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ABSTRACT

This paper generalizes the ALGOIL~like theorem showing that every
A-fres context-sensitive (recursive-enumerable) language is a
component of the minimal solution of a system of equation X=F(X),
where X:(Xl,...,xt), E‘:(Fl,...,Ft}, t%1 and F;, 1 igt are regular
expressions over the alphabet of operations:{concatenation, reunion,
kleens "+" closure, nonereasing finite substitution (arbitrary finite
subgtitution), interse ction} .

In the second part is presented a method which constructs for a
monadic progran a system of equations (in the above form) so that
one of the components of the minimal solution of the system gives
the partial function f computed by the program in a language forms

{an+l#,bf(n)+1 | n ¢ Dom f} .

1. PRELIMINARIES

Let V be a finite set of symbols, V* the free monoid generated
by V,A the unit of V¥, vV = v¥< {a}

The elements of V*are called words and the subsets of v* are cal=
led lengusges. We suppose the reader familiar with the basic facts
about formal language theoryl 77 and developmental systems[ 2. Let
us denote by R, CF, CS, 9§7L’ BE +the classes of regular, context-free,
context-censitive, A -free context-sensitive and recursive-enumerable
languages.

DEFINITION. A Ol-gystem is a triple § ={V,P,w) where P is a finite
set of pairs, Pe ViV *with the property that for every aeV, there
existsuev* go that (a,u)e P; the elements of F are called rules and
are usually denoted by p —» g, for (p,q)eé F; w is a word from v,
called the axiom. The set P 1s called fable, and the pair S'=(V,P>
is sometimes called OL-scheme,

The binary relation =—% C V*x v* is defined by wy = Wy if
3 S

W}. = al o a.t, W2 = lll s e th t>/0, a

* .
J.ev, ujeV sy L&JiLE and
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for every i, 1£i8t, a; —>» u;e€’x.
The relation _—f—fﬁ> denobtes the reflexive transitive closure of
S

==> .
s

A l=nguage L 1s called OL language if there exists an OLl-system
S so that L(B8) = L.

A generative device, which is a derivational restricted OL system
is introduced in the following lines.
DERINTTION. A perturbent configuration Ffor the OLl~scheme S = V,P>
is a family TT= ('r{‘a)aév where for every aeV, T, ={na), E o Fy >
and

1) nla)y1 n{a)
11) 5, ={5,...,5,@E Y, ERAORR

5P N s =g, 14, 14, dgn@)

- (1 § i x*
iii)  F, = {ré),...,ﬂg‘(a))} @ 4 F&)C_ (Pnfa}y x v°)
1gign(a)
Let be of a family of languages. & perburbant configuration is
called Se—-perturbant configuration for an OL scheme S if T =( Wa)aev

and for every aeV and 1, lgig n(a) we have .E}§1>€$8 .
DEFINITION., 4 SICK-OL system is a triple Jf =(8,TT,w) where:

i) 8= {V,P,w) is an Ol-system

ii) TT is a perturbant configuration for the scheme B8'=(V,P >.
css . R . o
iii) w is the axiom of e , weV',

We define now the following binary relation ? , for w = 8y eeeBiy
U=Uq 5000, Uy with ake‘?, ukev sy L&kLt we put w ?E? u iff for
every J, 1¢Jg¥, a5—> 19y ngS_), where "s" is defined by WEEéS,>~
(In words, we can apply for a ietter "a™ occuring in & word wy rules
from those set in Fy corresponding to those set in Ea which contains
wl). M
TLet == be the reflexive trensitive closure of :35—?

F

The language generated by the SICK-OL system (\)D::(S,TT,W) igs defined
k9
by L(bD) ::{u } ue V*, w ?u} , where 5T ={V,P 5 .
A language LI is called SICK~OL language if there exists a SiCK-0L

system (-)o go that L(JF) = L. ,
DEFINITION. An extended SICK~OL sysbem is a 4—tupley =(8, TT,w,2),
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where ¢/ = (8,TT,w) is a SICK-OL system, S' =<V,P ) and ZcV.

The language generated by the exbtended SICK-OL system S’ = (s,TT,
wyZ) is given by (YY) = s, T,w) N 7%,

Let us dencte by SICK~OL the class of SICK-0L languages. 1rf is
a family of languages,ée SICK-CL denotes the class of languages
cbtained from those SICK~OL system with oL -perturbant configurations.

if the rules of a certain type of L systems do not erase, the L~
system is called propagating.

