALGORITHM DECOMPOSE
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the vertices adjacent to w’ € V — Vp, step (10) selects one in a manner deseribed below.

Fach time steps (9-12) are executed, it is not possible to extend any current block of (3 p. Hence,
a new block of Gp is started. The use of the newest w’ possible in step (9) creates the blocks of
Gp in a depth-first order; the new block (and all its descendants} will be completed before the
current block is again examined. Consider an edge (2,y) on the boundary of the block completed
Jjust before step (9) is executed; let (2, y,z) be a face of G exterior to the planar embedding of G'p
(there may be two choices for z, if the block consists only of the edge (#,y)). Then z is alreadsr
on the boundary of G'p (since it is unsafe), and (z,2) and (y, z) are essentially nonplanar. At the
completion of DECOMPOSE, these two edges will be homotopic; the face (2,9, 2) will always be
a witness to the homotopy relationship. At any step of DECOMPOSE, all those edges which are
essentially nonplanar are already partitioned into homotopy classes (though it is conceivable that

two classes could later merge).

Now we can describe the selection of w in step (10) (see Figure 10). Let (2,w’) be the newest
edge on the boundary of Gp that is incident to w’. Then there must be a triangle (z,w’, #) exterior
to Gp. Since z is unsafe, 7 is on the boundary of Gp, and (=, z) and (w', z) are essentially nonplanar.
Examine the edges incident to w'-—start with the edge (z,%’) and sweep rotationally about w’ in
the direction of z (in Figure 10, this direction is clockwise). Let (w’, w) be the first edge encountered
such that w € V — Vp, and let (w',y) be the last essentially nonplanar edge encountered before
(w',w). Let i be the next vertex adjacent to w’ after encountering w; (w',y') € Ep, for otherwise,
w would be a safe vertex. (w’,y, w) is a triangle. Once (w',w) is added to Gp (steps (11-12)), (w, )
becomes essentially nonplanar and will be homotopic to (w’,y). Also, w is newer than y; thus the
homotopy class will be extended by edges incident to y and never by edges incident to w (ie., w,
not y, will have the role of w' in future executions of steps (9-12)). If ' € Vp (ie., (', ) is already
essentially nonplanar), then (w,y’ } also becomes essentially nonplanar and homotopic to (w',y’). w
is newer than y'; thus the homotopy class of (w',y") will always be extended by edges incident to

¥, not to w.

The only time that a new homotopy class is created is when the addition of a vertex (steps
(6-T) or steps (9-12)) causes one or more edges in Ex to become essentially nonplanar. (However,
the addition of a new vertex that causes one or more edges in Ex to become nonplanar does not
necessarily introduce a new homotopy class.) Such an edge (or edges) must be incident to v or w
and to another vertex (or vertices) on the boundary of G'p. Note that several edges incident to vy

or w may become essentially nonplanar but not be homotopic,
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We consider the case when steps (6-7) create a new homotopy class; the case when steps (9-12)
create a new homotopy class is similar. Suppose that (vk,z) is a new essentially nonplanar edge and
that z is not in the current block. Then no other edge introduced by the addition of v is homotopic
to (wvx,z); otherwise, vy is a safe vertex for the block # is in and would have been added earlier to
that block. Since z is older than vy, this homotopy class will consist only of edges incident to z; in

this case, 7 is said to be a degenerate trace for the homotopy class.

Suppose a new homotopy class receives more than one edge upon addition of v,. Then the
endpoints of these new edges must be in the same block as vg. In this case, when a homotopy class
has an edge with both endpoints in the same block, we call the homotopy class noendegenerate, even
if all its edges are incident to the same point. Let uy — us — ... — u, and v; — Vg s ., . — Uy
be the traces of a single homotopy class and part of the same block just before step (9) is executed.
The only vertices of these traces that can be adjacent to vertices in V — Vp are the endpoints.
If the addition of w in step (10) is to extend this homotopy class, either (u;, w),(v;,w) € E, or
(us, w), (ve, w) € E. Without loss of generality, assume the second possibility. Also without loss of
generality, assume v, is newer than u,. Then in step {10) we have w' = v, a,n.d the_a,ddition of w
extends the trace to vy — vy — ... — ¥ — vi4+1, Where w = vy ;. At any future time when the
homotopy class is about to be extended at that end, the algorithm invariably chooses to extend the
trace

UIHUQ-—)...“—)?)-;—I-’LP3+1—>...

