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Reconstruction Problem: Upper Bounds

for Recombination and Homoplasy

FUMEI LAM, RYAN TARPINE, and SORIN ISTRAIL

ABSTRACT

One of the central problems in computational biology is the reconstruction of evolutionary
histories. While models incorporating recombination and homoplasy have been studied
separately, a missing component in the theory is a robust and flexible unifying model which
incorporates both of these major biological events shaping genetic diversity. In this article,
we introduce the first such unifying model and develop algorithms to find the optimal
ancestral recombination graph incorporating recombinations and homoplasy events. The
power of our framework is the connection between our formulation and the Directed Steiner
Arborescence Problem in combinatorial optimization. We implement linear programming
techniques as well as heuristics for the Directed Steiner Arborescence Problem, and use our
methods to construct evolutionary histories for both simulated and real data sets.

Key words: recombination, phylogeny, homoplasy, genetic variation, haplotypes, sequence

analysis.

1. INTRODUCTION

One of the central problems in computational biology is the problem of reconstructing evolu-

tionary histories. Many variants of the problem have been studied, but with the growing repositories of

variation data, there is increased demand for new tools for analysis. Prior studies have established that in

order to accurately represent complete evolutionary histories, the underlying model must incorporate hy-

bridization events, which correspond to the mixing of genetic material of ancestral sequences passed to their

descendents. Nordborg (2001) states, ‘‘In the era of genomic polymorphism data, the importance of modeling

recombination can hardly be overemphasized.’’ Another important set of events to consider in the con-

struction of evolutionary histories are homoplasy events, which extend beyond the infinite sites model to

include back and recurrent mutations.

The goal of our work is to create a model for constructing evolutionary histories that extends current

models by incorporating both evolutionary processes of recombination and homoplasy. Such analyses are

applicable to other research, including the study of linkage disequilibrium and recombination hotspots, and

the search for genetic predictors of disease. The mathematical and computational challenge is to develop

methods that are robust and rigorous.
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2. SINGLE EVENT MODELS

In the phylogenetic tree reconstruction models under consideration, the input is a matrix with rows

representing individuals (e.g., haplotype data) and columns representing sites. Throughout this article, we

will assume that the input is binary, with values 0 and 1. Important examples of such instances arise from

single nucleotide polymorphism (SNP) data; a SNP is a position in the genome with at least two different

bases present in the population, each with a frequency above a certain threshold. It is the most abundant

type of polymorphism and in practice is found to be largely binary. A vast amount of such data has been

collected in the International HapMap project of the International HapMap Consortium (2005).

The two important evolutionary forces we consider in this work are mutation and recombination. A

mutation is a change in a single site of a sequence, either from value 0 to 1 or from 1 to 0. In population

genetics, the infinite sites model assumes that at most one mutation occured at each site throughout

evolutionary history. A phylogenetic tree is a directed tree with each edge labeled by an integer between 1

and m and each node labeled by a binary sequence. If edge e¼ (u, v) is labeled by site i, then the sequence

v can be obtained from the sequence u by changing the value at site i of u from value x to value 1� x. We

denote this by v¼ u.i. A phylogenetic tree T displaying input I satisfies the property that each row in I labels

a node in tree T. In what follows, we interchangeably refer to a node in the ancestral recombination graph

(ARG) and the binary sequence labeling it. If binary input I can be displayed in a phylogenetic tree such

that each label from 1, 2, … m labels at most one edge, the resulting tree is called a perfect phylogeny.

The other event we consider is meiotic, or crossover recombination, which is one of the dominant forces

impacting genetic diversity. A crossover recombination occurs when two chromosomes of equal length

exchange material to form a descendent, which contains a prefix of the first chromosome and a suffix of the

second. In this work, the term recombination refers to such events.

It is well known that a set of equal length binary sequences I can be displayed in a perfect phylogeny if

and only if it passes the four gamete test (Gusfield, 1991, 1999). Much of the current haplotype data fails

the perfect phylogeny test and thus cannot be explained by a perfect phylogeny. In the following sections,

we discuss two previously studied models for reconstructing evolutionary histories for such data: ancestral

recombination graphs and imperfect phylogenetic trees.

2.1. Ancestral recombination graphs

An ancestral recombination graph or phylogenetic network is a directed acyclic graph in which nodes

correspond to binary sequences of length m, and edges correspond to either mutation or recombination

events. There is a unique root vertex with indegree 0, and every node other than the root has indegree either

one or two. Nodes with indegree two are recombination nodes; if e is an edge that is directed into a

recombination node, then e is a recombination edge. If s is a recombination node, then it can be obtained by

its two parents by combining a prefix of one parent with a suffix of the second parent. Otherwise, e is a

mutation edge and is labeled by a site i 2 f1, 2, . . . mg; for a mutation edge (u, v) labeled by site i, the

sequences satisfy v¼ u.i. A homoplasy event occurs if there exists a site i with two or more edges labeled

by i. Homoplasy events are either recurrent mutations (x 2 f0, 1g mutates to 1� x two or more times at a

site i) or back mutations (in which site i mutates from x 2 f0, 1g to 1� x and then from 1� x back to x). An

ARG G displays input I if there is a node in G corresponding to each row in I. The following problem has

been the subject of intensive research (Bordewich and Semple, 2007; Griffiths and Marjoram, 1997; Hein,

1990, 1993; Hudson and Kaplan, 1985; Lyngs et al., 2005; Meyers and Griffiths, 2003; Song et al., 2005;

Song, 2006; Song and Hein, 2004; Wang et al., 2001).