We add tie lebtbters P and E (or both) to the abreviation of I-
systems to denote the classes of corresponding Propagating and Extended
L~systems.

2., TWO FIXED~POINT THEOREMS

In this section we present two fixed-point theorems, one for 9§-2\,
and another for RE. They are generalizations of the well known ALGOL~
like theorem.

In the following we are interested in P B8ICK-OL systems with B~
persurbant configurations.

THECREM 1. For every A ~free centexbt-sensitive language L, there
exists a propagating extended R SICK~0OL system b"' so that L( ,ff' J=L.
FROOF, Let Gz(IN,IT,xo,F} be a conbext-gsensitive grammar so that
1(G)=1 and suppose that A ¢ L. The rules of the grammars are in the

form pxq —> pug where D,q & V*, x € Iy ueVt and Vv = Iy U I Thus
no rules in the form X, = A, belongs to ¥,

Let us consider a new alphabet Iy :{'é'\ ag IN}' We need some pre-
liminary notations:

*
F(x) ={x —>u) paeV , uweV, pxq —> puge ¥ |
If £, is the number of elements of F(x) then:
x X X X X X .
sz{@i, r) | efxry — P} u TieF, 1gigt.]
(the set of all conbexbts for x, used in the rules of G).

Z{i,%x) :{3’:—-)51 P xr} —»p; ur}e F}U{§~—> 'S'c}

. o : ¥
P10 = U {26G,0 | Py = VP, i = i z,vze ¥ 1
. ¥ % pa ¥ X X ¥ b:4 X
- i | -
E(i,x) = V'py x ryV \J{V pTox Ty v Py =V Py
r? = r}i{z, v,z EV*, vz ;571,}.

We notice that for i # j , L&i,ig by B(L,x) () BG,x=0 .
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We intend to construct a propagating extended SICK-0L system :)o I=
=(8, T, x,,I5)+ So that LYY = 1(6).

We define 8 = { V U -I-N’ D>, where

D= ng Z(i,x)) U {x—w) Xy '}?—-—-»&:,x-—a;;\erN}U

igigt, {a —> al ael,}
We define a R-perturbant configuration - (Ty) = Dby
erUIN
1) for xe I Ty = 4 2,B.,F.Y , where

Eél) = ?*,Eée) = {VUEN)+"~ v, F}({l) :%x — Xy x————)'{c},

F}{{Z) = &x—ex'}.

2) for x€ly, Mg =<t +1, B, F >, where
5D - 5,0, Y =R, 1sist,

(t,#41) x 1) (B, +3) _ -
Ef = V+\iL=Jl E}% » FE x 4 {X e X}
3) for aely T = {1, UIp*, {a— a}>.

DEFINITION. A SBelf-controled Tabled OL sysbtem (8C~T0L) is a 5-tuple

¥=(v,u(¥),D,C,w) where
i) V is the alphabet of & 3
ii) m(¥) is a positive integer;

1i1) D:{Di}‘zif), D, N Dy =P, ES lghign (B)

iv) ¢ ={Ci}?£g) , CiCV xV*, is a table, 1gigm (8
=4

if 8 is a SC-TOL system, the following binary relation is
introduced: for w = 8y .. 8¢, U = Up ees Ug with the property that
a €V and ukevif lgskgt we pub w?u iff for every j,1< J< b

ay—> Uj€ Co» where Ys" is defined by weDg. {In words, we can apply
to w rules from a table C, iff we D).

The definitionsof ?} ; language generated by% , SC-~TOL language,
E SC-1T0L, o\f 5C~TOL can be obtained similarly.

Let us denobe by T the finite substitution generated by a table T.
CHEOREM 2. For every SC-TOL system § there is a SICK-OL system of so
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that L(E) = 1 (F).
PROOF. Let us suppose that we have an SC-TOL ¥= (V,m(¥8),C,D,w).

Then we define 8 perturbant configuration Tl = ( ﬂ"a)a eV by

* (%
T, = (($),D, {cir\(axv)}ii’l )

The SICK-OL system Y= (V,TT,w) generates exactly L('G).
The converse of Theorem 2 is also true.

THEOREM 3. For every SICK-CL system & =(S,TT,w) there exists an
equivalent SC-TOL system § = (V,m(%),D,C,w), i.e. L(Y)=L(Y¥).

