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ABSTRACT

The paper has two parts. In Part I, we shall present Chomsky-Schiitzen-
berger theorems for the families of context-sensitive (CS)and recursive-
enumerable (RE) languages.

The results are obtained by generalizing the construction of the Dyck
set from a “content-free"” one to a "content-sensitive” one.

Also presented are fixed-point characterization theorems for CS and
RE, which generalize the Algol-like theorem. While {xian(xl....,xt).
1¢1gt, is the system used in the Algol-like theorem, our theorems
use {x =h (R, N Fe(XpoeeeiXe)), 1€ 1 &t, with F as above, h, a finit:
substitution and R, a regular set. The pair 1?1 =(h,;,R;) is called @
ar~-function, defined as 1fi(L)=h1(Rif\ LY.

Part II contains the study of systems of eguations with right sides
polynomials in qf -functions, which turn out to be regular expressions
over {o VLo, e , finite substitution} .

This is of interest not only because they realize the CS~ and RE-steps,
but also because they seem to provide with a "language” in which a
variety of generative mechanisms from the literature can be expressed.
This gives the base to an abstract, equational-based theory for pre-
senting generative mechanisms: Grammatical types,

Within the theory we present general techniques for deriving Chomsky~-
Schiitzenberger representations for families of languages possessing

a grammatical type definition. Among such families of languages we
mention: CS, RE, programmed, Turing machines, Petri-nets, regular-
control, scattered-context, L-systems, N(D)TIME(f), N(D)SPACE(f) (for
f(n):nk or f(n)sk"). NP, P, EXPTIME.

PART I
I.). FIXED=-POINT THEOREMS

We shall give a fixed-point theorem for context-sensitive and recursive
-enumerable languages, improving our results [11], [12].
THEOREM 1

*
A language LgV*Cg v ] is context-sensitive [recureivenenumerable] if
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snd only if it is 8 component of the minimal solution of a system of

equations of the form:
Xp = hy (Ry M FpiXpaeeeXy))

where:
i) hl'vcc,h
£1) Rpoeve R

are A ~free [arbitrary] finite substitutions;
are regular expressions with {., U .+ L not containing

t

t

variables;
i1} Fl,....F are A -free [arbitrari] polynomials in wvarisbles xl,

P

t

N and having coefficients in V*ﬁ

I.2. CHOMSKY~SCHUTZENBERGER REPRESENTATIONS

Content-sensitive parentheses

We shall define a concept of “"parentheses" generalizing the classical
ones, The generalization is inspired by the reducibility of the known
parentheses., While the classical reducibility is "content-free", i.,e.
{ )wA, our generalized reducibility is “content-sensitive", i.e.
[w] v w' (reducing parentheses, but the result of the reducibility
depends on the content).

DEFINITION 1

ket Par = {Cn. ]n / n}l} be an infinite set of pairs of parentheses
symbols and V a finite alphabet disjoint with Par.

Let V,CVUPar be a finite set.

A T -function over vy is 8 pair m={h,R) where:

i) h is a finite substitution on Vi and
i1} R is & regular set over Vi
We say that T is A ~free, if h is A -free.
For ac,v’l“' we define T(E) = h(E NR).
Let us remark that the system given by theorem 1 has now the form
X = Wi(Fi(Xl,...,xt)). 1£ig v, where Tr‘1 denotes the 7 ~function
m = (hi'Ri)' lgigt.
DEFINITION 2
A content-sensitive parentheses over vy {cs-parentheses, for short)
is given by P= (T : Cge 3w) where:
a) Mis a T=function
b) there exists n such that EW'En and = jn'
We shall denote by V. and Vg respectively V; and VU .{C_“,'_]W} . The
cs-parenthesis P is called A -free if T is so.
The reducibility relation ﬁF‘sssociated to , is given by u v iff
u=uy E“.w :l_n_ Uy, v=ugw'u, and weT (w').
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1IfVv = {yl,....yq} and the finite substitution h is defined by the
rules Yy —> 213' 1g¢igaq, 1\<JS“1' let us consider ﬂ'(mll""'”ln

“"“qn ) be the vecter of distribution (i.e. number of usages) of

rules of h in w' to obtain w. {rule Yy —> zij is used mij times).