Ancestral Recombination Graph (ARG) Reconstruction Problem: Given a set of n binary sequences I each of

length m, find the ancestral recombination graph displaying I with the minimum number of recombination nodes

Rmin(I) under the infinite sites model.

This problem was first considered by Hudson and Kaplan (1985). As this problem is APX-hard (and

therefore NP-hard) in the general case (Bordewich and Semple, 2007), there has been increased focus to

develop efficient methods to compute lower bounds for Rmin(I). Meyers and Griffiths (2003) develop

methods to obtain global lower bounds by combining local lower bounds. Song and Hein (2004) introduce

lower bounding methods based on set theoretic conditions and use tree operations to generate optimal

ARGs. Song et al. (2005) compute both lower and upper bounds on the minimum number of recombi-

nations needed to construct the evolutionary history. Their lower and upper bounds are shown to often
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coincide in practice, and in such cases, their algorithm solves the parsimonious ARG reconstruction

problem to optimality.

2.2. Imperfect phylogenetic trees

The second method to address sequences that cannot be displayed on a perfect phylogeny is the imperfect

phylogeny reconstruction method. An imperfect phylogeny is a phylogenetic tree that violates infinite sites

by allowing back and recurrent mutations. The following problem has also been the subject of a vast

literature (Agarwala and Fernandez-Baca, 1994; Bandelt, 1991; Damaschke, 2004; Ganapathy et al., 2003;

Semple and Steel, 2003; Sridhar et al., 2006, 2007b).

Imperfect Phylogeny Reconstruction Problem: Given a set of n binary sequences I each of length m, find a

phylogenetic tree explaining I with the minimum number of homoplasy events.

Because the problem is NP-hard in general (Foulds and Graham, 1982), an important problem is to isolate

parameters that capture the complexity of the problem in the hope of finding an algorithm that is polynomial

in the remaining parameters. In Blelloch et al. (2006) and Sridhar et al. (2007a), it was shown that for binary

sequences, the imperfect phylogeny problem can be solved in fixed parameter tractable time in parameter q,

where q denotes the number of homoplasy events needed to explain the input sequences.

3. HIERARCHY OF IMPERFECT ANCESTRAL RECOMBINATION GRAPHS

While models for recombination and imperfection have been studied separately, a missing component in

the theory of constructing evolutionary histories is a robust unifying model incorporating both phenomena.

The following characteristics should be satisfied by any model incorporating both recombination and

homoplasy events.

1. Robustness: incorporates both single-event models (ARG reconstruction and imperfect phylogeny

reconstruction) as special cases

2. Flexibility: model input incorporates a weighted set of parameters based on information about the

relative rates of recurrent mutation and recombination events for the input sequences.

3. Computational effectiveness: allows algorithms on real data

An imperfect ancestral recombination graph on input I is an ARG displaying I which allows homoplasy

events. To satisfy Property (2), we would like to be able to input cost parameters associated to the mutation

and recombination events obtained from separate analysis. The weighted cost of an imperfect ARG A is the

sum of the costs associated to the recombination and mutation events occuring in A. The imperfect ARG

reconstruction problem is the following.

Imperfect Ancestral Recombination Graph (Imperfect ARG) Reconstruction Problem: Given a set of n

binary sequences I each of length m, a common ancestral sequence r, and weights w, find an Imperfect ARG

displaying I with minimum weighted cost.

This is an important problem, as it combines the two major biological events shaping genetic diversity

into a single framework. By choosing a sufficiently large value for the cost of recombination, the problem

includes the imperfect phylogeny reconstruction problem as a special case. Similarly, by choosing a

sufficiently large value for the cost of mutation, the problem includes the ARG reconstruction problem as a

special case. It follows that the imperfect ARG reconstruction problem is also APX-hard (and therefore

NP-hard) in the general case.

Our contribution is to develop algorithms for the imperfect ARG reconstruction problem. Moreover, our

model has the advantage that it uses the same representation for both recombination and mutation events,

rather than using cycles to represent recombination and edges to represent mutation. We believe this

uniform treatment of the two events is advantageous in the development of algorithms.

The central idea for the construction of the graph theoretic representations we will describe is the trans-

formation of recombination cycles into simpler graph structures. Such a transformation is powerful because,

with cycles no longer present, the problem of constructing a minimum ARG can be formulated as a well-

known combinatorial optimization problem known as the Minimum Directed Steiner Arborescence (MDSA)

problem (for a survey and applications of the MDSA problem, see Hwang et al., 1992, and Winter, 1987).