PROOF. Let be V ={a1,...,as}and TTdetailed by
SRR
3 3

For kj variyng in{l,...,n(aj)} s 1§ s,y let us consider the
sets:

» 1gign(ay), 1lgdgs.

k)
E(l

(ky) (k_)
E
8y

N a, N e N Ea:' = T(kysesesky)
L

Now we have a partition of V' given by the collection
A =fLT(kl,...,kS) | TCyyennik) 4G5

kje{l,...,n(aj)}, lgigs}.
If n, is the number of sets in A we define & SG-TOL

g - (Vamy, { TCy saesk) | T(ky,eenk) 40},
{Z(kl,...,ks){ T(kl,...,lgs) £ ¢}, w), where
8
Z<k1""’ks) = U

a4

It is easy to see thai

(¥) =1L (8.
CCROLLARY 1. SICE-0L = SC-T0L

EF R SICK-0L = BP R SC~T0L D 08,

The inclusion presented in the Corollary 1 is in fact equality.

THECREM 4. Bvery propageting R SC-TCL system generates a context-
sengitive language.

COROLLARY 2.

EP R SICK-OL = EP R SC - TOL = GS,

THROREM 5. For every SC-TOL system § = (V,n( ¢),P,qQ,w) there exists
a system of equations
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X o= B (XpeeeesXy)
(%) teesssseerssrrcves
& Xp = Fe(Xyyeee,X)

so that L((@) = L; X§IN where (X?IN,...,XEIN) is the minimal

o
solution of (%).
PROOF. Let be the system of equations

A i i o)
o =9 @B N EGUULU{FED
1 B E st A E RS E S DS EDE ST IR0 SRS TSNS O0
A
Xpo= Qp By N X Ueee UX UwY D)
with + = m( 8) and let us denote Fi(Xl,...,Xt)zg?l(Pi N (Xlu eee

see U X't U{W} ))o
. . MIN IN
The minimal solution of the system (1) (X‘l yoeay Xxg ) is given by
0
xblszN = X§n)’ lgigt
n=o
and
(™) o Fi{xéﬁ),...,xén)), ny o,

We observe that xgn) is the set of all words from L(®) with the
property that are obtained in n steps of derivation in *;g, and the
last teble used iz Q;. Of course X?IN is the set of all words in L(§)
with the property that the last table used is Qi‘

Now it is manifest thatb %
ﬁ 7
g = U Xin“

x

i=1

THECKEM 6. Bvery B SC~T0L L is a component of the minimal solution of
a system of equations in the form (¥).
PROCF. Let us consider %":(V,m(%"),P,Q,w,ﬁ.’i) and a copy of (glwith all
letters a in V in the form @: ¢/ = (V,m(8'),%?,5,w,M).

Let us define now a SC-T0L 8, «

We consider an alphabet V' =V U ¥ UL}, ¢ a new symbol.

Tet us define a finite substitution h on V' by h(a) = {3,5} ,
ael; nb) = {b}, b€ V-i; hic) = {c} , ceuv{r}

1) Foz i, 1gign (€ ) take
R, = n(2,)~ u* and
{u —> v|ueh(@), veh(®), >z € ‘Qi"} U SLG-—->G‘}

it

Ty

2) Rycryar = W Tp(grya ={x > ¥l xe V']
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3) Rm( G +2 = {V}' Tm( €'z T {q-_-) u

nen(WYU{x— x| xev'={o¥]
m( %')4—2

© o=V R =Ry

i=1
—
T e 43 © {x —>»x | xeV }
We define the SC~I0L ‘61 by
ﬁl = (V')m(f' )+5’ R, T'O')
and we associate to \64 the system of gquations:

A
X =T ® N &Y ...Uxtu{c}))
%0.‘00"‘..O..l.‘..‘..!“l..l.

i;'! LBy A (Ey U e UXVEP)
where t = m( @’ )+3.

We have X t -
1T TN
XI\-Z = “m(gN+1r T (ig Xl% YN Rm(f')-:—l

n : | . . MIN - \
(because Tm( B'+2 is the identity) = ( i\'z)l X3 YN = T ﬁl)ﬂ wt,

It is easy to see that T}-e L{E") iffue I( gh irr ueL(‘fl} N .
THEQOREM 7., Let us consider the following data:
i) V an alphabetb;
ii) Tl""’Tp’ N ~free tables on V;
131) Rp,y..0,R

p? a partition of vt with each Ri regular;

iv) w a word over V.
Then, each component of the minimal solution of the system
A
Xo= T (BRy N Gy e U XU )
.OOQDOA"OD’OOOOH.l.".lt:....’.:.\..'
X, =1, Ry N e&u ...y Xpum)>
is a conbtext-sensitive language.
PROCF. The system of equabions defines a SC~TOT. G= ( ¥,p, {Rl,...,Rp},
U XE;IN, where XM‘m

i=1
= (X%I_IlN, ---,Xbélw) is the minimal solution of the system.

