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A b s t r a c t .  Crystal lattices are infinite periodic graphs that occur nat- 
urally in a variety of geometries and which are of fundamental impor- 
tance in polymer science. Discrete models of protein folding use crystal 
lattices to define the space of protein conformations. Because various 
crystal lattices provide discretizations of the same physical phenomenon, 
it is reasonable to expect that there will exist "invariants" across lat- 
tices that define fundamental properties of the protein folding process; 
an invariant defines a property that transcends particular lattice formu- 
lations. This paper identifies two classes of invariants, defined in terms 
of sublattices that are related to the design of algorithms for the struc- 

t u r e  prediction problem. The first class of invariants is used to define a 
master approximation algorithm for which provable performance guar- 
antees exist. This algorithm can be applied to generalizations of the 
hydrophobic-hydrophilic model that have lattices other than the cubic 
lattice, including most of the crystal lattices commonly used in protein 
folding lattice models. The second class of invariants applies to a re- 
lated lattice model. Using these invariants, we show that for this model 
the structure prediction problem is intractable across a variety of three- 
dimensional lattices. It turns out that these two classes of invariants are 
respectively sublattices of the two- and three-dimensional square lattice. 
As the square lattices are the standard lattices used in empirical protein 
folding studies, our results provide a rigorous confirmation of the abil- 
ity of these lattices to provide insight into biological phenomenon. Our 
results are the first in the literature that identify algorithmic paradigms 
for the protein structure prediction problem that transcend particular 
lattice formulations. 

1 Introduction 

Crysta l  latt ice models  are vehicles for reasoning about  the protein folding phe- 
nomenon  th rough  analogy. Crysta l  lattices are infinite periodic graphs tha t  are 
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generated by translations of a "unit cell" that  fill a two or three-dimensional 
space. In polymer science many important results have been obtained through 
the use of lattice models [4, 9]. In the context of protein folding, lattices provide 
a natural discretization of the space of protein conformations. The sequence of 
amino acids that  defines a protein can be viewed as a path labeled with amino 
acids on vertices. A conformation of a protein is a self-avoiding embedding of 
this path into a lattice, where each vertex of the path is mapped to a vertex of 
the lattice and edges of the path are mapped to edges of the lattice. With every 
conformation we can associate an energy value using rules defined by the model, 
which take into account the neighborhood relationship of the amino acids. The 
central focus of this paper is the design of algorithms that  construct a confor- 
mation of minimal or near-minimal energy for a given sequence. 

Of particular interest here is the design of algorithms that  can be applied to 
a variety of lattice models. Results that  transcend particular lattice frameworks 
are of significant interest because they can say something about the general 
biological problem with a higher degree of confidence. In fact, it is reasonable to 
expect that  there will exist invariants across lattices that  fundamentally relate 
to the protein folding problem, because lattice models provide discretizations of 
the same physical phenomenon. However, the identification of such invariants 
has not been previously addressed. 

This paper identifies invariants across lattice models that can be described 
in terms of sublattices. These invariants give the ability to address the follow- 
ing question. Given an energy formula for crystal lattices, does there exist an 
algorithm that  takes a sequence and a lattice and produces a conformation with 
minimal energy? If such an algorithm exists, it may provide valuable insight 
into the protein folding process because it captures essential features of protein 
folding. 

We address this question in two ways. First we design performance guaran- 
teed approximation algorithms for protein folding in the hydrophobic-hydrophilic 
model. This model categorizes amino acids as hydrophobic (nonpolar) or hy- 
drophilic (polar), and the energy of a conformation is equal to the number of 
hydrophobic-hydrophobic contacts. The invariant we use to design a "master" 
approximation algorithm employs special sublattices which we call latticoids. 
Latticoids impose a structure in which a skeleton of hydrophobic contacts can 
be constructed, thereby leading to folding algorithms whose performance can 
be analyzed. In the particular case of the square two-dimensional lattice, the 
latticoid describes the structure used in the approximation algorithms described 
by Hart and Istrail [8]. 