We say that w is obtained from w' by an m-factorization via T ,and we
(m)

write u V.
Given a finite set j’ of cs-parentheses, the reducibility generated
by P ., denoted F?;- is the reflexive-transitive closure of U— 7

DEFINITION 3 Pes
Given a set of cs-parentheses f {fl"“’ n} Py =Ty Eu- ,._.I ).
the Dyck-set generated by P, is the class of the empty wordy{ of ( U

P i=1
) . It is denoted Df .

EXAMPLES 1.
) . , % e

i) The restricted Dyck set D} [8)ecuals Dz, where jDa{fa....,jh}.
V= 8. ‘Pia('ﬂ' xi,xi). Tr-(1{ Ay {7\} ). 1gign.

The_Dyck set 0, equals D=,y wheref” =fU {fl....,fn} 'Pi'(’r’xi'xi)’

ii) The D!ck-set Dy {(generalization due to Schutzenberger[ZB] )

where I(,{l,...,n} equals D ,where PI fu{?t ieI}

iii) The set of non-necessarily nested parentheses over EC s{x fos
.,xn}. equals D- w!nere_?° {ii ll v 3K n} Pij = (Tij’xi’*i)’
iJ= (lv*,{x .x})andV=Z‘uZ‘ <i, 1¢ n.

The tw1n-shuffle TZ:(Engelfriet, Rozenberg LER] ) equals D f’ , where

P"I‘P‘ou{f’ si.ig n} -Pi:j”( Wij.x ,xi). 1¢1i,j¢n. Note that D‘P
can also be called the restricted twin-shuffe,
Using the characterization theorem 1 and the content-sensitive paren-
theses we shall obtain Chomsky~Schiitzenberger representation theorems
for the families of context-sensitive (filling a gap in the literature)
and recursive-enumerable languages.
THEOREM 2
For every context-sensitive E?acursive—enumerable] set ngv*} there
exists a regular set R such that

L=Y@ N R
where of =C5 [:0(-: RE] is a homomorphlsm not depending on L and D
E)RE is the "universal” Dyck set over V for the family of context-
sensitive Eracursive-enumereble] sets,

PART II:GRAMMATICAL TYPES
(PRELIMINARY REPORT)

The study of 7¥-functions in systems of eguations is interesting not
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only because they realize the context-sensitive step, but also because
they seem to provide us with a "language in which a variety of genera-
tive mechanisms from the literature, can be expressed,

This gives the base to an abstract, equationsl-based theory for pre-
senting generative mechanisms: Grammatical types.

The generalization of the notion of Dyck set from a “"content-free” one
to a “content-sensitive” one is performed by the way of T -functions.
Their power of expressing generative actions is the base of cbtaining,
Chomsky~Schiitzenberger - like representation theorems for a variety
of families of languages, possessing grammars or sutomata characteri-
zations.

I1.1., FIRST-ORDER GRAMMATICAL TYPES

The following femilies of languages have a first order type defining
them: context-free, CS, RE, Petri nets, Programmed, Turing machines,
regular-controlled (on Szilard worde), ordered, scattered context, L-
systems.
We shall define the first-order grammatical type & , by giving its
syntax and its semantics.
Syntax:
i) Letzr be a finite set, called the set of sorts, and s, be a
distxnguished element of 2: called the terminal sort; also we denote
o= T 4 el
Given M' c (2 )*. the set of o\ -schematic actions (or o ~-mono-
mials) is Md‘“ My U{s ). Let POLY, be a regular subset of {sT}U(M'-
{+} ) ; called the ¢(~polynomials. i.e. words of the form Pyheot
Ppe with PiEM, lgign,

ii) & = {X,Y} is the set of variables; X, is 2 special symbol called
the initial; if pePOLYo( then p(X vX, ) is an X ~-term,
i1i) An & -schematic system is given by: S {.xti' Y=t jwhere ty,

y are & -terms and ty = sy(X v xo).