{Tl,...,“fp} , w) and we have that L(§) =

AN A .
It can be proved that Xy = T, (I( @ N R;), for all i, 1gigp.

By theorem 4 it follows that L( 6 ) is in §8, , and so is
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A X3
TGN R = 35, 1 i pe

COROLTARY 3. 4 language LEV® is in C8 if and only if it is a
component of the minimal solution of a system of equations in the
form fulfiling the conditions i) - iv) from Theorem 7.

CORCLLARY 4, Bvery CS language Iagv+ is a component of the minimal
solution of a system of equations in the form:

Xl = Fl{Xl,.‘.,Xt)

(%)
X = Fplxyseen,Xy)
where El,...,Ft are regular espressions over the alphabet § ™,%, " LJ'H
"+, Tha My N "} U Vv U{),(} « (hp dehotes the A -free finite
substitution).
CONJECTURE 1. The converse of the Corollary 4 is also true.
If the above conjecture holds, we have a fixed-point characteri~
zation of Q§z'languages using the set of operations:.{., U ﬂlk N ,+} .
The essential point seems to be the use of intersection, because
without "} " a sysbem of equations of Type (z,) hag CF languages as
components of the minimal solution.

CONJRCTURE 2. A language is in C8 iff it is a component of the
minimal solution of a system (: ) using only {., U ,(\3. .

TEECREM 8. A language L cV¥

of the ninimal solution of a system of equations in the form

is recursive—enumerable iff is a component
¥, = Fy (xl,“.,xt}

X o= Fy (BpreeerXy)
where Fl"”’Ft are regular expressions over the alphabet:) ",",
"U","*'U"WU'VW"}U{ L(} J VU{&WMH&A stands for
the empty word A .
REMARE 1. The result of the Theorem 8 can be exbGended to the case
when ingtead of lebtters of the alphabet V we consider a finite set of
recursive-enumerable languages over V.

%, SCME CONSIDERATICNS ABOUT PIXED-POINT SEMANTICS OF MONADIC
PROGRAMS

We work in this secbion with programs in the formalism presented
by JeA. Goguen in [ 1].
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Speaking heuristically now, in this section we consider programs
consisting of operation and btests, each performed directly on values
stored in memory. These tests and operations will appear as (labels)
of edges in a graph, with all of the partial functions representing
the several altermatives of a test emanating from the same node. Thus
a path in this graph represents an execution sequence for the in-
strucbions of the program. It should be noted that these flow diagram
programs are not purely synbactic entities: a specific interpretation
is assumed to be already given for sach operavion snd test instruction.

One of the question of greatest inberest for such a program ig
semantic: What function does it compute?

We give now the formal definitions.

A (directed) graph is a pair, G = (V,E) where V is a finite set
of nodes, B is a set of edges ECV x V.

An exit node v¥' is a node with the property that there are no
adges in G with source v'.

We demote by M the class of sets in the form NT, ryo, and PIp
the class of partial functions between sets in M.

A program is a pair (G,P) where IP|: ¥V —AN,

P E*-?Q.?waith the property that for every (vl,vz)eE,

B(vy,v,) 1 (Pl(vl)-—7 | 2 (v,)

A program (G,P) is called debterministic if whenever e,e' are
edges with same source node, the partial functions Pe, Pe'! have dis-
Jjoint sets of definition.

If we denote by Pa(G) = {(v,v')[ there exists a path in G from v

to v'}'we can define the hehavior of a program. We can extend the
A
functions P : B —> PR to P : Pa(@) > FFN . 1 rfact, 1f (v ,vq,

...,vt) is the sequence of nodes which describes a path in G from v,
to Vi we haeve

P(Vo”"’vt) = P(vo,vl)o... 0 P(Vt—l’vt)'

Also we have the following result stated as Proposition 5 in [l} :

If (G,P) is a deterministic program and if £, £' are path in G with same
source, such that neither is an initial segment for the other, then
P(f) and P(f') have disjoint sets of definition.