We prove that  our master approximation algorithm has performance guar- 
antees for a class of lattices that  includes most of the lattices commonly used 
in simple exact protein folding models, e.g. two- and three-dimensional square 
lattice [4, 7, 12], the diamond (carbon) lattice [13], the face-centered-cubic lat- 
tice [2] and the 210 lattice used by Skolnick [14]. Furthermore, this class encom- 
passes a large number of other lattices studied in crystallography. Our main theo- 
rems state that  latticoids of the two-dimensional square lattice can be embedded 
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into all of these lattices, and therefore, every lattice in the class is approximable 
in linear time. 

Second, we prove that  lattice models related to those considered by Unger and  
Moult [15] are NP-complete. The lattice model considered by Unger and Moult 
uses a distance-related energy formula between an unbounded number of amino 
acid types. Our results extend their NP-completeness argument to any three- 
dimensional lattice into which a certain type of sublattice can be embedded. All 
of the three-dimensional lattices mentioned above fall into this class. 

2 Lattice Models for Protein Folding 

Lattice models for protein folding can be distinguished by at least five properties: 

1. An alphabet of types of amino acids that  the model considers; 
2. The set of protein instances represented as sequences from this alphabet; 
3. An energy formula specifying how the conformational energy is computed; 
4. Parameters for the energy formula; 
5. A crystal lattice that  provides a discretization of the conformation space. 

For example, the hydrophobie-hydrophilic (HP) model [3] can be described as 
follows. The alphabet used in an HP model is A = {0, 1}, and the set of protein 
instances is the set of binary sequences ~ = {0, 1} +. Each sequence s E a is the 
(hypothesized) hydrophobic-hydrophilic pat tern of a protein sequence, where 1 
represents a hydrophobic amino acid, and 0 represents a hydrophilic amino acid. 
We will refer to s as a protein instance. Contact energies are used in this model, 
so the energy formula is an energy matrix,  g. The energy matr ix  is indexed 
by the alphabet symbols, g = (e(a, b))a,~e A. For HP models, e(a,b) = - 1  if 
a - b = 1, and e(a, b) -" 0 otherwise. 

We consider protein folding models on a large class of crystal lattices, in- 
cluding the square lattice. Crystal lattices are infinite periodic graphs that  are 
generated by translations of a "unit cell" that  fill a two- or three-dimensional 
space. A unit cell contains a finite graph that  is connected to neighboring unit 
cells. Examples of crystal lattices are shown in Figure 1. 

One can interpret a protein sequence s = sl...sm as an m-vertex node-labeled 
path, where for 1 < i < m, node i is labeled with si. The path has m -  1 edges 
that  are called bonds. A conformation C of a protein sequence s in a lattice L is 
a path in the lattice in which the protein sequence is embedded, i.e., the protein 
vertices are mapped one-to-one to lattice points, and protein bonds are mapped 
to the corresponding lattice edges. The energy of a conformation of the protein 
sequence s in L can be computed using distances in the lattice. For example, 
in the HP model the energy is a function of the number of "contact edges." A 
contact edge is a lattice edge that is not a protein bond (in the embedding) 
but has both endpoints labeled. In HP models, contact edges with Is at their 
endpoints have weight - 1  while all other contact edges have weight 0. 

The native conformation of a protein is the conformation that  has biological 
function. According to the Thermodynamic  Hypothesis the native conformation 
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(a) (b) (e) 

Fig. 1. Examples of crystal lattices: (a) cubic, (b) diamond, and (c) cubic with 
planar diagonals. 

of a protein is the conformation with the minimum energy among the set of all 
conformations. Consequently, given a sequence s and a lattice model, the pro- 
tein folding structure prediction problem is to find a native conformation of s 
in L. It is unknown whether this problem is NP-complete for HP models, but 
a few related models have been shown to be NP-complete [5, 10, 11, 15]. Fur- 
thermore, Hart and Istrail [8] have demonstrated that performance guaranteed 
approximation algorithms exist for HP models on square and cubic lattices. 

Let ZL(S) be the energy of the conformation generated for protein instance 
s on lattice L with by algorithm EL, and let OPTL(S) be the energy of the 
optimal conformation of s on L. A standard performance guarantee used for 
approximation algorithms is the asymptotic performance ratio R~176 [6]. If 
R~176 = r, then as Z L is applied to larger protein instances, the value of 
solutions generated by ~L approaches a factor of r of the optimum. Here, "large" 
protein instances have low conformational energy at their native state, which 
may be independent of their length. Since ZL(S) < 0 and OPTL(S) < O, both 
of these ratios are scaled between 0 and 1 such that a ratio closer to 1 indicates 
better performance. 

