CHOMSKY-SCHÜTZEMBERGER REPRESENTATIONS FOR FAMILIES

OF LANGUAGES AND GRAMMATICAL TYPES

Sorin Istrail
University "Al.I.Cuza"
Department of Mathematics and Computer Center
6600 - IASI, ROMANIA

ABSTRACT

The paper has two parts. In Part I, we shall present Chomsky-Schützenberger theorems for the families of context-sensitive (\underline{CS})and recursive-enumerable (RE) languages.

The results are obtained by generalizing the construction of the Dyck set from a "content-free" one to a "content-sensitive" one.

Also presented are fixed-point characterization theorems for \underline{CS} and \underline{RE} , which generalize the Algol-like theorem. While $\{X_i = F_i(X_1, \ldots, X_t), 1 \le i \le t, \text{ is the system used in the Algol-like theorem, our theorems use <math>\{X_i = h_i(R_i \cap F_i(X_1, \ldots, X_t)), 1 \le i \le t, \text{ with } F_i \text{ as above, } h_i \text{ a finity substitution and } R_i \text{ a regular set. The pair } T_i = (h_i, R_i) \text{ is called a } T_i - \text{function, defined as } T_i(L) = h_i(R_i \cap L).$

Part II contains the study of systems of equations with right sides polynomials in \mathfrak{N} -functions, which turn out to be regular expressions over $\{\bullet, \cup, \cap, \bigstar$, finite substitution $\}$.

This is of interest not only because they realize the CS- and RE-steps, but also because they seem to provide with a "language" in which a variety of generative mechanisms from the literature can be expressed. This gives the base to an abstract, equational-based theory for presenting generative mechanisms: Grammatical types.

Within the theory we present general techniques for deriving Chomsky-Schützenberger representations for families of languages possessing a grammatical type definition. Among such families of languages we mention: \underline{CS} , \underline{RE} , programmed, Turing machines, Petri-nets, regular-control, scattered-context, L-systems, N(D)TIME(f), N(D)SPACE(f) (for $f(n)=n^k$ or $f(n)=k^n$), NP, P, EXPTIME.

PART I I.1. FIXED-POINT THEOREMS

A language $L \subseteq V^+ \sqsubseteq \subseteq V^*$ is context-sensitive [recursive-enumerable] if

and only if it is a component of the minimal solution of a system of equations of the form:

where:

- i) h_1, \ldots, h_t are λ -free [arbitrary] finite substitutions;
- ii) R_1, \ldots, R_t are regular expressions with $\{\cdot, \cup, +\}$ not containing variables;
- iii) $F_1, ..., F_t$ are λ -free [arbitrary] polynomials in variables $X_1, ..., X_t$ and having coefficients in V^* .

I.2. CHOMSKY-SCHÜTZENBERGER REPRESENTATIONS

Content-sensitive parentheses

We shall define a concept of "parentheses" generalizing the classical ones. The generalization is inspired by the reducibility of the known parentheses. While the classical reducibility is "content-free", i.e. () トス, our generalized reducibility is "content-sensitive", i.e. $[w] \vdash w'$ (reducing parentheses, but the result of the reducibility depends on the content).

DEFINITION 1

Let $Par = \{ [n,]_n / n \ge 1 \}$ be an infinite set of pairs of parentheses symbols and V a finite alphabet disjoint with Par.

Let V₁ C V U <u>Par</u> be a finite set.

A π -function over V_1 is a pair π =(h,R) where:

- i) h is a finite substitution on $\boldsymbol{V}_{\boldsymbol{l}}$, and
- ii) R is a regular set over V₁.

We say that \mathcal{T} is λ -free, if h is λ -free. For ECV $_1^{\cancel{\times}}$ we define $\pi(E) = h(E \cap R)$.

Let us remark that the system given by theorem 1 has now the form $\{X_i = \pi_i(F_i(X_1,...,X_t)), 1 \le i \le t, \text{ where } \pi_i \text{ denotes the } \pi\text{-function}\}$ $\vec{\pi}_i = (h_i, R_i), l \leq i \leq t.$

DEFINITION 2

A content-sensitive parentheses over V₁ (cs-parentheses, for short) is given by $\beta = (\pi : \Box_{\pi}, \supset_{\pi})$ where:

- a) T is a T-function
- b) there exists n such that $\Box_{\pi} = \Box_n$ and $\Box_{\pi} = \Box_n$.

We shall denote by V_{π} and V_{π}' respectively V_1 and $V_1 \cup \{ \Box_{\pi}, \beth_{\pi} \}$. The cs-parenthesis P is called λ -free if π is so.

The <u>reducibility relation</u> p associated to p, is given by $u \vdash v$ if? u=u1 [π w] π u2, v=u1w'u2 and w∈ π(w').

If $V = \{y_1, \dots, y_q\}$ and the finite substitution h is defined by the rules $y_i \rightarrow z_{ij}$, $1 \le i \le q$, $1 \le j \le n_i$, let us consider $m = (m_{11}, \dots, m_{1n_1}, \dots, m_{qn_q})$ be the vector of distribution (i.e. number of usages) of rules of h in w' to obtain w. (rule $y_i \rightarrow z_{ij}$ is used m_{ij} times). We say that w is obtained from w' by an m-factorization via $\mathcal T$, and we write $u \mid \frac{(m)}{p} \mid v$. Given a finite set p of cs-parentheses, the reducibility generated

by $\overline{\mathcal{P}}$, denoted $\frac{1}{|\mathcal{P}|}$ is the reflexive-transitive closure of $\frac{1}{|\mathcal{P}|}$.