t

Semantics:

Wwe shall consider three alphabets:

a) V a finite sety
(We suppose VCVygo.ninal which is the infinite collection of terminal
symbols. However, we will always work with the arbitrary finite alpha-
bet V).

b) N mfx uXgueoesXyooen }an infinite auxiliary set;

c) Par -{En,j \ ny)l} U{Eo’ Jor Cliy —_]_l} an infinite
set of pairs of parentheses symbols.
A basic notion for defining the semantics of & -schematic systems is
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that of 7T'-function. The class of q-functions over VUNyUPar,denoted

1~r. is the coliection of all pairs T= (h,R), where there exists a

finite set Vp € VU NuPar such that h is a finite substitution h:

W?———¥'2vr and R a gggular ﬁft over Vr . Such a pair T= (h,R}) defines

the function T: 2\/".—-—’ 2V1r given by T (L)=h (L M R). In what fol-

lows, we intend to associate some meaning?r}a the & ~terms. Let us

consider & gorting function 'C“: EQ —_— 2 . and denote for every

s e:i;x . Z;és) by 1~T; , the class of T ~functions of sort s. We

denote by TT'the claosure of Tq-under composition "o" and union "y ",

and extend 'Q;to POLY, as follows: .
Zd(elez) = _Co((el)o zc((ez). for all e;,e, éz N
Z,((Psz)* Z,((Pﬂ uq((pz)

for every pl'pae{ST).lU(Ma'( $+% M

Considering an o ~term p(X\Jxo). we shall define one possible*meaning

for it as follows: if f'g Z;}p), we define the function f: 2¥f—s 2Vf

by f(L) = f'(L\J{xéB ) where V. is an alphabet obtained by the ad-

junction of x_ to the alphabet of f',

Now the set of meanings of the of ~term p{X uxo), denoted Z“(p(x Uxo))

is given by: T (p(xux,)) = {f[f € T (m}.

Given an of -schematic system §< :{x=tx, YstY then an interpretation

of S, is any member of'Z;(tx) x E;*(tY). -

If @ is an interpretation, denote it G = (tx. ty).

An o¢ -system is a pair G=(§x y Ty, 1.l s:{x=:§i Y = ¢t

Each ¢of -system possesses an unigue minimal solution GMI

MIN

W.
% o (xMIN GMIN)

A language L is seid o -eguational iff LaY
such that 6N « (XMIN, YMIN).

The family of X -equational languages is denoted EQUAT. .

Our collection of T -functions must be augmented with two special
ones,

Let be M= (1., s {aY ) end m=(n,. (O, :]_1 ), where h_. is
given by h ([T _,) u{ C, xo} and h (] _4) = {3-1} .

Now be TT (x ) = ( UETTs YULT, T -

EXAMPLE 2. The type ;:Zvided by C%igrammars

The Corrolary 3 of{:Ilj gives a fixed-point characterization to the
A-free context-sensitive languages (CS;,L )}« An equivalent form of the

system presented in Theorem 1, (equivalence being the coincidence of
their first component of the minimal solution) is the system:

X1 =VvEN (X U U Xe U oxg
Xg = hy Ry Y (XpU.ee U XU %)), 2gigt

for some of -system G,

(1)
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where: 1) V is a "terminal” alphabet; 1i) all T -functions 'Fi
(hi,Ri) are over the alphabet Vg = VU VN‘ with VN a finite "non-
terminal” alphabet; 1ii) xoe Ve

In the same sense as above, the system (1) is equivalent to:
Y = v N (xuxy)
2
(2) x=uh(Rr’\<xe>)

The equations of {1) have the following properties:

{a} The equation for Xy simulates the "selection of terminal words”
i.e. words containing only terminal symbole;

{b) There sxists one equation, say that of Xos which simulates the
task "chooses nondeterministically one nonterminal”;

{c) All the remaining equations, i.e. for X;0 3815, simulates
different "applications of the context-sensitive rules" of the CS-
grammar, i.e. rules of the form pxq — puqg.