IMPERFECT ANCESTRAL RECOMBINATION GRAPH RECONSTRUCTION 769



3.1. Directed Steiner arborescence problem

Given a connected directed graph G with edge weights we, a root vertex r, and a set of terminal vertices

VT, a directed Steiner arborescence is a subgraph of G that contains a directed path from r to each terminal

in VT. The cost of a directed Steiner arborescence D is the sum of its edge weights. The following is a well-

studied problem in combinatorial optimization.

Minimum Directed Steiner Arborescence (MDSA) Problem

Input: Connected directed graph G with edge weights we, root vertex r and a set of terminal vertices VT

Objective: Find a directed Steiner arborescence of minimum weight in G.

The MDSA problem is NP-hard (Karp, 1972) and as hard to approximate as the Set Cover Problem

(Guha and Khuller, 1996). Therefore, there is no constant factor approximation algorithm for the problem

(unless P¼NP).

3.2. Informal description of main result

We begin by giving an informal outline of our method and main results. Throughout the discussion, the

input is assumed to be a set of n binary sequences, each of length m. For input I, consider first the set A of

all ancestral recombination graphs displaying I. We will construct a set of auxiliary graphs, called hier-

archy graphs (and denoted HG), together with a sequence of transformations that maps each ancestral

recombination graph to a hierarchy graph. To informally describe one level of hierarchy graphs, we will

first utilize two pebbles (one labeled a and one labeled b) and describe a sequence of moves for these

pebbles. We begin by detailing how the transformation turns a single recombination cycle into a directed

path. We then extend this idea to transform more general ARGs (containing multiple recombination cycles)

into directed arborescences.

If v is a recombination node in an ARG, then by tracing two paths from the parents of v back in time, the

paths eventually meet at a common ancestral, or coalescent node. Any pair of such directed paths together

form a recombination cycle. Note that a recombination node v may give rise to several different recom-

bination cycles, possibly with different coalescent nodes (Fig. 1). For a fixed recombination cycle C, denote

the coalescent node of C by coal(C) and the recombination node of cycle C by rec(C) (Fig. 1). An internal

node of recombination cycle C is any node in C \{coal(C), rec(C)}.

For recombination cycle C, imagine placing two pebbles (labeled by a and b) on the coalescent node

coal(C). Consider the two node disjoint paths from the coalescent node to the recombination node (Fig. 2).

We think of pebble a as traveling along one path and pebble b as traveling along the second path until they

meet at the recombination node. Note that, for a fixed recombination cycle C, the only nodes simulta-

neously occupied by both pebbles are the coalescent node and recombination node. We enforce that, at each

rec(C)

coal(C)

coal(C¢)

rec(C¢)

C¢

C

FIG. 1. Recombination cycles.
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time step, only one pebble is in motion, unless both pebbles move together to meet at the recombination

node. We record the journey of the pebbles in a sequence of ordered pairs, where the first component of

each ordered pair represents the position of the first pebble throughout its journey, and the second com-

ponent represents the position of the second pebble throughout its journey. From the sequence of moves,

it is possible to construct a graph, with ordered pairs of binary sequences as nodes and ordered pairs

of mutations/recombinations labeling the edges. Note that for any recombination cycle, there may be many

associated directed paths, depending on the choice of ordering for the steps taken by the pebbles. For

example, pebble a could move first and then pebble b, or vice versa, resulting in two different paths.

However, while there may be multiple paths associated with C, the lengths of all such paths are equal.

The idea outlined above can be extended to transform more general ARGs (possibly containing multiple

recombination cycles) into directed arborescences. We will construct a hierarchy of representations (de-

noted HG1,HG2,HG3, . . .) which will satisfy the following:

1. Every directed Steiner arborescence in a hierarchy graph HGi can be mapped to an ARG of the same

cost.

2. The set of hierarchy graphs are organized into levels, with each higher level representing a larger set

of ARGs.

3. Every ARG in A can be transformed to a directed Steiner arborescence in HGl of the same cost for a

suitable level l. Furthermore, it is possible to compute an upper bound on this level l.

4. By solving a sequence of directed Steiner arborescence problems, it is possible to find a sequence of

upper bounds for the minimum imperfect ARG problem that converges to the exact solution.

3.3. Hierarchy graph: the first two levels

We first describe in complete detail the first two levels of the hierarchy, HG1 and HG2. We assume

throughout that the input is given as an n�m binary input matrix I, with rows representing sequences and

columns representing varying sites.

The vertices in HG1 correspond to binary sequences of length m, and there is a directed edge between

two vertices u1 and u2 if the two sequences corresponding to these vertices differ at exactly one site. HG1

corresponds to the hypercube in dimension m, where each undirected edge is replaced by two directed
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FIG. 2. Transforming a recombination cycle into a directed path.
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edges, one in each direction. Hierarchy HG1 models homoplasy events (but not recombination events), and

we have the following lemma.

Lemma 3.1. The Directed Steiner Arborescence Problem in HG1 is equivalent to the Imperfect

Phylogeny Reconstruction Problem.

In level two of the hierarchy, the vertices of the graph HG2(I) are ordered pairs (v1, v2), where v1 and v2

both range over binary sequences of length m. There is a directed edge from ordered pair (v1, v2) to (w1, w2)

if one of the following properties is satisfied.

(I) v1 and w1 differ in exactly one site (site i) and v2¼w2. The edge between (v1, v2) and (w1, w2) is

labeled [i,*].