Given a set of cs-parentheses $\vec{p} = \{p_1, \dots, p_n\}, p_i = (\pi_i; \Gamma_{\pi_i}, \Gamma_{\pi_i}),$ the Dyck-set generated by \vec{p} , is the class of the empty word $\vec{\lambda}$ of $(\vec{v}_{i})^*$. It is denoted $\vec{p}_{\vec{p}}$.

- i) The restricted Dyck set D_n^* [B] equals $D_{\bar{p}}$, where $\bar{p} = \{p_1, \dots, p_n\}$, $V_i = \emptyset$, $p_i = (\pi; x_i, \bar{x}_i)$, $\pi = (1_{\{\lambda\}}, \{\lambda\})$, $1 \le i \le n$.
- The <u>Dyck set</u> D_n^* equals $D_{\overline{\rho}}$, where $\overline{\rho}' = \overline{\rho} \cup \{\beta_1', \dots, \beta_n'\}$, $\beta_1' = (\pi; \overline{x}_1, x_1)$.

 ii) The <u>Dyck-set</u> D_1 (generalization due to Schützenberger [B]) where $IC\{1, \dots, n\}$, equals $D_{\overline{\rho}_1}$ where $\overline{\rho}_1 = \overline{\rho} \cup \{\beta_i' \mid i \in I\}$.
- iii) The set of non-necessarily nested parentheses over $\sum = \{x_1, \dots, x_n\}$, equals $D_{\overline{p}}$ where $\overline{p}_e = \{\underbrace{p}_{ij} \mid 1 \leqslant i, j \leqslant n\}$, $\underbrace{p}_{ij} = (\pi_{ij}; x_i, \overline{x}_i)$, $\underbrace{\pi}_{ij} = (1_{\bigvee}, \{x_j, \overline{x}_j\})$ and $\underbrace{V} = \sum U \sum_i , 1 \leqslant i, j \leqslant n$. The twin-shuffle \underbrace{T}_{\sum} (Engelfriet, Rozenberg [ER]) equals $\underbrace{D}_{\overline{p}_e}$, where

 $\overline{\mathcal{G}}_{0}'=\overline{\mathcal{G}}_{0}\cup\{\mathcal{G}_{ij}'\mid\ 1\leqslant i,j\leqslant n\},\ \mathcal{G}_{ij}'=(\ \pi_{ij},\overline{x}_{i},x_{i}),\ 1\leqslant i,j\leqslant n.\ \text{Note that } D_{\overline{\mathcal{G}}_{0}}$ can also be called the restricted twin-shuffe.

Using the characterization theorem 1 and the content-sensitive parentheses we shall obtain Chomsky-Schützenberger representation theorems for the families of context-sensitive (filling a gap in the literature) and recursive-enumerable languages.

THEOREM 2

For every context-sensitive [recursive-enumerable] set L CV*, there exists a regular set R such that

where $\alpha = CS[\alpha = RE]$, is a homomorphism not depending on L and \mathbb{D}_{CS} is the "universal" Dyck set over V for the family of contextsensitive [recursive-enumerable] sets.

PART II: GRAMMATICAL TYPES (PRELIMINARY REPORT)

The study of \mathcal{H} -functions in systems of equations is interesting not

only because they realize the context-sensitive step, but also because they seem to provide us with a "language in which a variety of generative mechanisms from the literature, can be expressed.

This gives the base to an abstract, equationsl-based theory for presenting generative mechanisms: Grammatical types.

The generalization of the notion of Dyck set from a "content-free" one to a "content-sensitive" one is performed by the way of \$\pi\$-functions. Their power of expressing generative actions is the base of obtaining, Chomsky-Schützenberger - like representation theorems for a variety of families of languages, possessing grammars or automata characterizations.

II.1. FIRST-ORDER GRAMMATICAL TYPES

The following families of languages have a first order type defining them: context-free, <u>CS</u>, <u>RE</u>, Petri nets, Programmed, Turing machines, regular-controlled (on Szilard words), ordered, scattered context, L-systems.

We shall define the first-order grammatical type α , by giving its syntax and its semantics.

Syntax:

i) Let \sum_{α} be a finite set, called the set of <u>sorts</u>, and s_{T} be a distinguished element of \sum_{α} called the <u>terminal sort</u>; also we denote $\sum_{\alpha}' = \sum_{\alpha} \{s_{T}\}.$

Given $M' \subset (\sum_{\alpha})^*$, the set of α -schematic actions (or α -mono-mials) is $M_{\alpha} = M' \cup \{s_T\}$. Let POLY be a regular subset of $\{s_T\} \cup \{m_T\}$ called the α -polynomials, i.e. words of the form $p_1 + \ldots + p_n$, with $p_1 \in M'_{\alpha}$, $1 \le i \le n$.

- ii) $\theta = \{X,Y\}$ is the set of <u>variables</u>; x_0 is a special symbol called the <u>initial</u>; if $p \in POLY_{\alpha}$ then $p(X \cup X_0)$ is an $\alpha term$.
- iii) An \propto -schematic system is given by: S_{α} : $\left\{X=t_{X}, Y=t_{Y}, \text{where } t_{X}, t_{Y} \text{ are } \alpha \text{ -terms and } t_{Y} = S_{T}(X \cup X_{\Omega}).\right\}$

Semantics:

We shall consider three alphabets:

- a) V a finite set;
- (We suppose $V \subset V_{\text{Terminal}}$ which is the infinite collection of terminal symbols. However, we will always work with the arbitrary finite alphabet V).
 - b) N = $\{x_0, x_1, \dots, x_m, \dots\}$ an infinite auxiliary set;
- c) Par = $\{ \Box_n, \exists_n \setminus^m n > 1 \} \cup \{ \Box_0, \exists_0, \Box_{-1}, \exists_{-1} \}$ an infinite set of pairs of parentheses symbols.