DEFINITION. [The behavior or complete parvial function computed by ths
progran (G,P) with entry at v and exit at v' is

By = U o]
£ & path from v o v' in G}.
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It is easy to see that if (G,P) is deterministic and v' is an exit
node, then F(v,v')is also a partial fupction (Corollary 6 C1 71 J.

Tet us consider Rell the class of relations over N. We use three
symbols "a", "b", " # " in order Lo define the fuuction 8: Rel N —>
Pa* # v*) given by 5(®) ={a g 8™ | (n,m) R} . (Note that
?(A) is the powsr-set of 4).

For a partial funetion £ : N —> N, if Dom f is the definitien
domain of £, we have

s(£) ;{a‘”l a pT(m+ly neDont |
We motice that the langusge S(f) encodes the association realized
by £.
OQur intention is to work with such type of lanpuages instead of
functions, in the definition of monsdic programs, i.e. programs which

use only one-variable functions,

In fach, if (G,P) is a monadic debsrministic program we can
consider the diagram

P S
E ——> K «-«——-rgb(a* # vh)

We observe that the function S is bijective, and its reverse
P: g)(a+ # b*) —> Rel N can be interpreted as a "forgetful”
operator, i.e. forgebts the language encoding of relations over N.

if "o" gtands for the relation composition, we have:

8(Ry0 By) = S(FS(Ry) o FS(Ry)).

The above equelity defines an operstor which beginning with two
languages S{Rl} and S(Rg) gives a new languages S(Rl o R2}.

iMore formally, the operation can be expressed with classical
operators.

Let be ¢, #lnew symbols, and the langusges:

1, ={a"# 0" | (@-1,n-1)e€ Bl Dy ibksﬁ'lcs | (e-1,5-1) €R, Y

We consider the language Ly = Lﬁt‘l{z'P N 2" 4 L.

We have:

L5 = {am:& bP # v 1 (m-1, n-l)eRl, {(n~1, t—l)eRg'}.
1
The homomorphism h, defined by h(b) = h(# ) =a , hlal=g, h(ec)=b
meps L} into S(.Rl ) RZ), i.e.
n(Ly) = {am#bn | (m-1, n-1)€Ry0 RZ} = 8(Ry0 Ry)

Therefore, if h' is a new homomorphism given by h'{a)=b, h'(ﬂ:):#l s
ht(b)=c we have the following representation
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N S(R; o Ry) = h(L ¥t M & # 5,)
= n(8(R) #yc" () a4 n'(8(R,)
We denote by‘f this new operator, i.e.
Y. Sb(a""# vt x g)(a"' #vH -——-‘79)(a+-.§p- »t)
given by
¥ (8,8,) = 8 (F(E;) o F(E,))

The operator can be extended for any t > 2 to
9D{a+ # v x ... x (@(a" »h)
~ v

4
Suppose that we have already defined the operator for s; now the

extension to s+l is defined by
\P(El,...,ES+1} = ¢ \.Q(El,...,‘ES), ES+1)

In the rest of this section we consider monadic deberministic programs
with one memory location only.

The extension to monadic nondeterministic programs with a finite
number of locations requires a little bit more complicated notationsal
apparatus.

Let (G,P) be 2 monadic deterministic program with one location.

If G = (V,E), for every e E, by the way of P and S we have associate
a language, l.e.
Ple) | Pl(vl)———>\Pl (vg), e = (vy,v,)

and 5(P(e)) € Fla* % vH.
To a path from Fa(G), say-r~: (v

V5 seeesVy ) we associate the
k

e
language
S(rA) = S(P(vil,vig) o P(viz,via)o...o P(Vik-l’vik))
= \F(P(vil,viz),.”,P(vik‘l,vik))
EXAMPLE

x > 100
FINAL

INITIAL
X € 2%
(G,P) A x ‘the location
x £1oo Y €— x2
B
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We have
S5(x <« 2x) ={an+l e b22+l\n>,o}
S(x <« x°) = {aml # o8 ny, o}
S(x\(loo) = {an*l # porl |
S(x 3 1oo) :{&m-l # oo+ { n>loo}

Let us consider the path p: (4, 3B, 4).
We have
S(w) = S((x «<— x°) o (xg100)) =

S(Fl({ altl g br?;l | oy o})o E‘({an*l 4 o™l | n 3100}))
= {an"' 4 p" ﬂ‘t n +15100} .

i

Now, for such a program we intend to construct a system of equations
with variables in the power-set of a finite generated free monoid so
that one of the components of its minimal solution gives its behavior
as a function encoded with S.