Again, more natural, an ecuivalent form of (2) is:

{.Y = -nl(x (WA )
x-(Z T ) (Xux,)
i=3
According to the "sorts” of equations of (1), in order to define the
type o , we consider three sorts s;,s,,s;. I.e. ;Z:CS = { 81,52,83}.

(3)

The sorts will abstract the structure of the following sets of 7T~

functlans{1rl} {1723 and respectively {ng"'» ﬂ}}
A) "rfs » the set of T -functions of sort s,, over V U N contains
1

exactly one 7 -function T= (1 ,v* );
B) ]—rs is the collection of all pairs W=(h,R) satisfying the
2
o N' VN in
= VUV U Vy (we consider VN

conditions: B.l) There exist two finite subsets of N :

bijection and disjoint such that Vor

= {%x| erN}) i B2 R= (Vuy VN)* i B.3) h is defined by h(x) ={x, %},
for xev and h(a)=a, for a éev,

C) f{ . is the collection of all pairs W= (h,R) satisfying the
ccnditione C. 1) the same as B.1; C 2) there exist xgVy.p.qe(VuVy )

such that R = (V\)VN} pXg (V‘}VN) ; C.3) there exists u &(V\JVN)
such that h is defined by h{y)ey, for yesvnf~{x} and h{x)=u.

The relevance of sorts, is in fact the decomposition in atomic actions
of the generative device. The sorts 81:85.85 are nothing else but
names for "selection of terminal words", "chooses nondeterministically
one nonterminal® and “"application of the context-sensitive rule”.
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As we can see, in the format of the system (3) our 1’387L -polynomisals

x 8
are POLYCSA’ {31}0{3352 +} S48, . O
DEFINITION 4
T %
A Dyck set of type of , Djf is the class of A of vl under the reduci~

¥* —
bility relation =~ , where fz{fl,.... t& , fi = (T Ly jﬁi)c

'!Tiéﬂ{o( )P L—.ﬂ: . jﬂ' is & pair of parentheses symbols from Par,
i i ’
11gt and vy = (U] v, | 1gigt} U{C‘“’i' j“,i [ 1gige}r.

Let DLC_’SO{ be the family of Dyck sets of typeo! -
PROPOSITION 1

For any L ¢EQUAT, , there exist a Dyck set DeDyck . a regular set
R and a homomorphism ¥ such that: L = ¥ (DN R)

PROOF, Let us consider an of -system G: {X = ty, Y=t,, where t,=p;+..
MIN

...#pm(Xuxo) and pi'si,l'””si.ki‘ igigm and Y =i,

¢ ) i g
If py = S5,1 si.ki' let us denote s;' g bY ’ITi'e. Also s. is

denoted Ty To each W-function ’n’i e used to define the interpreta-
tion of our ol -system we shall associate a distinct pair of parentheses
symbols from Par, obtaining a specific cs-parenthesis f
E“i,e'
\PT‘ (TT; ETT- :]HT)‘
Let us denote v.'"'i.e = V’“‘i,a U{[:Wi,e$:’vi,e}ﬁ l1gigm, 1geyg ki
and V' =
Tr

i,e (T o
j'rr ), 1< digm, lgeck,, The terminal cs-parenthesis is
i,e < TR DA §

% VWTU{EWT. 31"1.}. We shall define the reducibility relation
*
P on the set Vg ,where Vo = (U{v'ﬂ_ | l1£tgm, 1’\“&“1}0"{&&)

G i,e
_{[_‘ ] L. 3_1} ). The relation k':' equals 2=, where
o, o, * f

P={FPie | lsegk, lsign} U{PT' Po, £} Py= Ty
Ty, Jpe =0, -1, Ty= (h {05 3% ).'rr_f(l{/\} 4 M) end

h, is defined by ho(}:_l) =% (T =1 4
In order to obtain the result of the Proposition we take D=D.. . Note

that we add the cs-parentheses yo‘ 53«-1 to realize the reducibility

of the initial x, to the empty word A .