A basic notion for defining the semantics of α -schematic systems is

that of I-function. The class of I-functions over VUNUPar, denoted Π , is the collection of all pairs π = (h,R), where there exists a finite set $V_{rr} \subset V \cup N \cup Par$ such that h is a finite substitution h: $V_{11}^{*} \longrightarrow 2^{V_{11}^{*}}$ and R a regular set over V_{11} . Such a pair π = (h,R) defines the function π : $2^{V_{11}^{*}} \longrightarrow 2^{V_{11}^{*}}$ given by π (L)=h (L \cap R). In what follows, we intend to associate some meanings to the & -terms. Let us consider a <u>sorting function</u> $C_{\alpha}: \sum \longrightarrow 2^{\text{II}}$, and denote for every $s \in \sum_{\alpha} \cdot C_{\alpha}(s)$ by $\overline{\prod_{s}}$, the class of $\underline{\pi}$ -functions of sort s. We denote by \prod the closure of \prod under composition "o" and union "U".

and extend $\overline{\zeta}$ to POLY as follows: $\zeta(e_1e_2) = \overline{\zeta}(e_1) \circ \overline{\zeta}(e_2)$, for all $e_1, e_2 \in \Sigma'$

for it as follows: if $f' \in \mathcal{T}_{\alpha}(p)$, we define the function $f: 2^{\sqrt{f}} \rightarrow 2^{\sqrt{f}}$ by $f(L) = f'(L \cup \{x_0\})$ where V_f is an alphabet obtained by the adjunction of x_0 to the alphabet of f^1 .

Now the set of meanings of the $o(-\text{term } p(X \cup x_o))$, denoted $\sum_{x \in Y} (p(X \cup x_o))$ is given by: $\mathcal{T}_{\alpha}(p(X \cup X_0)) = \{f \mid f' \in \mathcal{T}_{\alpha}(p)\}.$

Given an α -schematic system $S_{\alpha}: \{X=t_{X}, Y=t_{Y}\}$ then an <u>interpretation</u> of S_A is any member of $C_X(t_X) \times C_X(t_Y)$.

If G is an interpretation, denote it $G = (t_X, t_Y)$.

An α -system is a pair $G = (S_X, G)$, i.e. $G : \{X = t_X^G, Y = t_Y^G\}$.

Each α -system possesses an unique minimal solution $G^{MIN} = (X^{MIN}, Y^{MIN})$.

A language L is said α -equational iff L=Y^{MIN} for some α -system G. such that $G^{MIN} = (X^{MIN}, Y^{MIN})$.

The family of lpha -equational languages is denoted EQUAT $_{lpha}$. Our collection of π -functions must be augmented with two special

Let be $\pi_{-4} = (1_{\{\lambda\}}, \{\lambda\})$ and $\pi_o = (h_o, \{ \Box_{-1}, \Box_{-1})$, where h_o is given by $h_o(\Box_{-1}) = \{ \Box_{-1} \times_o \}$ and $h_o(\Box_{-1}) = \{ \Box_{-1} \}$. Now be $T(\alpha) = (\bigcup_{s \in \Sigma} T_s) \cup \{\pi_o, \pi_{-1}\}$.

EXAMPLE 2. The type provided by CS-grammars

The Corrolary 3 of [Il] gives a fixed-point characterization to the λ -free context-sensitive languages (CS $_{\lambda}$). An equivalent form of the system presented in Theorem 1, (equivalence being the coincidence of their first component of the minimal solution) is the system:

(1)
$$\begin{cases} X_1 = v^* \cap (X_2 \cup ... \cup X_t \cup X_o) \\ X_i = h_i (R_i \cap (X_2 \cup ... \cup X_t \cup X_o)), \ 2 \le i \le t \end{cases}$$

where: i) V is a "terminal" alphabet; ii) all π -functions $\pi_i = (h_i, R_i)$ are over the alphabet $V_{\pi} = V \cup V_N$, with V_N a finite "nonterminal" alphabet; iii) $x_0 \in V_N$.

In the same sense as above, the system (1) is equivalent to:

(2)
$$\begin{cases} Y = V^{*} \cap (X \cup x_{o}) \\ X = \bigcup_{i=2}^{t} h_{i}(R_{i} \cap (X \cup x_{o})) \end{cases}$$

The equations of (1) have the following properties:

- (a) The equation for X_1 simulates the "selection of terminal words", i.e. words containing only terminal symbols;
- (b) There exists one equation, say that of \mathbf{X}_2 , which simulates the task "chooses nondeterministically one nonterminal";
- (c) All the remaining equations, i.e. for X_i , $3 \le i \le t$, simulates different "applications of the context-sensitive rules" of the CS-grammar, i.e. rules of the form pxq \longrightarrow puq. Again, more natural, an equivalent form of (2) is:

(3)
$$\begin{cases} Y = \pi_1(X \cup X_0) \\ X = (\sum_{i=3}^{n} \pi_i \pi_2)(X \cup X_0) \end{cases}$$

According to the "sorts" of equations of (1), in order to define the type α , we consider three sorts s_1, s_2, s_3 . I.e. $\sum_{CS_{\lambda}} = \{s_1, s_2, s_3\}$. The sorts will abstract the structure of the following sets of π -functions $\{\pi_1\}$, $\{\pi_2\}$ and respectively $\{\pi_2, \ldots, \pi_r\}$.