(II) v2 and w2 differ in exactly one site (site i) and v1¼w1. The edge between (v1, v2) and (w1, w2) is

labeled [*, i].

(III) w1¼w2 and w1 can be obtained from v1 and v2 by combining the first b k c sites of v1 with the last

n�b k c sites of v2. The edge between (v1, v2) and (w1, w2) is labeled R(k).

(IV) w1¼w2 and w1 can be obtained from v1 and v2 by combining the first b k c sites of v2 with the last

n�b k c sites of v1. The edge between (v1, v2) and (w1, w2) is labeled R(k).

Edges of type (I) and (II) are called level 2 mutation edges, and edges of type (III) and (IV) are called

level 2 recombination edges. Associated with the edges of the level 2 graph is a weight function

we : E(HG(I))! R�0, which is specified as part of the input and indicates the corresponding costs for the

recombination and mutation events.

By convention, the recombination point k will always be chosen to be half-integral (e.g., k¼ 2.5 cor-

responds to a recombination event between sites 2 and 3), except in the following case. In order to

incorporate certain types of branching events, we allow the events R(0) and R(0), which indicate that the

recombination node inherits the complete sequence of one of its parents. Event R(0) indicates that the

recombination node agrees with parent v and event R(0) indicates that the recombination node agrees with

parent w. The weight of the edges corresponding to these recombination events will always be equal to

zero.

Let R2 be the node in HG2 corresponding to the ordered pair (r, r). For each row s of I, add the ordered

pair (s, s) to the list of terminal vertices VT. Given a solution T to the directed Steiner arborescence problem

on graph HG2 with root R2, weights w, and terminal vertices VT, we now construct an imperfect ancestral

recombination graph A displaying I of the same weight as T.

For any node (u, v) in T, let Fþ(u, v) denote the set of outgoing edges from (u, v) in arborescence T.

Initialize Y¼ {(r, r)}

While Y= ;, let (u, v) 2 Y

I. While Fþ(u, v)= ;, let e¼ ((u, v), (u0, v0)) 2 Fþ (u, v)

If the label of edge e is mutation [i,*], add a directed edge from sequence u to sequence u0 ¼ u.i to A

Else if the label of edge e is mutation [*, i], add a directed edge from sequence v to sequence v0 ¼ v.i to A

Else if the label of edge e is recombination R(k), then u0 ¼ v0 is the sequence agreeing with u in positions less than

k and agreeing with v in positions greater than k. In A, add directed edges from u to u0 and from v to u0

Else if the label of the edge is recombination R(k), then u0 ¼ v0 is the sequence agreeing with v in positions less

than k and agreeing with u in positions greater than k. In A, add directed edges from u to u0 from v to u0.
Add (u0, v0) to Y and remove e from Fþ(u, v)

II. Remove (u, v) from Y.

The result is an imperfect ARG A on input sequences I with common ancestor r (Fig. 3). The con-

struction shows that for each Steiner arborescence, it is possible to obtain a corresponding imperfect ARG

of the same cost. However, we will see in the next section that the reverse transformation is not always

possible.

3.4. Crowned trees

In this section, we establish sufficient conditions on an imperfect ARG to correspond to a directed

Steiner arborescence in hierarchy level 2 of the same cost. A crowned tree displaying I is an imperfect ARG

displaying I which satisfies the following conditions.
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Condition 1. Let C and C0 be two recombination cycles in the imperfect ARG. If C and C0 share a node

that is an internal node in at least one of C or C0, then the two recombination cycles have the same

coalescent node (coal(C)¼ coal(C0)).

Condition 2. For any fixed recombination cycle C, let S(C) denote the set of cycles C0 sharing at least

one node with C which appears as an internal node in C. Then there is a directed path PC contained in C

such that

i. coal(C) 2 PC

ii. the set of shared edges between C and any cycle C0 2 S(C) forms a directed path and is contained in

path PC.

Note that the recombination cycles C and C0 in Figure 4 violate both conditions. A consequence of

Condition 1 is that an internal node in a recombination cycle C cannot be a coalescent node for any other

cycle C0. For recombination cycle C, let last(C) denote the final node in path PC, i.e., the unique node in PC

4
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FIG. 3. Transformation from directed Steiner arborescence to imperfect ancestral recombination graph.
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FIG. 4. An example of an imperfect ancestral recombination graph that is not a crowned tree.
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with indegree 1 and outdegree 0. By condition (2), the descendants of last(C) in C cannot be contained in

any other recombination cycle in S(C). Let P denote the union of directed paths PC over all recombination

cycles C. Note that P is a union of vertex disjoint paths, i.e., no vertex is contained in more than one path

PC. Also, observe that for each recombination cycle C, the labeling of the two directed paths r1 and r2 in C

from coal(C) to rec(C) can be chosen arbitrarily. If C contains any edges in P, then these edges must

belong to exactly one of the paths r1 or r2 in C; by convention, we will always label this path by r2.