In order to construct the regular set R, we denote Fé and Pr respec~
tively the sets Pe = {E«i l 1¢ igm, lg eg ki} and P. '{j'f& e‘
1Ligm, 14&4!(13. .

. - Lo A
We define R as follows: if R Co E«lE'ﬂ'T P VTR? ]ﬂ}] _1_]0

<]
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then R = 1f A & L then R* else RU { A},

Now it is manifest that if we define W by: ¥ (z) = A for ze %}J P.U
{Eo. [_'_1' Jo, 3-1} and \f(a)na. for agV we have: Ls'P(DﬂR). 0
We shall prove in what follows a Chomsky-Schiitzenberger representation
for EQUAT, , but at this time with a “universal” Dyck set, depending
ony on the alphabet of the language, not on the language itself.That
is, we exhibit a set D, , that we call the universal Dyck set of the
type & with respect to an alphabet V, such that for any LeE(}UATﬁ(
there exist a regular set R and e homomorphism ¥ such that

L=YP(o, NRrY)
This universal Dyck set of the type o encodes all possible reducibi-
lities of all cs-parentheses provided by the 4 -functions of the set

TT (=) -

Because the construction is lengthy we cannot include it here.However

we shall give the main points,
A function Code is defined, which gives usual encodings for Par UVUN,
By the way of Code we derive an encoding for a finite substitution and
another for a regulsr set (a regular expression over (J g0y %) At
thies point, we can define Code (P} {which is a set of words}.
Another code function Moccurs in our construction, but at this time
giving codes over a disjoint alphabet, with that of Code.
In these terms, we can define the (universal) reducibility relation
r;: LIF P o= (i E“'J?\“) , Avfn:(\d) we put: uF:—(" v iff u =
- 61 E_“ Code(p ) W a-n"Z' vet W8, andu; C_“ ij u, l—? Uy,
If TT;is a set of T -functions, then cs(TTi) denotes the collection
of all cs-parentheses obtained from T -functions of‘T?Qand well
balanced pairs of parentheses of Par. In a similar way with the defi~
nition of sz we define ~£& s, 8 variant for cse-parentheses., We have
ﬁ‘: Zol —_— zcs{ rr(a()) given by f(s) = cs (TTS), for all
se 2, - X =
We extend S) to subsets of zo(by:
« g‘ (9192) = y.,(“l) 0\&(52)

. ‘ﬁ((eluez) = S;(el)\)j{(“z)
for every el.ech;.

The definitions above for composition and union of cs-parentheses are
given in the usual way:

=== o BF= and = pE=uUbt=.
. F % G

Finally, we define u f==v 1iff u |= v for some " .
P,
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Me LT, MU PaY -

DEFINITION S
The Universal Dyck set of type & over V, is the class of the empty
word A of (VUK)* with respect to the o -reducibility relation % .
It is denoted Do( .