- functions $\{\pi_1\}$, $\{\pi_2\}$ and respectively $\{\pi_3,\ldots,\pi_t\}$.

 A) Π_{s_1} , the set of π -functions of sort s_1 , over V \cup N contains exactly one π -function π = $(1_{\bigvee}^*,\bigvee^*)$;
- B) \prod_{s_2} is the collection of all pairs $\mathcal{H}=(h,R)$ satisfying the conditions: B.1) There exist two finite subsets of N: V_N , \overline{V}_N in bijection and disjoint such that $V_{\mathcal{H}}=V\cup V_N\cup \overline{V}_N$ (we consider $\overline{V}_N=\{\overline{x}\mid x\in V_N\}$); B.2) $R=(V\cup V_N)^*$; B.3) h is defined by $h(x)=\{x,\overline{x}\}$, for $x\in V_N$ and h(a)=a, for $a\in V$.
- C) \prod_{s_3} , is the collection of all pairs $\pi=(h,R)$ satisfying the conditions: C.1) the same as B.1; C.2) there exist $x\in V_N$, $p,q\in (V\cup V_N)^*$ such that $R=(V\cup V_N)^*$ $p\bar{x}q\ (V\cup V_N)^*$; C.3) there exists $u\in (V\cup V_N)^*$ such that h is defined by h(y)=y, for $y\in V_{\pi}^{-}\{x\}$ and $h(\bar{x})=u$. The relevance of sorts, is in fact the decomposition in atomic actions of the generative device. The sorts s_1,s_2,s_3 are nothing else but names for "selection of terminal words", "chooses nondeterministically one nonterminal" and "application of the context-sensitive rule".

As we can see, in the format of the system (3) our CS_{Λ} -polynomials are $POLY_{CS_{\Lambda}} = \left\{s_1\right\} U \left\{s_3 s_2 + \right\}^* s_3 s_2$.

DEFINITION 4

A Dyck set of type α , $D_{\overline{p}}$ is the class of λ of V_1^* under the reducibility relation $|\frac{\star}{\overline{p}}|$, where $\overline{p} = \{p_1, \dots, p_t\}$, $f_i = (\pi_i : [\pi_i,]_{\pi_i})$, $\pi_i \in \Pi(\alpha)$, $[\pi_i,]_{\pi_i}$ is a pair of parentheses symbols from \underline{Par} , $1 \le i \le t$ and $V_1 = (U\{V_{\pi_i}, |1 \le i \le t\}) \cup \{[\pi_i,]_{\pi_i}, |1 \le i \le t\}$).

Let $\underline{\mathsf{Dyck}}_{\alpha}$ be the family of Dyck sets of type α . PROPOSITION 1

For any L \in EQUAT $_{\alpha}$, there exist a Dyck set D \in $\underline{Dyck}_{\alpha}$, a regular set R and a homomorphism Ψ such that: L = Ψ (D \cap R) \underline{PROOF} . Let us consider an α -system G: $\{X = t_X, Y = t_Y, \text{ where } t_X = p_1 + \dots + p_m(X \cup X_0) \text{ and } p_i = s_{i,1},\dots,s_{i,k_i}, 1 \leq i \leq m \text{ and } Y^{MIN} = L.$

If $p_1^{\sigma} = s_{1,1}^{\sigma} \dots s_{1,k_1}^{\sigma}$, let us denote $s_{1,e}^{\sigma}$ by $\Pi_{i,e}$. Also s_T is denoted π_T . To each π -function $\pi_{i,e}$ used to define the interpretation of our \propto -system we shall associate a distinct pair of parentheses symbols from Par, obtaining a specific cs-parenthesis $P_{i,e} = (\pi_{i,e}; L_{\pi_{i,e}}, L_{\pi_{i,e}})$, $1 \leq i \leq m$, $1 \leq e \leq k_i$. The terminal cs-parenthesis is $P_{T^{\pm}}(\pi_T; L_{\pi_T}, L_{\pi_T})$.

 h_0 is defined by $h_0([-1]) = [-1] \times_0$, $h_0([-1]) = [-1] \times_1$

In order to obtain the result of the Proposition we take D=D . Note that we add the cs-parentheses \mathcal{S}_0 , \mathcal{S}_{-1} to realize the reducibility of the initial \mathbf{x}_0 to the empty word λ .

In order to construct the regular set R, we denote Pe and Prrespectively the sets Pe = $\{ \Box_{\pi_i,e} \mid 1 \leq i \leq m, 1 \leq e \leq k_i \}$ and Pr = $\{ \Box_{\pi_i,e} \mid 1 \leq i \leq m, 1 \leq e \leq k_i \}$.

then R = $\underline{if} \lambda \notin L$ then R' else RU $\{\lambda\}$.