In Figure 3, PC1
is the edge (r, a) and PC2

¼PC3
is the directed path on edges (r, a) and (a, b). This

establishes the paths r2 for cycles C1, C2, and C3 as the paths in each of these cycles containing edge (r, a);

however, the paths r1 and r2 of cycle C4 are not determined. Also, last(C1)¼ a, last(C2)¼ last(C3)¼ b, and

last(C4)¼;.
An important subset of the set of crowned trees is the set of galled trees, which are constrained ARGs in

which any pair of recombination cycles are edge disjoint. This class of graphs was introduced in Wang et al.

(2001) and further studied in Gusfield (2005), Gusfield et al. (2003, 2004a, b), and Song (2006). The

importance of such trees was established by Gusfield et al. (2003), who develop a polynomial algorithm for

the parsimonious ARG reconstruction problem over galled trees. Therefore, the set of crowned trees

captures an important subfamily of ancestral recombination graphs.

We now demonstrate that any crowned tree A displaying I corresponds to a directed Steiner arborescence

T of the same cost in the level 2 hierarchy graph HG2. The idea for building T from crowned tree A will be

to visit sequences in the crowned tree in a well defined order, which will allow the pebbles to properly keep

track of the positions as the sequences of the crowned tree are visited.

In our algorithm, the second pebble performs a depth first search on edges in P. For example, in Figure 3,

the second pebble first travels edge (r, a) 2 P. When the second pebble reaches a node last(C) for some

recombination cycle C, then the first pebble for cycle C becomes activated and travels down path r1 of

recombination cycle C. Since a¼ last(C1) in Figure 3, the first pebble for cycle C1 becomes activated after

the second pebble’s move and travels the path containing edges (r, c) and (c, rec(C1)). The intuition for the

algorithm is that conditions (1) and (2) enable the first pebble to remain on the coalescent node of a cycle

while the second pebble is traveling any edges contained in the common path set P. Furthermore, the first

pebble is able to visit all edges in directed path r1 in C and recombine with the second pebble since no other

recombination cycle intersects the vertices of r1. The following algorithm describes the transformation

from crowned tree to directed Steiner arborescence.

1. Consider the sequence r corresponding to the root of crowned tree A and initialize Y¼ {(r, r)}.

2. While Y= ;
For y¼ (s, t) 2 Y

(a) for any cycle C such that t¼ last(C), activate s, add the set of edges in path r1 to T, and add

rec(C) and all nodes adjacent to edges in r1 to Y

(b) if there is an outgoing mutation edge from t in A that is contained in path set P, suppose this edge

has label i. Then create a mutation edge from y to y0 ¼ (s, t.i) with edge label [*, i] and add y0 to Y.

(c) for each outgoing mutation edge from s (t) in A that is not contained in path set P with label i,

create a mutation edge from y to y0 ¼ (s.i, t) (y0 ¼ (s, t.i)) with edge label [i, *] (label [*, i]), and

add y0 to Y

(d) if s (t) has an outgoing mutation edge in A labeled i whose other endpoint is a coalescent node

corresponding to sequence s.i (t.i), create a mutation edge from y to y0 ¼ (s.i, t) (y0 ¼ (s, t.i)), and a

recombination edge from y0 to y00 ¼ (s.i, s.i) labeled R(0) (from y0 to y@¼ (t.i, t.i) labeled R(0)).

Add y@ to Y

3. Remove y¼ (s, t) from Y

Note that if the phylogenetic network A does not satisfy Condition (1), it would be impossible for pebble

1 to simultaneously remain on the coalescent node for all recombination cycles C. Similarly, if A does not

satisfy Condition (2), it would be impossible for pebble 2 to simultaneously travel all the paths necessary

before recombining with pebble 1.

3.5. Higher level hierarchy graphs

We now extend beyond the first two levels to construct a hierarchy of representations, with each suc-

cessive level in the hierarchy representing larger and larger subsets of ARG. The kth level of the hierarchy
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will consist of an underlying graph HGk, whose vertices are k-dimensional vectors (v1, v2, . . . vk) 2 (Zm
2 )k

where each coordinate vi ranges over all binary sequences of length m. In the context of our informal

presentation based on pebble motions, each coordinate corresponds to a different pebble and pairs of

coordinates correspond to pairs of pebbles a and b that are allowed to traverse paths which form recom-

bination cycles. The directed edges of HGk will detail the possible transition steps the pebbles are allowed

to make as they travel through the imperfect ARG. For a vector v 2 Rk and a subset C� [k] of coordinates,

let vjC denote the restriction of vector v onto coordinates in C. We will consider vjC as a set (and not a

multi-set), so that the set vjC has size one if all of the coordinates of v in positions C are the same. Let l be

either zero or a half integral value between 1
2

and m� 1
2
. For two binary sequences a and b of length m, let

(a, b)l denote the sequence obtained by combining the first b l c sites of a with the final m�b l c sites of b (in

the case l¼ 0, (a, b)0¼ b). To describe the directed edges in hierarchy graph HGk, we will need to define

the following operations.

(i) For a vector v, suppose there is a subset of coordinates C� [k] containing the same binary sequence a.