3 P r o t e i n  S e q u e n c e  S t r u c t u r e  i n  t h e  H P  M o d e l  

The protein folding models that we first analyze are HP models. HP models 
abstract the hydrophobic interaction process in protein folding by reducing a 
protein to a heteropolymer that represents a predetermined pattern of hydropho- 
bicity in the protein. This is one of the most studied lattice models for protein 
folding, and despite its simplicity, the model is powerful enough to capture a 
variety of properties of actual proteins [4]. 

This section summarizes key definitions concerning the structure of protein 
instances from Hart and Istrail [8]. Let s - S l , . . . ,  srn be a protein instance, 
si e {0, 1}. Let l(s) equal the length of the sequence s. Let Mma=(S) equal the 
length of the longest sequence of zeros in s, and let Mrnin(s) equal the length of 
the shortest sequence of zeros in s. Finally, let E(s) equal the number of adjacent 
elements in the sequence, sj and Sj+l for which sj = 1 and sj+l = 1. 
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An instance s can be decomposed into a sequence of blocks. A block bi has 
the form bi -" 1 or bi = 1Z i~ l . . .Z ih l ,  where the Zi~. are odd-length sequences 
of O's and h >_ 1. A block separator zi is a sequence of O's that  separates two 
consecutive blocks, where l(zi) >_ 0 and l(zi) is even for i = 1 , . . . ,  h - 1. Thus 
s is decomposed into zoblzl . . ,  bhZh. Since l(zi) >_ O, this decomposition treats 
consecutive l ' s  as a sequence of blocks separated by zero-length block separators. 
Let N(bi) equal the number l ' s  in hi. Thus the sequence 

010101 1 1 1010100001010101 
bl b2 bs b4 b~ 

can be represented as l(z) -- (1, 0, 0, 0, 4, 0) and N(b) = (3, 1, 1, 3, 4). 
It is useful to divide blocks into two categories: z-blocks and y-blocks. For 

example, let xi - b2i and let yi = b2i-1. Let Bx and B~ be the number of 
2:-blocks and y-blocks respectively. Further, let X -- X(s) - ~ 1  N(xi) and 

y v(s) B~ = = ~i=1 N(yl). Let T~(s) equal the number of endpoints of s that  are 
l ' s  in z-blocks, and let Tu(s ) equal the number of endpoints of s that  are l ' s  in 
y-blocks. We assume that  the division into z- and y-blocks is such that  X <_ Y 
and if X = Y then Tx(s) >_ Ty(s). For example, the sequence 

010101 1 1 1010100001010101 

yo ~0 Yl ~1 Y2 

can be represented as zoYozlzoz2ylz3zlz4y2zb, where l(z) = (1,0,0,0,4,0) ,  
Y(z)  = (1, 3), and Y(y)  = (3, 1, 4). 

A superblock Bi is comprised of sequences of blocks as follows: 
Bi = bi,zi,...zi~_,bih. Let N~(Bi) equal the sum of N(bj), where bj are z- 
blocks in B~. Let N~(Bi) equal the sum of N(b ), where bj are y-blocks in Bi. 
Finally, let N(Bi) = N~(Bi) + Nu(Bi ). 

4 Master Approximation Algorithms for the HP Model 

We now describe two paradigms for master approximation algorithms for the HP 
model. These master approximation algorithms are distinguished by properties 
of the lattices to which they apply. The first paradigm captures two aspects of the 
protein folding algorithms described by Hart and Istrail [8]: (1) the selection of a 
folding point that  balances hydrophobicity and (2) the skeleton of contact edges 
that  forms the hydrophobic core. We call this the bipartite master approximation 
algorithm because it is applicable to crystal lattices that  can be described as a 
bipartite graph. These crystal lattices have the property that two l 's  can be 
endpoints of a contact edge only if there is an even number of elements between 
them [8]. The second paradigm describes the nonbipartite master approximation 
algorithm, which is applicable to lattices that  cannot be described as a bipartite 
graph. These graphs have the property t h a t  they contain odd cycles. 
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4.1 The Bipartite Master Approximation Algorithm 

Consider the following definitions. 