Now it is manifest that if we define Ψ by: $\Psi(z) = \lambda$ for $z \in P_c \cup P_c \cup \{L_0, L_{-1}, J_0, J_{-1}\}$ and $\Psi(a) = a$, for $a \in V$ we have: $L = \Psi(D \cap R) \cdot D$ We shall prove in what follows a Chomsky-Schützenberger representation for EQUAT , but at this time with a "universal" Dyck set, depending ony on the alphabet of the language, not on the language itself. That is, we exhibit a set D, , that we call the universal Dyck set of the type α with respect to an alphabet V, such that for any L \in EQUAT $_{\alpha'}$ there exist a regular set R, and a homomorphism Ψ such that

This universal Dyck set of the type of encodes all possible reducibilities of all cs-parentheses provided by the π -functions of the set Π (α).

Because the construction is lengthy we cannot include it here. However we shall give the main points.

A function Code is defined, which gives usual encodings for Par UVUN. By the way of Code we derive an encoding for a finite substitution and another for a regular set (a regular expression over \bigcup , \bullet , \star). At this point, we can define Code (ρ) (which is a set of words). Another code function foccurs in our construction, but at this time giving codes over a disjoint alphabet, with that of Code. In these terms, we can define the (universal) reducibility relation

 $= \hat{\mathbf{u}}_1 \hat{\mathbf{L}}_{\pi} \quad \text{Code}(\mathbf{p}) \hat{\mathbf{w}} \hat{\mathbf{L}}_{\pi}^{\pi} \hat{\mathbf{L}}_{\pi}^{\pi}, \quad \mathbf{v} = \hat{\mathbf{u}}_1 \hat{\mathbf{w}} \cdot \hat{\mathbf{u}}_2 \text{ and } \mathbf{u}_1 \hat{\mathbf{L}}_{\pi} \hat{\mathbf{w}} \hat{\mathbf{L}}_{\pi}^{\pi} \mathbf{u}_2 \hat{\mathbf{p}} \hat{\mathbf{u}}_1 \hat{\mathbf{w}} \cdot \hat{\mathbf{u}}_2.$ If \prod_i is a set of π -functions, then $\operatorname{cs}(\prod_i)$ denotes the collection of all cs-parentheses obtained from π -functions of T_1 and well balanced pairs of parentheses of Par. In a similar way with the definition of \mathcal{T}_{a} we define \mathcal{S}_{a} , a variant for cs-parentheses. We have $S_{\alpha}: \Sigma_{\alpha} \longrightarrow 2^{cs}(\Pi(\alpha))$ given by $S_{\alpha}(s) = cs(\Pi_{S})$, for all

$$S \in \Sigma_{\alpha}$$
.

We extend S to subsets of Σ_{α}^{*} by:
$$S_{\alpha}^{*} (e_{1}e_{2}) = S_{\alpha}^{*} (e_{1}) \cdot S_{\alpha}^{*} (e_{2})$$
for every $e_{1} \cdot e_{2} \in \Sigma_{\alpha}^{*}$.

The definitions above for composition and union of cs-parentheses are given in the usual way:

$$\frac{1}{f_1 f_2} = f_1 \circ f_2 \quad \text{and} \quad \frac{1}{f_1 f_2} = f_1 \cup f_2 .$$

Finally, we define $u \models v$ iff $u \models \eta v$ for some η .

DEFINITION 5

The Universal Dyck set of type

✓ over V, is the class of the empty word λ of $(VUK)^*$ with respect to the α -reducibility relation $\stackrel{*}{\rightleftharpoons}$.

Extending the function Code to sets of compositions of cs-parantheses by Code $(E_1 \circ E_2)$ = Code (E_1) Code (E_2) , Code $(E_1 \cup E_2)$ = Code (E_1)

U Code (E₂), we are ready to define a central notion in our theory.

DEFINITION 6 the
The Kernel of Grammatical type

The Vernel of G Code (요(건(M~))).

PROPOSITION 2

sensitive too.

THEOREM 3. (The Chomsky-Schützenberger representation)

Let lpha be a grammatical type.

For any language LEEQUAT, , there exist a regular set R_i such that

where Ψ is a homomorphism depending only on lpha .

PROOF

Let us consider LEEQUAT and the \propto -system G=(S , T) defining it, i.e. G : $X = t_X^T$, Y = t_Y^T and Y^{MIN} = L.

We suppose that $t_X = (p_1^T + \dots + p_n^T)(X \cup x_0)$, $t_Y = \pi_T(X \times x_0)$ and $p_1^T = \pi_{i-1}$ \dots Π_{i,k_i} . We shall use a collection of pairs of parentheses symbols

from Par, say $\Box_{i,j}$, $\Box_{\pi_{i,j}}$, $1 \le i \le n$, $1 \le j \le k_i$ and $\Box_{\pi_{T}}$, $\Box_{\pi_{T}}$.

Let be the regular set Left = $\bigcup \{ \widehat{\Pi}_{1,1} \mid \text{Code}(\widehat{P}_{1,1}) \mid \widehat{\widehat{\Gamma}}_{\Pi_{1,2}} \mid \text{Code}(\widehat{P}_{1,2}) \}$... $\hat{\Gamma}_{\pi_{i,k_{i}}}$ code $(\beta_{i,k_{i}}) / 1 \le i \le n$.

We shall define the regular R as follows:

 $R_L = \hat{C}_0 \text{ Code} (S_0) \hat{C}_{-1} \text{ Code}(S_{-1}) \hat{C}_{\pi_{\perp}} \text{ Code}(S_{\tau}) \text{ (VU Left U } \hat{J}_{\pi_{\perp},j}$ $1 \le i \le n$, $1 \le j \le k_1$)* \widehat{J}_{π_T} $\widehat{J}_{\pi_{-1}}$ \widehat{J}_o . The homomorphism Ψ is given by $\Upsilon(a) = a$, for $a \in V$, and $\Upsilon(z) = \lambda$, for $z \in k$. Now we have indeed

П

II.2. SECOND-ORDER GRAMMATICAL TYPES

We shall consider a more general concept as the one introduced above called second-order grammatical type.