Let be (G,P) a progran with the location x, and G=(V,E).Suppose
that v and vy are the entry and the exit nodes.

It v ={VI = VoaVyseeesVe = Vg then we assoclate a variable Xi
(varying in @(a* x b*)) to each node vy 0§igt.

. .) the collection
jk(i)’lv vy
of all edges in G which enter in Vis and f:(Ll)"“’fl(:](_:?L) the corres—

For a node vy, let be (vjl’l,vl),...,(v

ponding partial functions associabed by P.

For every i, 1g igt we consider the equation
B (1)
Xi = u S(F(XJ ,i) o fs ) =

w :
k(i ;

(i)
U \€ (st,i ! S(fs »)
s=i

To the node vy = vV, we assoclate a constant eqguation
_§. nsl n+l
X, = {a #0 | ny o}

Putting together, we obtain the system
X = {an+1=,&(.—bn+l] n}o}

0
+ k(i)
o %4 = k(J G x s s, 1¢acs
s=1 5

which plays a major role in the sequel.
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Becauge of the representation of ‘P given in the formula (!), the
equations of X, lgigt have the form presented in the Theorem 9
with the addition of Remark 1.

So, at this moment, such a system has @ minimal solution, with
all components recursive - enumerable languages: XMiN = (Xré{im,...,x%m

We intend to show the following
THECREM 9. A .

S ,vy)) = Ty

I.e., for every monadic deterministic program with one location,there
exists a sysbtem of equations in the form (4 ) so that its semantics ~
in some encoded form - is a component of the minimal solution of the
system.

PROOF. We have /ﬁ(vI,vF) =U{ ?(r.) | [+ Pt in G from vy bo vy} end
S<$(VI’VF)) = { S(?(/&&))[Pxpath in G from vy %o VF}.
On the other side, X%ig = o\j Kén}, where Xénﬂ) = Ft(Xén),...
ves Kén)) and a=e
Fe(X peenrky)

k(D) .
VR ECIRRS e

We intend to show that for every i and p, with 1Lig %, py1l we have

1t

A
(4 xgp) = { S(P(lu.})[fu path in G of length p from vy to v }

We dencte by Path (vi,vj;m) the set of all paths of length m in G
from vy to v., and by Path (vi, vj;—-) the set of all path in G from

d
vy o VJ .

For p=o, Xgp)m¢, 1gigt.
We take first p=l. If al ## bne Xgl), we have for
k(i)
(1)_ (o) (1)
1= Ugage), sy

a number r, so that Xéo)i = Xéo) and am#bnes(fgw}.
I‘,

Hence (v, :,v,) is the edge (v.,v.), and it follows that a™ s bl
ﬁ Jest’ 1 . I i) ry
8( (VI,V:,L?S and so the inclusion X CU{S(P(P,”))\!\«.e}?ath(vI,vi;l)}
holdse.
Gonversely, S(B(vy,v;)) = S(F(X )0 F(S(B(vy,vy)))) = P (x{°,

S(P(VI,Vi))) C Xgl), because (vy,v;)€E implies that in the equation
of Xi there exists a © s0 that X, =X

Jr’l °



true for psgq. Then we have
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Now it is manifest that (4 ) holds for p=l. Suppose that it is

Because of

it

2o

3

follows

J.A.G ©

G.T.H e

S.I st

S.I st

k(i)

(g+l) _ {a) ()
X3 = U S(F(in’i o fsl ) =

s=

s=1

s=1

i)
s=1

s=1

G w

s=1

s=1

k(i) A

Ul S(F[_U{S(P(r))l[wePath(vI,vjs’i:q)}] o fgl))
k(i) A N :
U S(U {ms(p )l € Patn(vp,vy gio)fo £t
k(i) A .

U S(U{P(["")If*ePath("z’vjs,i;q)} o fél)

k( A (1),

U s U{P(/w) o £ fr\e Path(vz,vjs’i;q)})

kL(Ji) s(U{f;( ol )“&'e Patn(vy,vy:arl)})

Easy e
o(I—(!V» ]! [\.«. €rath(vl,vi,q+l)‘7§ Je

the simple observation that

~
PWP%):U{&rﬂﬂe%wwrw:-)}
60 LA .

= U {P( l\k )if"é Path (vI,vF;m) j—

m=0

”~ .
iN
that S(P(vy,vy)) = ﬁf )

guen -

rman,

rail -

rail~-
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