Extending the function Code to sets of compositions of cs-parantheses
by Code (E1 o Ea) = Code (El) Code (Ez) » Code (EIU Ez) = Code (E

1)
U Code (Ez),we are ready to define a central notion in our theory.
DEFINITION 6
e e L@
The Kernel of ‘grammatical typeol over V, is the language Kere{ =
d
Code (2 (T, (Meq))) s
PROPOSITION 2
If Kero{ is a context-sensitive set, then the language D, is context-
sensitive too.
THEOREM 3. (The Chomsky-Schiitzenberger representation)
tet X be a grammatical type.
For any language LeEOUAd . there exist a regular set R such that

L=Y(D NR),
where P 1s a homomorphism depending only on &,
PROOF
Let us consider L g EQUAT, and thoo( -system G={S _ ,U ) defining it
1.6. G {x- .Y - tf‘('and\’ N oL

We suppose that ty = (p1+...+pn)(Xux Y, ty = 1[_‘r(x xa) and pg.aTri 1

. "f.ki. We shall use @ collection of pairs of parentheses symbols

from Par, say Eri o3 ]Wi i 1£ign, l<j<k endC-;fT 3jWT .
Let be the regular set Left = U{ ,1 Code (fi 1) E“'i 2 Code(f i,2)
...l:'rri,ki Code (£ 4,k ) / 1g1gn}.

We shall define the regular R, as follows:

R = {: Code (@) E 1 c°de(§> 1) ETF Code(fT)(VULeftu{j‘—i 3/

l1<ign, 143¢ ki}) j“'T j“-_ o' The homomorphiem ‘P is given
by \?(a)-a, for agVv, and \e(z) = , for zgk.
Now we have indeed
L= \?( {Do‘ f\RL}-
0
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11.2. SECOND-ORDER GRAMMATICAL TYPES

We shall consider a more gensral concept as the one introduced above
called second~order grammatical type.

Examples of families of languages which have second-order grammatical
types defining them are:

N{D)TIME(F), N(D)SPACE{f), N(D)RETURN(F)
(for f(n) = k" or f(n) = nk;

AHO's indexed languages, EXPTIME, some generslizations of PETRI nets
languages, NP, P,

The second-order grammatical type (3
1

A second order grammatical type (3 is constructed from two (first-
order) grammatical types o and o',

Syntax:
!
(1) Zﬁaz:;u Zo( J -{s{;}is the set of sorts: sy is called
the second-arder terminal sort.
The set of (3 amonomials.(or @»schematic actions) is M(3 = Mb(u MN'U
is;}. The @ -polynomials are given by

POLY, = POLY, VU POLY oy U{_s;},

{(ii) © = {x. Y, X', Y, 2:} is the set of variables,
The \%-terms are the o{ -terms, the c('-terms and a specific second-

order term s; {(y.,¥y').

(111) A (3 -schematic system is given by:

SP ‘{.X"tx' Yet,, X'=ty., Y'=t,,. Z = sr (Y,Y')
where qx : {'X = ty. Y=tY and %X‘ :.{x’ztx., Y = tY') are respecively

ol - and o -schematic systems,
Semantics
To define semantics we need the notion of second order T ~function.
It is a8 two-variable function defined by the way of a finite substi-
tution h applied to the intersection of arguments:

*

* »*
Ve VW MW

mo: 2 X 2 —> 2 given by
M(Ly.ly) = h(Llﬂ Ly)

Given a v&—schematic system S, , an interpretation of it is a 5-tuple

—

& ] 1 i
G- (t?; , tg, t5, . 3 L tT" ) where: G’:(t:‘,t?{), T's (tg,’tﬁ,)
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"
are interpretations of Sy respectively Sy and t  =*W (Y,Y') with T
a second-order W-function.
Now, a @-szstem is a pair G" = (Sﬁ' 5T ).

N ot a @ -system.

A language is said ( -equational if it equals z"
Notions as: k= , ﬂ%a . Ker(% can be introduced following the cor-
responding generalizations,

THEOREM 4

For any L eE(}UAT@ there exists a regular set R such that Lz‘Q( tD@ﬂR),
where ¥ is a homomorphism depending only on @ .

IT.3. AN USEFUL RESULT
We derive as & corcllary of the above resultsan useful theorem giving

sufficient conditions for a family of languagescz? tc possess a
Chomsky-Schiitzenberger representation with D E;f .