Examples of families of languages which have second-order grammatical types defining them are:

$$N(D)TIME(f)$$
, $N(D)SPACE(f)$, $N(D)RETURN(f)$
 $(for f(n) = k^n or f(n) = n^k;$

AHO's indexed languages, EXPTIME, some generalizations of PETRI nets languages, NP, P.

The second-order grammatical type (3

A second order grammatical type β is constructed from two (firstorder) grammatical types

✓ and

✓ a

Syntax:

(i)
$$\sum_{\beta} = \sum_{\alpha} \cup \sum_{\alpha}' \cup \{s_T^*\}$$
 is the set of sorts; s_T^* is called the second-order terminal sort.

The set of β -monomials (or β -schematic actions) is β = β β = β β = β . The β -polynomials are given by

(ii) $\theta = \{X, Y, X', Y', Z\}$ is the set of <u>variables</u>. The β -<u>terms</u> are the α -terms, the α -terms and a specific secondorder term s_T^* (Y,Y').

(iii) A
$$\beta$$
 -schematic system is given by:
$$S_{\beta}: \left\{ X=t_X, Y=t_Y, X'=t_X, Y'=t_Y, Z=s_T^* (Y,Y') \right\}$$

where $S_X: \{X = t_X, Y = t_Y \text{ and } S_i : \{X' = t_{X'}, Y' = t_{Y'}\} \text{ are respecively}$

Semantics

To define semantics we need the notion of second order ${\mathfrak N}$ -function. It is a two-variable function defined by the way of a finite substitution h applied to the intersection of arguments:

$$V_{\pi}^{*} \qquad V_{\pi}^{*} \qquad V_{\pi}^{*}$$

$$\Pi : 2 \qquad \times \qquad 2 \qquad 2 \qquad \text{given by}$$

$$\Pi(L_{1}, L_{2}) = h(L_{1} \cap L_{2})$$

Given a β -schematic system S_{β} , an <u>interpretation</u> of it is a 5-tuple $\overline{C} = (t_X^{\sigma}, t_Y^{\sigma}, t_{X'}^{\sigma'}, t_{Y'}^{\sigma'}, t_{Y'}^{\sigma'})$ where: $\overline{C} = (t_{X, Y}^{\sigma}, t_{Y}^{\sigma}), \overline{C} = (t_{X, Y}^{\sigma'}, t_{Y'}^{\sigma'})$

are interpretations of S_{∞} respectively S_{∞} and $t = \pi^{-m} (Y,Y')$ with Ta second-order W-function.

Now, a β -system is a pair $G'' = (S_{\beta}, \overline{G})$. A language is said β -equational if it equals Z^{MIN} of a β -system. Notions as: \blacksquare , \square , Ker β can be introduced following the corresponding generalizations.

THEOREM 4

For any L \in EQUAT_B there exists a regular set R such that L= Ψ ($\mathbb{D}_{\mathbf{S}} \cap \mathbb{R}$). where Ψ is a homomorphism depending only on β .

II.3. AN USEFUL RESULT

We derive as a corollary of the above results an useful theorem giving sufficient conditions for a family of languages lpha to possess a Chomsky-Schützenberger representation with $\mathbb{D}_{\varphi} \in \mathcal{L}$.

DEFINITION 7

A Chomsky-Schützenberger representation for a family of sets $\mathscr L$ is called standard if the universal Dyck set used to represent the sets in $\mathscr L$ belongs to $\mathscr L$.

A family of languages $\mathscr L$ is called grammatical type accessible if there exists a (first-order or second-order) grammatical type X $\in \{ \alpha, \beta \}$ such that EQUAT $= \mathcal{L}$.

THEOREM 5

Any grammatical type accessible family of languages \mathcal{L} (i.e. \mathcal{L} = EQUAT, satisfying:

- i) Ker∛ ∈ CS
- ii) CS ⊆ L C RE

possesses a standard Chomsky-Schützenberger representation.

APPENDIX 1

THE FIRST-ORDER GRAMMATICAL TYPE OF TURING MACHINES (TM) We consider a Turing machine M as a rewriting system [Sl] with Q the set of states, V_T the tape alphabet, $\mathsf{Q}_\mathsf{l} \subseteq \mathsf{Q}$ the final states set and F a set of rules. We shall use two new symbols x_0 , y and the "barred" copies of Q and V_T , namely \overline{Q} , $\overline{V_T}$. $\# \in V_T$ is the boundary marker. We define 1T -functions to simulate the rules of the TM. For notational simplicity a finite substitution h is specified by a set of contextfree rules only for the nonidentical replacements. For example, $\{a \rightarrow a, a \rightarrow \overline{a}, s \rightarrow s, s \rightarrow \overline{s}\}$ is the substitution h_0 , given by $h_0(a) = \{a, \overline{a}\}, h(s) = \{s, \overline{s}\}, h_0(\overline{s}) = \{\overline{s}\}, h_0(\overline{a}) = \{\overline{a}\}, \text{ for } s \in \Omega \text{ and } s \in \Omega \}$ $a \in V_T$. Note that, $\{\ldots\}(X)$ means $h_0(X)$.