Definition 1 Given a path p in a lattice L from a to b, let dp(a, b) be the length 
of p. A path p from a to b is polynomial evenly extensible if there exist paths 
Pk for every k E Z >~ such that dpk(a,b) = dp(a,b) + 2k and there exists an 
polynomial time algorithm that given p and k constructs Pk. The collection of 
the paths of an polynomial evenly eztensible path p is called the extension of p 
in L. 

Definition 2 Given polynomial evenly extensible paths p from a to b and q from 
c to d, we say that p and q are extensibly disjoint i f  their extensions are vertex 
disjoint. 

Definition 3 A bipartite latticoid, L, of L is an infinite graph that contains an 
infinite sequence of contact edges (ai, hi) with the following properties: 

- There is an polynomial evenly extensible path p~ from ai to ai+l and poly- 
nomial evenly extensible path p~ from bi to bi+l, 

- There is a constant x > 0 such that for every i and j ,  dp~(ai,ai+l) = 
dp~(bj, bj+l) = 2~, and 

- The set of paths {p~,pb l i = 1 , . . . }  are mutually extensibly disjoint. 

The dilation of the bipartite latticoid is A L = ~. 

Figure 2 illustrates the structure of a bipartite latticoid. Because the paths 
Ai are evenly extensible, the paths Bi  and Ci can be constructed in polynomial 
time. Furthermore, the vertices in {At, Bi, Ci} and {Aj,  B j, C j }  do not intersect. 

The bipartite master approximation algorithm takes a bipartite latticoid L 
and selects a single folding point (turning point) that divides a protein instance 
into a y-superblock B p and an x-superblock B". The folding point is selected 
using "Subroutine 1" from Hart and Istrail [8]. Subroutine 1 selects a folding 
point that balances the hydrophobicity between the x-blocks and y-blocks on 
each half of the folding point. The following lemma describes the key property 
of the folding point that is selected. 

L e m m a  1 ( [8], L e m m a  1). The folding point selected by Subroutine 1 parti- 
tions a protein instance s into two superblocks B ~ and B"  such that either 

Ny(B' )  > r(Y + 1)/2] and N=(B") > [X/2] 
o r  

Ny(B')  > rY/2] and N=(B") > [(X + 1)/2].  

After selecting the folding point, the conformation of the two superblocks is 
dictated by the bipartite latticoid/~. The bipartite latticoid specifies the place- 
ment of the contact edges between the superblocks, as well as the conformation 
of the loops within each superblock. This generalizes the notion of "normal form" 
that was used to describe the approximation Mgorithms in Hart and Istrail [8]. 
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Fig. 2. A symbolic illustration of the structure of bipartite latticoids. 

Decomposition into x- and y-blocks requires a single pass through the protein 
instance. Subroutine 1 requires a single pass through the sequence of blocks, 
which is no longer than the length of the protein instance. The construction 
of the final conformation requires polynomial time to Create the paths for the 
zero-loops. Thus the computation required by Algorithm +4s is polynomial. 

Let .As the energy of the final conformation generated by Algo- 
rithm .4 L. The performance of Algorithm +4s can be bounded as follows. 

Lemma 2. 

I 1+, 
Let ~(L) be the maximum degree of all vertices in L. Since L is a crystal 

lattice generated by a unit cell, 8(L) is finite. It follows from the fact that L 
is bipartite that OPTL(s) < -(~(L) - 2)X(s) - 2. Proposition 1 presents the 
asymptotic ratio for Algorithm .As 

Propos i t ion  1 R~176 > 1/(2AL(~(L ) - 2)). 

Proof. We know from Lemma 2 that 

Ix(s)] 
Az'(s) < - / 2AZ, / + 1. 
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Now OPTL(s) < -(6(L)  - 2)X(s) - 2, so 

AL(s) -[2aL] +1 

_x(.) 
sa t + 1 X(s)  - 2As 

>- -(6(L)  -2 )X(s )  - 2 = 2AL(5(L ) - 2)X(s) + 4A t"  

(i) 

(2) 

For s E SLN, - ( 6 ( L ) -  2)X(s) - 2 < N, so X(s) > - ( N + 2 ) / ( 5 ( L ) -  2). 
Since Equation (1) is monotonically increasing for X(s)  > O, we have 

- ( N  + 2)/(6(L) - 2 ) -  2AL _ N + 2 -  4A L +2AL6(L) 

--2AL(N + 2) + 4 A  L 2AL(6(L ) - 2 )g  

S O  

l aL( ) > 

N + 2 -  4AL + 2AzS(L) RN(AL) >_ 
2AL(6(L ) - 2 )g  

and 

R~176 =sup{r  [ RN(Ai,) > r, N E Z} > lim N + 2 - 4 A  L + 2AZ6(L) 
- -  - -  N - - - * c x : )  2AL(5(L ) - 2 )g  

= 1/(2nt( (L) - 2)). 