DEFINITION 7 <

A Chomsky-Schiitzenberger representation for a family of sets;f7is
called standard if the universal Dyck set used to represent the sets
inéf belongs tccg .

A femily of languages 52? is celled grammatical type accessible
if there exists a (first-order or second-order) grammatical type ¥
i B} such thet EcuAT, =T .

THEOREM 5

Any grammatical type accessible family of languages Qf (i.e,;f’n EQUATB)
satisfying:

i) Ker¥ ¢ Cs
11) cscdc RE
possesses a standard Chomsky-Schiitzenberger representation,

APPENDIX 1
THE FIRST-ORDER GRAMMATICAL TYPE OF TURING MACHINES (TM)

We consider a Turing machine M as a rewriting system [S17] with O the
set of states, Ve the tape alphabet, Chig;Q the final states set and
F a set of rules. We shall usaﬂfwo new symbols Xqe ¥ and the "barred”
copies of Q and Vo, namely O, T #{EVT is the boundary marker.
We define W ~functions to simulate the rules of the TM. For notaticnal
simplicity a finite substitution h is specified by a set of context-
free rules only for the nonidentical replacements, For example,
{a -»a,8 —>8,8—> 8,8 ———a?} is the substitution h,. given by
ho(8) = 18,3y, h(s) = [e.5F . h (5) = {5, h,(3) ={&}. for sg0 and
a eVy. Note thet,{ ...} {X} means ho(x}.

(1) Qverprint: §; 8 ~—>sj b is simulated by the equation
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- - ¥ o
x = {3, - o0 —-)b}(ho(x)n vo s avy)
(2) Move-right: s &c -ﬁ>asjc is simulated by the equation
- _— - W e ¥
X= {si——;a.a—a ﬁj' c ——ac}(ho(x)ﬂ stiach)

(3) Move-right and extends work-space: s, ak—> as,r¥ is simulated by

3
X= {5, -» 333.5 —-)r,E-,&}(ho(x) N vy 8,3 %).
Similar equations are constructed for (4) Move-left and (5) Move-left
and extends work-space rules,
Ltet us remark that the above equationshave the form: Xs= W}('WO(X)).
1<€ig5.
Note that we need to preserve the format of the input word, This is

done by the usage of twe placed symbols.,
As a consequence, we have that the system

X=(Tinse * 2 Th,) (X v x,)
"~
Y =‘K‘fin(x J xo)

has the property that YMINeL(M). {Here 1rinit generates an arbitrary
word, to be tested for acceptance, and ln;in verifies the eccurence

of final state and transforms a two placed symbol in its “protected”
initial content), It is clear that only 4 sorts we need, in order to
define our TM=-schematic systems,

We take POLYTMs {sfin}u{sinit +} {sso+}* 85,
APPENDIX 2

THE SECOND-ORDER TYPES PROVIDED BY N(D)TIME(f(n)), f(n)=n*
or f(n)=k"
Let us consider the alphabet w-{ (3) lc, deV UL {b}}where ¥ stande

for the blank symbol. Vi C V is the "terminal” alphabet., For u, ve(V
*
U{H‘) R uscl...cp. v-dl...dp, di,c.ievU{B} . We writes for

(—— ...(3L>

(l) The construction of the first-order type '
Let us assume B & V and define the set

{ aa-f(n) @ 8, -2 Bz*‘R/ wevsy o = Wi,
By, ze{iT)ldeVU{B}}j Ue(VU{ U})) jul = \w\}

For g=l, we consider & grammar Gy ¢ generating the set Ll £ and we

suppose that the letter a appears only in the terminal rule of G1 f
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of the form:

(%) x, a

Let us observe that from G, . we obtain for a given k the grammar

Gy ¢ Just by taking instead of ( %) the rule xa-4>ak. We obtain in
*

this way the family of grammars
f‘{ka‘k 13
We shall construct a type oK' provided by E&.as follows.
We consider the RE-system associated &ee Example 2, ) to G1 £

(Spes @) {X“" . ¥ = 17, where 1= Ewivz) (x U x). tJ = m(Xuxy).