(1) $\underline{\text{Overprint}}$: s_i a $\longrightarrow s_i$ b is simulated by the equation

$$X = \left\{ \bar{s}_{i} \rightarrow s_{i}, \bar{a} \rightarrow b \right\} \left(h_{o}(X) \cap V_{T}^{*} \bar{s}_{i} \bar{a} V_{T}^{*} \right)$$

(2) Move-right: $s_i = c \rightarrow as_j c$ is simulated by the equation

$$X = \left\{ \overline{s}_{\underline{i}} \xrightarrow{} a, \overline{a} \xrightarrow{} s_{\underline{i}}, \ \overline{c} \xrightarrow{} c \right\} \left(h_{0}(X) \bigcap V_{T}^{\underbrace{*}} \overline{s}_{\underline{i}} \overline{a} \overline{c} V_{T}^{\underbrace{*}} \right)$$

Similar equations are constructed for (4) Move-left and (5) Move-left and extends work-space rules.

Let us remark that the above equations have the form: $X = T_i(T_0(X))$, $1 \le i \le 5$.

Note that we need to preserve the format of the input word. This is done by the usage of two placed symbols.

As a consequence, we have that the system

$$\begin{cases} X = (\pi_{init} + \sum_{\pi} \pi \pi_{o}) (X \cup x_{o}) \\ Y = \pi_{fin}(X \cup x_{o}) \end{cases}$$

has the property that $Y^{MIN}=L(M)$. (Here π_{init} generates an arbitrary word, to be tested for acceptance, and π_{fin} verifies the accurence of final state and transforms a two placed symbol in its "protected" initial content). It is clear that only 4 sorts we need, in order to define our TM-schematic systems. We take $POLY_{TM}=\left\{s_{fin}\right\} \cup \left\{s_{init}+\right\} \left\{s_{s_0}+\right\}^*$ ss₀.

APPENDIX 2

THE SECOND-ORDER TYPES PROVIDED BY N(D)TIME(f(n)), $f(n)=n^k$ or $f(n)=k^n$

Let us consider the alphabet W= $\left\{ \begin{pmatrix} c \\ d \end{pmatrix} \mid c, d \in V \cup \left\{ b \right\} \right\}$ where b stands for the blank symbol. $V_T \subset V$ is the "terminal" alphabet. For $u, v \in (V \cup \left\{ b \right\})^*$, $u = c_1 \dots c_p$, $v = d_1 \dots d_p$, $d_1, c_1 \in V \cup \left\{ b \right\}$, we write $\frac{u}{V}$ for $\left(\frac{c_1}{d_1} \right) \dots \left(\frac{c_p}{d_p} \right)$.

(1). The construction of the first-order type lpha' .

Let us assume a ∉ V and define the set

For q=1, we consider a grammar $G_{1,f}$ generating the set $L_{1,f}$ and we suppose that the letter a appears only in the terminal rule of $G_{1,f}$

of the form:

Let us observe that from $G_{1,f}$ we obtain for a given k the grammar just by taking instead of (\star) the rule $x_a \longrightarrow a^k$. We obtain in this way the family of grammars $\mathcal{G}_{f} = \left\{ G_{k,f} \mid k \geqslant 1 \right\}.$

We shall construct a type lpha' provided by $\mathcal{G}_{\mathbf{f}}$ as follows. We consider the RE-system associated (see Example 2) to $G_{1.f}$: $(s_{RE}, \sigma): \{ X=t_X^{\sigma}, Y=t_Y^{\sigma}, \text{ where } t_X^{\sigma}=(\sum_{i=1}^{L} \pi_i \pi_2) (X \cup x_o), t_Y^{\sigma}=\pi_1(X \cup x_o). \}$ Let us suppose that π_3 is the π -function "implementing" the rule $\overline{x}_a \rightarrow a$, $\mathcal{T}_3 = (h_3, R_3)$, where

 $R_3 = (W \cup \{\#_L\} \#_R\} \cup W_N)^* \times_a (W \cup \{\#_L, \#_R\} \cup W_N)^*$

and h_3 is given by: $h_3(\bar{x}_a)=a$, $h_3(y)=y$ otherwise. Note that W_N is for the nonterminal alphabet and $x_a \in W_N$.

To define our type \propto^i , we shall use t sorts, namely $\sum_{s_1} \{s_1, s_2, ...\}$...s_t, with $\zeta(s_i) = \{\pi_i\}$, $i \neq 3$ and $\zeta(s_3)$ defined as the collection of all pairs $\pi=(h,R_3)$ where there exist $k\in\mathbb{N}-\{o\}$ such that h is given by: $h(\overline{x}_a) = a^k$, h(y)=y otherwise. Clearly taking POLY, = $\{s_1\} \cup \{s_3s_2+s_4s_2+...+s_ts_2\}$, we have

EQUAT , = { L(G) | G ∈ 4, }.

- (2). The construction of the first-order type α . It is a modified version of the type provided by Turing machines (see Appendix 1) which can be called "time-couting Turing machine type". The difference is that at each time one rewriting rule is applied a "countor" at the left end of the analysed word is increased by one. Now for a β -system, $Z^{MIN} = h (Y^{MIN} \cap Y^{MIN})$ and EQUAT_B = NTIME(f). REMARKS
- 1) Actually our construction shows that

EQUAT = Cut-off NTIME(f)

but in our cases, f being countable [HU] we have equality with NTIME(f).

- 2) If we restrict to deterministic TM we obtain exactly EQUAT $_{eta}$ =DTIME(f).
- 3) It is easy to see that in all cases $\ker \beta \in \underline{CS}$.