To illustrate the application of the bipartite master approximation algorithm, 
consider its application to the diamond lattice, which has previously been used 
in lattice models for protein folding [13]. Figure 3 shows the embedding of a "di- 
lated" square lattice into a plane of unit cells for the diamond lattice. Figure 3a 
illustrates a bipartite latticoid of 1,0 that can be embedded into the diamond 
lattice. Figure 3b demonstrates this embedding. Dashed and solid lines between 
vertices in each unit cell indicate the edges of the diamond lattice that are used 
to embed a square lattice for which one dimension is dilated to length two. 
Edges not used for this embedding are omitted. The solid lines illustrate a con- 
formation of a protein on this lattice that the bipartite master approximation 
algorithm would generate. Now 6(L) = 4 for the diamond lattice L. It follows 
from Proposition 1 that R~~ = 1/8. 

4.2 The  Nonb ipa r t i t e  Mas te r  Approx ima t ion  A lgo r i t hm 

This section briefly sketches the details of the nonbipartite master approxima- 
tion algorithm (full details will be given in the full paper). Figure 4 illustrates 
the structure of a nonbipartite latticoid. The hydrophobic residues in the protein 
sequence are placed along a path of ai that are in contact. The paths Ai are ex- 
tensible, which implies that in polynomial time they can be extended to any even 
or odd length beyond some minimal length. Furthermore, the paths {Ai, Bi, Ci} 
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F i g .  3. I l l u s t r a t ion  of  the  e m b e d d i n g  of  a b ipa r t i t e  l a t t i co id  f r o m  Lo in to  a 
d i a m o n d  la t t ice:  (a) the  b ipa r t i t e  la t t ico id ,  a n d  (b) the  e m b e d d i n g  into the  
d i a m o n d  la t t ice .  
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a i a i+ l  a i+2 

Fig. 4. A symbolic illustration of the structure of nonbipartite latticoids. 

and {A j, B j, Cj}  are extensibly disjoint. Note that because the hydrophobic- 
hydrophobic contacts are constructed along a path, the extensible paths may lie 
on either side of this path. 

For a nonbipartitate latticoid L, the dilation A L is half of the minimal length 
of a path from ai to ai+l. Given this, we can prove the following performance 
guarantee for a nonbipartite master approximation algorithm B on lattice L with 
latticoid L. 

P ropos i t ion  2 R~176 >_ 1/(2AL(~(L ) - 2)). 

5 A C o m p l e x i t y  T h e o r y  f o r  P r o t e i n  F o l d i n g  o n  B i p a r t i t e  

C r y s t a l  L a t t i c e s  

In this section we describe a framework for analyzing the design of efficient 
approximation algorithms with provable performance guarantees on bipartite 
lattices. The unifying theme is polynomial approximability asymptotic within 
a constant of optimal. This theory defines polynomial embedding reductions 
from one bipartite lattice to another, and relates the approximability on the 
first lattice to the approximability on the second. Further, this theory includes a 
notion of completeness, which defines the "hardest" members in the class. While 
we restrict our discussions to bipartite lattices, these notions naturally generalize 
to nonbipartite lattices. 

Definitions A lattice L is polynomial kernel-approximable ffthere is a polynomial 
algorithm .4 and constants an,/3L E Z >~ such that for all protein instances s, 
A(s) = --~LX(S)+ ilL. A class of lattices ~: is polynomial kernel-approximable if 
for every L E ~:, L is polynomial kernel-approximable. Let P K A L  be the class of 
polynomial kernel-approximable lattices. A lattice L is polynomial approximable 
if there is a polynomial algorithm ,4 and a constant v L E R >0 such R ~176 (,4) > T L . 

A class of lattices s is polynomial approximable if for every L E s L is polynomial 
approximable. Let PAL be the class of polynomial approximable lattices. A 
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sublattice L of L is a subgraph of L that is obtained by removing edges and 
vertices from L. A particular sublattice is the latticoid. 