(because v;11,... are all newer than %s). Similarly, the other end of the homotopy class may be

extended beyond one of u; or w1, but not both. We have

Lemma 7. Let T} = u; — 4y — ... — wu, and Ty = vy — vg — ... — v, be the traces of a
nondegenerate homotopy class at the completion of DECOMPOSE. Tet & be the older of u; and vy;
let y be the older of u; and ;. Then all the trace vertices are in the same block except perhaps for
vertices adjacent (by edges in the class) to z and .
Call the edges of the homotopy class from z and y to vertices in a different block exceptional edges.
The second stage (OnPAGES) lays out the graph in a book of at most 18¢ — 5 pages. By the
algorithm of Yannakakis [22], a planar graph having a cycle as boundary can be laid out in 4 pages
with the vertices on the boundary in cycle order. By an algorithm of Heath [13], all the 4 page
layouts of the blocks of a planar graph can be combined in linear time info a 4 page layout for the

entire graph, maintaining the cyclic order of vertices on the boundary of each block. Thus, Gp has
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such a 4 page layout. This establishes the vertex order and assigns pages to all edges in Ep. For each
(orientable) homotopy class in Ep, allocate three pages. (In the degenerate case, one page suffices
for the homotopy class). One page suffices for the edges between vertices in the same block. The
exceptional edges are assigned to the two remaining pages. The resulting layout requires at most

4+ 3(6g — 3) = 18¢ — 5 pages.

Theorem 8. The algorithm O-LAYOUT lays out any graph G that is 2-cell embedded in an
orientable surface of genus g, g2 1,in 18y — 5 pages. If  has n vertices, the running time of

O-LAYOUT is O(n + ¢}, which is optimal.

4. Algorithm for Nonorientable Surfaces

Our algorithm (N-LAYOUT) for a graph embedded in a nonorientable surface also has two
stages. The first stage (DECOMPOSE) is identical to the one for an orientable surface. Lemma 7
still holds. By the Lemma, it suffices (in the worst case) to consider only decompositions in which
Gp has a cyﬁle as boundary and has at least one nonorientable homotopy class. The difficulty
introduced by a nonorientable homotopy class is that, to obtain 2 bounded number of pages, the

direction of one of its traces must be the reverse of the direction in the orientable case.

In the development of the algorithm, we will not compute an exact upper bound on the number
of pages used, as we did for O-LAYOUT. We content ourselves with showing that O(1) pages suffice
per homotopy class, plus O(1) pages for Gp. In fact, we expect that the constants in our O(g) can
be improved gsomewhat.

Focus on the case in which Gp has a single block (i.e., it is bounded by a cycle), and O(g)
homotopy classes. Some of the homotopy classes will be non-orientable. Let GV be one such non-
orientable class. By Lemma 1, CV has two traces Ty and T on the boundary of Gp; each trace is a
simple, directed path (see Figure 11}. To realize the edges of C¥ in a single page, one trace should
be in the reverse order of the second trace (with respect to the bounding eycle of G p) in the layout.
We choose one of 77 and 7}, to be the one to be reversed. If one trace is singular (consists of a
single vertex), then the homotopy class is degenerate, and we need not reverse either trace (ie., the
homotopy class is both nonorientable and orientable). Otherwise, arbitrarily choose either trace to
be reversed. Call the chosen trace reversed; call the other trace non-reversed. Our intention is to lay

out all non-reversed traces in a single consistent order and all reversed traces in the opposite order,

The boundary of Gp contains O(g) traces induced by the homotopy classes of G. For each

orientable homotopy class, both traces are non-reversed. For each non-orientable homotopy class,
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one trace is reversed and one is non-reversed. If adjacent traces are non-reversed, then we merge
them into one non-reversed trace. Similarly, if two adjacent traces are reversed, then we merge them
into one reversed trace. After all such merges are performed, the boundary of Gp is covered by
non-singular traces that alternate reversed and non-reversed. Call the set of reversed traces TR,
and the set of non-reversed traces TV. The number of traces is O(g), as is the number of common
vertices. (Two adjacent traces have one common vertex; all non-common vertices in a trace are
wnterior to the trace.) We allot one page per common vertex for all edges incident to it, and do not

consider the common vertex to be part of either trace.