Let us suppose that Wy is the W-function “implementing” the rule
;a-—é a, Ty = (hg.R5), where

Ry =(W U{a s uwy” g (W U{}*L,‘FR}UWN}*
and hy is given by: h3(;a)=a, hg(y)=y otherwise. Note that W, is for
the nonterminal alphabet and x_g Wy ‘
To define our type c{’, we shall use t sorts, namely ‘2: ‘{ 81185500

..,at}, with Z(si) = § } » 1#3 and Z (sz)‘ﬂ'efined as the col-
lection of all pairs m=(h, R3) where there exist kEﬂ@\n{ojrsuch that

h is given by: h(x,) = a®, h{y)=y otherwise.
Clearly taking POL 3! = { i}(}{ss 2+s452+...+stsz}. we have

EQUAT -{tie)| ¢ e‘%{_},
{2). The construction of the first-order type & .
It is a modified version of the type provided by Turing machines (see
Appendix 1) which can be called “time-couting Turing machine type".
The differsnce is that at each time one rewriting rule is applied a
“countor” at the laft end of the analysed word is increased by one,

Now for a P -system 27N o (yMIN v MIN

REMARKS ’
1) Actually our construction shows that

EQUAT, = Cut-off NTIME(F)
but in our cases, f being countable LHU] we have equality with NTIME(f),
2) If we restrict to deterministic TM we obtain exactly EQUAT  =DTIME(f}.
3) It is easy to see that in all cases Ker(&ép_s. P

) and EQUAT@ = NTIME(f).
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APPENDIX 3 (Sketch)

Some other first order types: CF, matrix, regular-control,scattared-
context, paralell CF, L-systems (Notation frcm[:S{])

1) CF. In Example 2, in C2., we take p=g=A4,

2) Matrix CF., If Exl...; WyeeeeaXy —> W T]is @ matrix rule, it can be
simulated by the equation X= WlTYQth’NO cor W Wo(X) 5 Ty isYan Example}
i.e, "nondeterministically chooses one nonterminal”, and ‘Wi is the

T-function implementing the CF rule X W

3) Regular-control CF. A special symbol rule and Lab(F) the set of
labels for the grammar rules., Let C C_(Lab(F))* be a regular set. If
rix, —u, then e which simulates the rule r is given by 1rr=(hr,Rr)

where hr(;r)={pr}, h.(rule)sr rule and h_(x)=x otherwise: Rra(Lab(F)f‘.
rule v*irv* L VeV U Voo

Two more m~functions complete the construction of the type: W, and
Tinie- We have Woe(hy,C rule v¥) o . =(h . {xY). where h (y)=n
for 3eLab(F)U{_cg_l;gkand ideatity otherwise, h, .. (x )= rule x .
4) Paralell CF. The 7r -=function which simulstes the rule x-du,is T=(h,
R), where R=(((Vy~{xy ) U v i¥% J(vy~ [ x})uvy)* and h is given by
h(x)=u, h{y)=y otherwise,. "
5) L systems. For EOL systems é%@e. as usual, the following system of
equations {X: h+hinit(XUxo), Y=(Xux°)ﬂ V.I’.e.
For ETOL systems we change the first equation as x=(h1+...+ht+hinit)
(Xy xo). In the case of EIL systems, in the system of equations occurs
a T -function of a new sort called "syncronization”,
A table giving the sets POLY for each case ends our remarks:

TYPE POLY TYPE POLY
CF {s;y v (ss,+)¥ ss rReg-contr. {s yy (ss +)¥ ss_
Matrix {ST}\J((SSO)*+)* (sso) Paralell {ST} L}(880+)* 88,
EOL {s*sinit} U is_r}
EIL sinit«r(sq"' s Uy §5T}
EIL sinit*ssgn’(sso’}* ssc\){sT§
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