While we aspire to a framework for general approximability for all lattices, 
our current framework applies to kernel-approximability on bipartite lattices. 

Lemma3.  I l L  is polynomial kernel-approximable, then there exists an polyno- 
mial algorithm ,4 and constant CL such that R~176 > Ct,. 

Corol la ry  1 I f  L is a sublattice of a lattice L and L is polynomial kernel- 
approximable, then L is polynomial kernel-approximable. 

Defini t ion 4 A core of a lattice L is a set of sublattices D(L) = {]fl, L2,. . .},  
where D(L) is finite or countably infinite. 

Folding algorithms in a lattice Lt can be transferred to folding algorithms 
in another lattice L2, a folding "reduction", if the sublattice used in L1 by 
the approximation algorithm can be embedded in L2. This reduction can be 
polynomial in the sense that each unit cell is given by a finite description, and 
the symmetries in the crystal lattice are with respect to the neighboring cells 
(and thus also of finite description). This notion of reduction is formalized in the 
following definition. 

Definition 5 A polynomial embedding reduction of Lt to L2 via core D(L1) 
is a polynomial time function r : L1 --* L2 such that: (1) L1 is a sublattice in 
D(L1), (2) L2 is a sublattice of L2, and (3) r  is lattice isomorphic to L2 (i.e. 
graph isomorphic). We say that L1 is embedded into L2. I f  there is a polynomial 
embedding reduction from L1 to L2 via core D(L1), we write L1 ~D(L1) L2. 

Defini t ion 6 A lattice L with core D( L) is polynomial core kernel-approximable 
if D(L) C P K A L .  

L e m m a 4 .  I f  a lattice L1 with core D( L1) is polynomial core kernel-approximable 
and L1 ~D(Z.1) L2, then L~ is polynomial kernel-approximable. 

The central concept of this theory is the notion of completness defined as 
follows. 

Definition 7 Let L be a class of lattices. A lattice L is called L-complete via 
core D(L) if (1) L E s and (2) VL' E s L (xO(L) L'. 

Similar to the theory of NP-completness, if any member of the complete set 
is core-approximable then we can design polynomial approximation algorithms 
for all lattices in the class. 

Theorem 1 Let L be a lattice with core D( L). I lL  is s and polynomial 
core kernel-approximable then L C_ P K A L  C PAL. 
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6 A p p r o x i m a b l e  L a t t i c e s  f o r  t h e  H P  M o d e l  

In this section we describe a class of lattices s for which performance guaranteed 
approximation algorithms exist. s is a broad class of lattices that  includes many 
of the lattices previously used in lattice models for protein folding. Further, it 
includes many other important crystallographic lattices. This result confirms 
that  performance guaranteed approximability is not an artifact of the square 
and cubic lattices. Further, this lattice independence results suggests that  the 
algorithmic mechanisms used to generate these approximate conformations may 
play a role in biological systems. 

Our description of s is split into the following sets of lattices: 

1. Bravias lattices, which contain all points R of the form R = n l a x  -t- n2a2 + 
n3a3, where ni are integers and ai are linearly independent vectors in R '~ [1]. 

2. The planar triangular lattice, which tiles the plane with equilateral triangles, 
and the hexagonal close packed crystal structure. 

3. The diamond lattice and the flourite structure. 
4. The hexagonal lattice, and bipartite lattices into which the hexagonal lattice 

can be embedded. This is significant since there are a large number of crystal 
lattices for which the hexagonal lattice can be embedded. The catalog of 
lattices in Wells [16] contains many three-dimensional lattices into which 
the hexagonal lattice can be embedded. 

5. The "210 lattice" that Skolnick and Kolinkski [14] use to place a-carbons. 
In this lattice, the a-carbons are connected by the 3D generalization of the 
"knight's walk" in chess. 

The proof that  these lattices are approximable uses the complexity theory 
outlined in the previous section. Although 1: %. P K A L ,  it is unclear whether 
this relation is strict. s certainly spans a broad class of crystal lattices. Fur- 
thermore, we believe that  it contains many biologically relevant crystal lattices. 
For example, it contains most of the lattices previously used in protein folding 
lattice models [2, 4, 7, 12, 13, 14]. 