The task remains to obtain the reversal of each trace of TH. We need two techniques to ae-
complish the task. First, we describe a technique for the case where Gp has no chords of a certain
type. (A chord in Gp is an interior edge of the planar embedding that is incident to two boundary

vertices.) Then, we discuss the general case.

Suppose G'p has no chords from a non-reversed trace to a reversed trace (chords within T
or within TV are allowed}. In Figure 12, traces Ty, T3, and T3 are representative reversed traces
with common vertices w1, u;, v1,v;, and wy,wy, respectively. For each reverse.d trace, add an edge
between its two common vertices in the exterior face of Gp; call such an added edge a bypassing
edge. In Figure 13, bypassing edges (u1, ), (v1,v;), and (wy, w; ) have been added in the exterior
face of Gp. By Heath [12], we may embed the resulting graph G in seven pages. Furthermore,
each trace in T is now at the second level of the planar graph and is hence in reverse order from
the traces in 7'V at the first level. In fact, each trace is on a single cycle at the second level. This
cycle is laid out in cycle order by [12]; hence, in this case, all traces in TF have been successfully

reversed.

Now, consider the general case where there are chords from reversed to non-reversed traces. (In
Figure 14, T} is non-reversed, 7} is reversed, and the bypassing edge (v, v;) has already been added
at Ty; there are chords between T} and T3). Let all chords of Gp having both endpoints in a single
trace be temporarily removed. Since each trace is laid out in order, when these chords are restored,
one page per trace will suffice for these edges. Now, all chords have endpoints in different traces.
Consider a chord path.(u,v,w), where u, v, and w are interior vertices in three different traces.
Think of the following transformation involving only chords in such chord paths and the boundary
of Gp. Shrink the interior of each trace to a single vertex; O(g) vertices result. A chord between
two vertices remains if originally there was a chord between the two traces. Any chord path will

survive this transformation. Suppose (¥,7,w) is a transformed chord path. Then all the original
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chords that were compressed to obtain (#,7) share a single endpoint v in the middle trace; hence
one page suffices for all these chords. Similarly, all the chords compressed to obtain (7,%) share
the same endpoint v, and the same page suffices for these chords. If all these chords are eliminated,
no chord paths remain in Gp. Because an outerplanar graph of k vertices can have at most % — 3

chords, O(g) pages suffice for all the eliminated chords.

The Gp that remains has no chord paths and no chords within a single trace. Without loss of
generality, we may assume that the interior of Gp is triangulated (we may add a linear number of

both vertices and edges to accomplish this).

Now consider two traces 7y € TV, and T € T® with chords between them (Figure 14). Let
(u', ") be the leftmost chord between T} and T, and let (u”, v’} be the rightmost chord between T)
and T5. Let u™ be the vertex following w” in 77 (u" is in T3, though it may be a common vertex).

We “merge” the two subtraces v’ — u” and v/ — v using the following Lernma.

Lemma 9. In the above described circumstances, there exists a path in Gp from o' to v such

that the path contains
(1) all vertices in the subtrace of T} o' - " in that order;
(2) all vertices in the subtrace of 73 v’ — " in that order;
(3) no other vertices on the boundary of G'p.

Proof: We view any chords hetween 1} and 7% as obstacles to visibility. If there were no chords,
the path would just be

1

"
=

where the dots represent subpaths through the interior of Gp.