APPENDIX 3 (Sketch)

Some other first order types: CF, matrix, regular-control,scattered context, paralell CF, L-systems (Notation from [S1])

- 1) <u>CF</u>. In Example 2, in C2, we take $p=q=\lambda$.
- 2) Matrix CF. If $[x_1 \rightarrow w_1, \dots, x_t \rightarrow w_t]$ is a matrix rule, it can be simulated by the equation $x = \pi_1 \pi_0 \pi_2 \pi_0 \dots \pi_t \pi_0(x)$, π_0 is an Example 1.e. "nondeterministically chooses one nonterminal", and π_i is the π -function implementing the CF rule $x_i \rightarrow w_i$.
- 3) Regular-control CF. A special symbol rule and Lab(F) the set of labels for the grammar rules. Let $C \subset (Lab(F))^*$ be a regular set. If $r:x_r \longrightarrow u_r$ then π_r , which simulates the rule r is given by $\pi_r=(h_r,R_r)$ where $h_r(\overline{x}_r)=\{u_r\}$, $h_r(\underline{rule})=r$ rule and $h_r(x)=x$ otherwise; $R_r=(Lab(F))^*$. rule $V^*\overline{x}_rV^*$, $V=V_N \cup V_T$.

Two more π -functions complete the construction of the type: π_T and π_{init} . We have $\pi_T=(h_T,C \text{ rule } V_T^*)$, $\pi_{init}=(h_{init},\{x_0^*\})$, where $h_T(y)=x$ for $y \in Lab(F)$ $U\{\text{rule }\}$ and identity otherwise, $h_{init}(x_0)=\text{rule }x_0$.

- 4) Paralell CF. The π -function which simulates the rule $x \rightarrow u$, is $\pi = (h$,
- R), where $R=(((V_N \{x\}) \cup V_T)^* \overline{x})^*((V_N \{x\}) \cup V_T)^*$ and h is given by h(x)=u, h(y)=y otherwise.
- 5) <u>L systems</u>. For EOL systems (take, as usual, the following system of equations $\{X = h + h_{init}(X \cup X_0), Y = (X \cup X_0) \cap V_T^*\}$.

For ETOL systems we change the first equation as $X=(h_1+\ldots+h_t+h_{init})$ $(X \cup X_0)$. In the case of EIL systems, in the system of equations occurs a π -function of a new sort called "syncronization".

A table giving the sets POLY for each case ends our remarks:

TYPE	POLY	TYPE	POLY
CF	{s _T } ∪ (ss _o +)* ss _o	Reg-contr.	{s _T } U (ss ₀ +)* ss ₀
Matrix	$\{s_{T}\}\cup((ss_{o})^{*}+)^{*}$ (ss_{o})	Paralell	{s _T } U(ss _o +)* ss _o
EOL	{s+s _{init} } U {s _T }		
EIL	s _{init} + (s+)* s U {s _T }		
EIL	sinit+ssyn+(sso+)* sso U {sT}		

REFERENCES

- BERSTEL, J. "Transductions and context-free languages" Teubner(1979)
 CS CHOMSKY, N., SCHUTZENB RGER M.P. "The algebraic theory of context
 - free languages", in P.Braffort and D.Hirschberg (eds) Computer Programming and Formal Systems, pp.118-161, North Holland, (1963).

- CN COCHET, Y., NIVAT,M. "Une generalisation des ensembles de Dyc Israel J.of Math. 9 (1971)
- CM CULIK, K., MAURER, H.A. "On simple representations of language families" RAIRO (to appear)
- ER ENGELFRIET, J., ROZENBERG, G. "Fixed-point languages, equality languages and reprezentations of recursive enumerable languages" 19th FOCS, (1978)
- G GINSBURG, S. "Algebraic and automata-theoretic properties of formal languages" North Holland, Amsterdam (1975)
- H HARRISON, M.A. "Introduction to formal language theory" Addison-Wesley, Reading (1978)
- HU HOPCROFT, J., ULLMAN, J.D. "Introduction to Automata theory, Languages and Computation "Addison-Wesley, (1979).
- Il ISTRAIL, S. "A fixed-point theorem for recursive-enumerable languages and some considerations about fixed-point semantics of monadic programs" 6th Colloq.Automata.

 Languages and Programming, (1979) Lect.Notes Comput.
 Sci 71
- ISTRAIL, S. "Generalizations of Schützenberger-Ginsburg-Rice fixed-point theorem for context-sensitive and recursive-enumerable languages" Theor.Comput.Sci. (to appear)
- ISTRAIL, S. "Elementary bounded languages" Information and Contr. vol. 39, 2(1978), p. 177-191
- I4 ISTRAIL, S. "Grammatical types of grammar- and L-forms" (in preparation).
- IS ISTRAIL, S., SOIL, A. "Fixed-point theorems for Petri nets language" (submitted for publication)
- M MONIEN, B. "A recursive and a grammatical characterization of the exponential-time languages" Theor.Comp.Sci. 3 (1977)
- N NIVAT, M. "Transductions des languages de Chomschy" Anall.Inst. Fourier (1968)
- P PETERSON, J.L. "Petri nets", Computing Surveys, vol.9,no.3,(1977)
- R ROZENBERG, G. "Selective substitution grammars (towards a framework for rewriting systems) Part I: Definitions and examples" EIK (1977)
- S SALOMAA, A. "Formal languages" Academic Press (1973)