7 H a r d n e s s  R e s u l t s  

In this section, we generalize the NP-hardness proof by Unger and Moult [15] to 
show that  it is applicable for a variety of lattices. Let L be a three-dimensional 
crystal lattice and let Z be the set of integers. Suppose that  S is a protein instance 
represented by a sequence of amino acids s l , .  �9  sn.  For a conformation of S, 
suppose the coordinate of si is (x l ,  yi,  z l ) .  Then d~j = [x~- xj[ ,  di y = l Y ~ - Y j  [, 
and d.*. ,~ -- Izi - zj I. We can define a lattice-specific protein folding problem as 
follows. 

L - P F  
Instance:  A sequence S = ( s l , . . . , s n ) ,  si E A C Z; a positive function 
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g : [0, n] 3 ~ 1%+; a matrix C 6 Z mxm, m = IAI; B e Z. 
Ques t ion"  Is there an embedding of S in L such that  

n 

i=1 j#i  

Unger and Moult [15] demonstrate that  L-PF is NP-complete for the lattice 
L defined by the unit cell in Figure lc. The NP:completeness of L-PF problems 
can be generalized to a variety of other lattices by noting a key property of the 
conformations used to construct their proof. The reduction from OLA used by 
Unger and Moult requires that  certain residues be placed along a line parMlel to 
the z-axis in the optimal conformation. Further, it must be possible to construct 
vertex-independent paths between these residues for any permutation of their 
ordering along this line. 

A second class of invarant patterns in lattices occurs in the context of this 
type of NP-completeness argument. We can abstract the type of structure needed 
for the reduction as a sublattice. Using ideas similar to the previous invariants, we 
can then construct NP-completeness reductions for a variety of crystal lattices. 
Figures 5 and 6 illustrate the concept of this class of invariants on two lattices: 
the cubic and diamond lattice. The numbers in these figures indicate the amino 
acids that  are placed collinear parallel to the z-axis. 

Our analysis uses a reduction from the Optimal Linear Arrangement Problem 
(OLA) [6]: 

O L A  
I n s t a n c e :  A graph G = (V, E); a positive integer B. 
Q u e s t i o n :  Is there a one-to-one function f : V --* {1, 2 , . . . ,  IVI} such 
that  

If(u) - f(v)l _< B? 
{u,v}~E 

T h e o r e m  2 Let L be a Bravais, diamond, flourite or hexagonal close packed 
lattice. Then L -PF  is NP.complete. 

Proof. We show that  if s is the cubic lattice then L-PF is NP-complete. The 
proof follows similarly for the other crystal lattices. 

To transform an instance of OLA to s  we construct a protein instance 
as follows. Let A = V [.J{z} be a set of amino acids ai that  correspond to the 
vertices in V as well as a "dummy" amino acid z. Let fi(al) = f (v i ) ,  for ai 6 A 
and vi 6 V. Consider 

S = alzxz.j.zza2zzz .:.zz...zzz...zzan. 
4n+3 4n+3 4n+3 

The costs are 
I ] ( s i ) -  ](sj)[  if s~,sj 6 A 

Cs~'si = 0 otherwise 



301 

Fig.  5. The conformational invariant needed for the cubic lattice. 

We use the same parameter  B to bound the energy as in the OLA instance. The 
distance function g is given by 

{d~./2 if d .y z *3' diJ = 0 and 
g(dS, di y , dZj) = d~j IS even 

(B -~- X)/Cmin otherwise 

where Cmin is the smallest nonzero cost in C. 
As in Unger and Moult 's  formulation, small energies are only possible if the ai 

lie along a line parallel to the x-axis in the three dimensional lattice. The changes 
made to their reduction further restrict the opt imal  conformation to have the 
ai lie at an even distance along the line. Figure 5 illustrates the structure of 
conformations that  can assume low energy. 

It  follows that  each of the ai so configured can be connected by an even- 
length pa th  of xs. Unger and Moult 's  arguments  suffice to demonstrate  tha t  the 
optimM conformation is found if and only if OLA is solved, with the observation 
that  the additional xs added to the sequence S guarantee that  the ai can be 
connected when spaced apart  in this fashion. [] 
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k/ 
Fig. 6. The conformational invariant needed for the diamond crystal lattice. The 
break in the chain shortens the diagonally oriented loop. 
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