Due to the chords, the path must shuffle back and forth between 77 and 7% as visibility allows.
As an example, consider Figure 14. The first edge in the path cannot be along 77 because there is a
chord that obstructs visibility to »'. Therefore the path goes first from v’ to v/ and then follows T
until a vertex is reached from which the unfinished portion of T is visible. At that point, the path
returns to 73 via a subpath through the interior of Gp (in some cases, this subpath will be a single
chord) and follows 71 for a while. This shuffling of the path back and forth between the two traces

ultimately leads to the required path. i

If we continue the path around the boundary of Gp, using bypassing edges where available, we obtain

a cycle that has w' — u” in nonreversed order and v' — v” in reversed order as needed. As we go
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around the boundary of Gp, we perform the same merging of subtraces whenever a non-reversed and
a reversed trace have chords between them. Let C' be the cycle obtained. € contains every vertex
on the boundary of Gp, and every trace occurs in trace order in (reversed traces in opposite order
to non-reversed traces). C' goes through the interior of Gp and defines two subgraphs of Gp. Let
G};, be C together with all of G'p interior to C, and let G?, be C together with all of Gp exterior
to C. Take C to be the boundary of both G% and G%, and lay out each subgraph in seven pages
according to the algorithm in [12]. The two layouts can be combined into a single layout for Gp.
This combining is possible because [12] lays out the common cycle C of G} and G% in a consistent

order. The combined layout may require 14 pages.

There is one more difficulty. Tt is possible that in the resulting layout the two traces of a single
homotopy class may be intermingled by the “merging” operation. In the discussion above, this
would occur if 7y and T3 were traces for the same homotopy class. We leave it to the reader to
verify that two pages will suffice for such a homotopy class; one page will be for forward edges, the

second page for backward edges.

This completes the algorithm for laying out a graph embedded in a nonorientable surface of
genus g. ‘The number of pages used was, at all points, either O(g), or O(1). Thus, we have the

following Theorem.

Theorem 10. The algorithm N-LAYOUT lays out any graph G that is 2-cell embedded in a
nonorientable surface of genus g,¢ > 1, in O(g) pages. If G has n vertices, the running time of

N-LAYOUT is O(n + g), which is optimal.

5. Time Complexity

In the previous two sections, we have described three algorithms: DECOMPOSE, O-PAGES,
and N-PAGES. We now show that each algorithm can be iaplemented in O(n + g) time. After the
first step of DECOMPOSE (the triangulation of the embedding of G}, the graph for all remaining
steps has size O(n + g). Hence, all three algorithms are linear in the size of the input graph for all
graphs having a triangulated embedding. Our main assumption is that we have a data structure
(essentially the rotation of the embedding) that aliows us to traverse the boundary of any face in

constant time per edge (called subsequently constant time traversal).

The triangulation step of DECOMPOSE was described earlier, where it was shown to produce

a triangulation of size O(n + g). Because of constant time traversal, adding edges can be done in
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constant time per original edge. Triangulation is accomplished in O(n + g) time. The remaining
steps of DECOMPOSE accomplish three operations: the adding of a safe vertex, the adding of a
safe edge, and the creation of a new block. The set of potential safe vertices can be maintained in
a linked list. A veriex is added to the list when an edge is added to Gp, and the vertex completes
a triangular face with that edge. The list operations take constant time per vertex. Safe edges are
found only after the addition of a safe vertex; each safe edge can be found in constant time due to
constant time traversal. For creating new blocks, we keep the vertices on the boundary of Gp on
a stack in order of age, and maintain for each edge the status of whether it is in Gp, essentially
nonplanar, or still free. The search for edges of the form {(w',w) is accomplished in constant time
per edge. DECOMPOSE takes O(n + g) time.

O-PAGES is the easiest of the three algorithms to analyze. The layout of the planar part is
accomplished in O(n) time [22]; this yields the ordering of the vertices on the spine and the page
assignment for the planar edges. Three pages (at most) are assigned to the O(g) homotopy classes.
Each nonplanar edge is assigned a page based on its homotopy class in constant time per edge.

Thus, O-PAGES (and hence O-LAYOUT) takes O(n + g) time.