Then the coordinated mutation transition at site i on C results in vector MC, i(v) 2 (Zm
2 )k, whose jth

coordinate is

MC, i(v)j¼
a:i if j 2 C

vj if j 62 C

�
This move corresponds to modifying vector v by taking the sequences with coordinates in C and

mutating site i in each of these sequences. Note that MC,i(v)jC¼ {a.i}, and furthermore, there may be

additional coordinates in [k]\C for which v contains sequence a and remains unchanged by this transition.

(ii) Consider any two disjoint sets of coordinates C1,C2� [k] such that vjC1
¼ {a} and vjC2

¼ {b} (where

a= b) Consider two subsets C01 � C1 and C02 � C2, one (but not both) of which may be the empty set and

let l be either 0 or a half integral value between 1
2

and m� 1
2
. Then the jth coordinate of recombination

transitions RC1, C2, C0
1
, C0

2
, l(v) and RC1, C2, C0

1
, C0

2
, l(v) are defined as

RC1, C2, C0
1
, C0

2
, l(v)j¼

(a, b)l if j 2 C01 [ C02
vj otherwise

�

RC1, C2, C0
1
, C0

2
, l(v)j¼

(b, a)l if j 2 C01 [ C02
vj otherwise:

�
The transitions (i) and (ii) allow us to define the edges of HGk.

(E1) For a vector of binary sequences v 2 (Zm
2 )k, for each integer i 2 [m], and for each subset C� [k]

such that jvjCj ¼ 1, there is a directed edge from v to MC,i(v).

(E2) For a vector of binary sequences v 2 (Zm
2 )k, l 2 f0, 1

2
, 3

2
, . . . m� 1

2
g, and for each C1,C2� [k] and

subsets C01 � C1, C02 � C2 such that C1\C2¼; and jvjC1
j ¼ jvjC2

j ¼ 1, there is a directed edge from v to

RC1, C2, C0
1
, C0

2
, l(v) and from v to RC1, C2, C0

1
, C0

2
, l(v).

Edges of type (E1) are called hierarchy graph mutation edges, and edges of type (E2) are called hierarchy

graph recombination edges. Note that different choices of subsets C1 and C2 and values l in the recom-

bination transitions may in fact give rise to the same hierarchy graph recombination edge. Together with

the edges of the hierarchy graph is an associated weight function we : E(HGk)! R�0, which is specified

as part of the input and indicates the corresponding costs for the recombination and mutation events. In

general, the weight function can be site-dependent or chosen according to existing information about

recombination and mutation frequencies in the population. In the uniform model, all recombination events

(except recombination events corresponding to l¼ 0) have the same cost ar and all mutation events have the

same cost am. This corresponds to assigning weight ar to all hierarchy graph recombination edges, weight

am to all hierarchy graph mutation edges, and weight zero to the remaining edges.

Now, suppose D is a solution to the minimum Steiner arborescence problem on graph HGk with root

Rootk, weights w, and terminal vertices VT. We will describe a map Fk which constructs from D an

imperfect ancestral recombination graph A¼Fk(D). For any node u in D, let Fþ(u) denote the set of

outgoing edges from u in arborescence D. The transformation describes a breadth first search through the

set of vertices in D, with each explored edge giving rise to a set of edges in the imperfect ARG A. In the

following description, Y will denote the vertices in D which have outgoing edges remaining to be explored.

For each k, the map Fk transforms each Steiner arborescence in HGk to an imperfect ARG.
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Definition 1. An imperfect ARG A is representable at level k of the ARG hierarchy if there exists a

Steiner arborescence D in HGk such that Fk(D)¼A. The ARG-width of A is the smallest k such that A is

representable at hierarchy level k.

Input: Directed Steiner arborescence D 2 HGk

Output: Imperfect Ancestral Graph A¼Fk(D) with vertex set V (A) and edge set E(A)

Initialize V(A)¼frg, Y ¼f(r, r, . . . r)g
While Y= ;, let u 2 Y

I. While Fþ(u)= ;, let e¼ (u, v) 2 Fþ (u)

If the label of edge e is hierarchy mutation edge corresponding to coordinates C and site i, add MC,i(u) to V (A),

and add directed edge from sequence u to sequence u0 ¼ u.i to E(A)

Else if edge e is hierarchy recombination edge labeled by RC1, C2, C0
1
, C0

2
, l(v), where ujC1

¼ {a} and ujC2
¼ {b},

then add sequence (a, b)l to V (A), and add directed edges from a to (a, b)l and from b to (a, b)l to E(A)

Else if edge e is hierarchy recombination edge labeled by RC1, C2, C0
1
, C0

2
, l(v), where ujC1

¼ {a} and ujC2
¼ {b},

then add (b, a)l to V (A), and add directed edges from a to (b, a)l and from b to (b, a)l to E(A)

Add v to Y and remove e from Fþ(u)

II. Remove u from Y.

By Section 3.4, we have the following lemma.

Lemma 3.2. The set of crowned trees has ARG-width equal to two.

We now study the structure of representable imperfect ancestral recombination graphs.

Lemma 3.3. If an imperfect ARG A is representable at level k, then it is representable at level k0 for all

k0 � k.

Proof. Since A is representable at level k, there exists an arborescence Dk 2 HGk such that Fk(Dk)¼A.