N-PAGES has a number of steps to analyze. It may break the planar part into a number of
subgraphs, though no vertex is in more than two such subgraphs; thus, the algorithm of [12] lays
out the planar part in O(n) time and in a constant number of pages (by the merging of the layouts
for the subgraphs). N-PAGES finds all traces associated with the O(g) homotopy classes, selects
one reversed trace for each nonorientable homotopy class, and merges adjacent reversed traces and
adjacent nonreversed traces; this is accomplished in O(n + g) time. Adding one édge to Gp for each
reversed trace requires O(g) time. Assigning edges adjacent to the O(g) common vertices to one
of O(g} pages requires constant time per edge. Finding and classifying the chords of Gp requires
O(n) time. Assigning the chords within a trace to a page requires constant time per chord. Finding
chord paths among three different traces and assigning these chords to pages takes constant time
per chord. The merging of two subtraces is accomplished in time linear in the size of the subtraces.

The net time complexity for N-PAGES (and hence N-LAYOUT) is O(n+g).

6. Lower Bounds

A lower bound for genus ¢ can be gotten from the family of complete graphs on n vertices, &,.

From Harary [9], the genus of K, is

(n - 3)(n—4)-"

Y(HKn) = [ 13
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The pagenumber of K, is ©(n) [1]. Therefore, the number of pages required for the class of genus
g graphs is Q(,/7). We [14] conjectured that the pagenumber of the class is in fact @(,/7). This
conjecture was based on several observations. First, for any graph G with pagenumber page((),

Bernhart and Kainen [1] show the following for the chromatic number of GG
x(G) £ 2 page(G) + 2.

Therefore, x(G) = O(pa_qe(G’)). On the other hand, if G is an arbitrary graph, we have the following

X(G)<!'7+\/1+487(G)-(

= 2

(@) < (7+\/1+24‘?(G)].
= 2

inequalities

by Heawood’s formula f9]. Therefore, x(G) = O(\/'y(G)), and x(G) = O(\/?f(G)). Moreover,

taking &G to be K,
X(Kn) = @(PGQE(Kn))

x(Kx) = ©(v/2(Kn))
x(En) = 0 (VAE)).
Using a nonconstructive argument, Malitz [17] settled our conjecture in the affirmative for graphs

embedded in orientable surfaces.

7. Conclusions and Open Problems

We have shown algorithmically that a graph embedded in a surface (orientable or nonorientable)
of genus g, ¢ > 1, can be laid out in O(g) pages. Our algorithms can be shown to run in optimal time
O(n +g). For graphs already embedded in a surface, our algorithins are an efficient means to obtain
layouts with a guarantee on the number of pages used. The best algorithm known for embedding
a graph G I an orientable surface of its genus ¥{G) requires time O(nO(T(GD) (Filotti, Miller and
Reif [5]). We propose an approach to approximating v(() that may be accomplished in better
time. Suppose a planar-nonplanar decomposition for a graph can be constructed with g =0OH(G))
orientable.homotopy classes. Then good layouts can be produced by our algorithms for arbitrary
graphs (as nsed in the Diogenes methodology}. In addition, such a planar-nonplanar decomposition
describes an embedding of the graph in a surface of genus O(y(G)) (any rotation consistent with
the planar part and with each homotopy class gives such an embedding). Any context that requires

that a graph be embedded in a surface first can utilize this embedding (e.g., Gilbert, Hutchinson and
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Tarjan [7]). This would be especially valuable if the g above is a good approximation (i.e., within a
small constant factor or better) to the actual genus of the graph.

A lower bound on the number of pages required for the class of graphs embedded in an orientable
or noncrientable surface of genus g is Q(ﬁ) Using a nonconstructive argument and the planar-
nonplanar decomposition in this paper, Malitz (17] has shown the matching upper bound of O(/9)
pages for the class of graphs embedded in an orientable surface of genus g. We close with three
conjectures,

Conjecture 1. @(\/_5) pages are necessary and sufficient for the class of graphs embedded in a
nonorientable surface of genus g.

Conjecture 2. There is a polynomial-time algorithm to lay out in O(+/7) pages any graph embedded
in an orientable surface of genus g (that is, there is a constructive proof of [17]).

Conjecture 3. The pagenumber of genus 1 (toroidal) graphs is 7 (matching the chromatic number
as 1n the planar case); our algorithm gives a 13 page layout.

We note that our results depend only on the numéber of homotopy classes, not on their relative

structure. The topology of genus g surfaces places restrictions on the order in which traces can

occur. Further study of these restrictions may provide the information to answer our conjectures.
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