Let Rootk ¼ ( r, r, . . . r|fflfflfflfflffl{zfflfflfflfflffl}
k

) 2 HGk and let Rootk0 ¼ ( r, r, . . . r|fflfflfflfflffl{zfflfflfflfflffl}
k0

) 2 HGk0 . Let Dk0 be the directed Steiner arbo-

rescence inHGk0 obtained by appending k0 � k copies of binary sequence r to each vertex in Dk. Now, if s is

either the root of D or an input row in I, the vector

v(s)¼ ( s, s, . . . s|fflfflfflfflffl{zfflfflfflfflffl}
k

, r, . . . , r|fflfflfflfflffl{zfflfflfflfflffl}
k0 � k

)

appears in Dk0 . Furthermore, for each input sequence s, the path in Dk between Rootk and s gives rise to a

path in Dk0 between Rootk0 and v(s) (with each vertex in the path having value r in the final k0 � k entires).

Now, for each input sequence s, create a trivial recombination edge between v(s) and the vector

R([k], [k0]� [k], [k], [k0]� [k], 0)(v(s))¼ ( s, s, . . . s|fflfflfflfflffl{zfflfflfflfflffl}
k0

) 2 HGk0 :

The resulting graph is a Steiner arborescence D0 in HGk0 . Since trivial recombination edges have weight

zero, the directed Steiner arborescence D0 has the same cost as the directed Steiner arborescence D.

Furthermore �k0 (Dk0)¼A, implying that A is representable at level k0. &

For fixed values of the mutation and recombination parameters, let fD�kgk�1 denote a sequence of

solutions to the MDSA problem on the sequence of hierarchy graphs fHGkgk�1. We apply the transfor-

mations Fk to these arborescences to obtain a sequence of imperfect ARGs f�k(D�k)gk�1. The following is a

corollary of Lemma 3.3.

Corollary 3.4. For any k� 1, cost(D�k) � cost(D�kþ 1).

For an imperfect ARG A, let R(A) denote the number of recombination events in A. Note that R(A)

simply counts the number of recombination events (not the weighted cost of recombinations) and does not

take into account any homoplasy events in A. The following theorem bounds the ARG-width of any ARG.

Theorem 3.5. For any imperfect ancestral recombination graph A with R(A)� 1, the ARG-width of A

is at most 2R(A).
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Proof. Let A be an imperfect ARG with at least one recombination node. Our goal is to construct a

Steiner arborescence S in HG2R(A) such that F2R(A)(S)¼A.

We begin by using A to construct a set of directed paths. For each recombination node y in A, we

will consider two directed paths p1(y) and p2(y) from the root r to node y. Furthermore, for any non-

recombination node y in A, we will define a single directed path p1(y) from the root to node y. These paths

are defined inductively as follows. For root r, the path p1(r) is the trivial path containing the single vertex r.

Suppose y is a node all of whose parental paths have been constructed. If node y is a recombination node

with parents u and v, then path p1(y) is obtained by taking the path p1(u) together with edge (u, y) and path

p2(y) is obtained by taking the path p1(v) together with edge (v, y). Note that different choices for labeling

the parent nodes u and v possibly lead to different sets of paths; in such a case, we can make these choices

arbitrarily. If node y is not a recombination node, then it has a single parent u and path p1(y) is obtained by

taking the path p1(u) together with edge (u, y).

Now, let y1, y2, . . . yR(A) denote the set of recombination nodes in A and let P be the set of 2R(A) paths

p1(yi) and p2(yi) for 1� i�R(A). These paths will map the journey of 2R(A) pebbles through the graph,

corresponding to the 2R(A) coordinates of vertices in HG2R(A). The journey of these pebbles will determine

the Steiner arborescence D in HG2R(A). For each edge e¼ (u, v), let Pe denote the set of paths in P which

contain edge e and let Ce denote the coordinates of the pebbles corresponding to these paths.

We enforce that for each edge, all the pebbles whose paths Pe intersect e must traverse this edge

simultaneously in the Steiner arborescence D. The construction will build the Steiner arborescence from the

leaves up to the root. In each stage of the transformation, an activated node v in A is a node such that all

descendants of v have already been considered. In the following transformation, Q denotes the set of

activated nodes, Z denotes the set of nodes in A waiting to be activated, and a is a map that takes each node

in A to a node in D.

Input: Imperfect Ancestral Recombination Graph A

Output: Directed Steiner Arborescence D 2 HG2R(A) such that F2R(A)(D)¼A
1. Let r be the root of A and initialize

Q¼ {y : y is a node in A with no descendants}, Z¼Q, a(y)¼ (y, y, . . . y) for each

y 2 Q, V(D)¼fa(y) : y 2 Qg, E(D)¼;.
2. While Q= ;

For y 2 Q
(a) If E�(y) has an edge (x, y) labelled by a mutation event i, remove y from Q and add x to Z. Let

a(x)¼MC(x, y), i(a(y)), add vertex a(x) to V (D), and add the edge (a(x), a(y)) to E(D)
(b) If y is a recombination node in A, then there are two recombination edges (x1, y) and (x2, y) in E�(y). Let C1

denote the set of paths in P using edge (x1, y), let C2 denote the set of paths in P using edge (x2, y) (note that

these paths are disjoint), and let l 2 f0, 1
2

, . . . m� 1
2
g such that y¼ (x1, x2)l.

Let

a(x1)i¼ a(x2)i¼
a(y)i for i 62 C1 [ C2

x1 for i 2 C1

x2 for i 2 C2

(

Remove y from Q, add x1 and x2 to Z, add vertices a(x1) and a(x2) to V (D) and add edges (a(x1), a(y)) and

(a(x2), a(y)) to E(D).

(c) if x 2 Z has no descendants in Z, then remove x from Z and add x to Q.

This resulting directed Steiner Arborescence together with the map a shows imperfect ARG A has ARG-

width bounded above by 2R(A). &

For a fixed set of mutation and recombination parameters, letM(I) denote the set of minimum imperfect

ARGs for input set I and let

R�min(I)¼ min
A2M(I)

R(A):

We first extend the notion of representability to sets of input sequences.
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Definition 2. An input set of binary sequences I is representable at level k of the ARG hierarchy if there

exists a Steiner arborescence S in HGk and an imperfect ARG A displaying I such that Fk(S)¼A. The

ARG-width of I is the smallest k such that I is representable at level k.

The following is now a corollary of Theorem 3.5.

Corollary 3.6. For any input set I, the ARG-width of I is at most 2R�min(I). It follows that the minimum

imperfect ARG reconstruction problem can be solved to optimality at hierarchy level 2R�min(I).

4. EXPERIMENTAL RESULTS

In practice, since we do not know the value of R�min(I), we cannot determine how high in the hierarchy we

would need to go in order to solve the minimum imperfect ARG reconstruction problem to optimality. In

this section, we concentrate on level 2 of the hierarchy and design algorithms and heuristics to solve the

MDSA problem in HG2. In practice, Steiner arborescences in HG2 can be efficiently constructed for

benchmark and simulated data sets. It is then possible to compare the upper bounds on the number of events

with lower bounds (and if possible, with optimal solutions) for the ARG reconstruction problem, which

considers recombination events only in the infinite sites model.

We analyze the performance on a benchmark data set as well as on simulated data sets. The im-

plementation was performed in Cþþ and solved using CPLEX 11; tests were conducted on a Athlon 64

Dual Core 2GHz Processor with 2G RAM, running Linux.

The software implementing our algorithm, iARG, is available for download at www.cs.
brown.edu/people/sorin/lab/pages/software.html.

4.1. Linear programming formulation

A common approach for studying the MDSA problem is to use integer and linear programming methods.

We implemented a well-known linear programming formulation for the MDSA problem, detailed in

Sridhar et al. (2007b).

We applied the linear program to several sets of simulated data obtained by the MS program of Hudson

Hudson (2002) and the seq-gen program of Rambaut and Grassly (1997). Using these exact methods,

we were able to solve instances of up to 11 sites, with varying number of individuals.

4.2. Steiner tree heuristics

Since we would like to develop methods that scale to solve larger instances, we apply known heuristics

for the directed Steiner arborescence problem. We implement the following insertion heuristic.

Initialize T¼ {(r, r)} (where r denotes the common ancestor sequence) and NT¼V T

While NT= ;
Find nodes u� 2 T and v� 2 NT minimizing the distance from T to the set NT

Add the nodes and arcs of the shortest path from u* to v* to tree T

Remove v* from NT

This algorithm is known to have worst-case error ratio equal to the number of input terminals VT (Voss,

1993). We applied this heuristic to the well-studied benchmark Drosophila melanogaster data set from

Kreitman (1983). This data set was previously studied in the context of ARG reconstruction in Bafna and

Bansal (2004) and Song and Hein (2003, 2005).

The size of the original data is 11 haplotypes, each of length 2800 base pairs. We perform the same

operations as Bafna and Bansal (2004), deleting identical haplotypes, removing all sites that are pairwise

compatible with all other sites, and removing sites that are identical to adjacent sites. This results in an

input matrix of nine haplotypes of length 16. Our heuristic solved the resulting reduced problem in 10.8

seconds, giving four recombination events and three back mutations under the uniform model (Fig. 5).

Furthermore, the output of the algorithm shows the four recombinations occuring in only two positions,

with two recombination events between sites 4 and 5, and two recombination events between sites 5 and 6.
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In Song and Hein (2005), it is shown that the minimum number of recombinations for this data set under

the infinite sites model is Rmin(I)¼ 7. Therefore, our algorithm quickly finds a solution with as many

recombinations plus back/recurrent mutations as the number of recombinations only in the optimal solution

for the parsimonious ARG reconstruction problem.

5. CONCLUSION

We have introduced and developed a framework for solving the imperfect ARG reconstruction problem.

This unifies the current models for ARG reconstruction and imperfect phylogeny reconstruction into a

single framework. There are many potential avenues for future work, including the following:

1. Extending the model to handle missing data

2. Finding ways to restrict the vertices in the hierarchy graphs that need to be searched for the optimal

Steiner tree, in the spirit of Buneman graphs (Semple and Steel, 2003)

3. Extending the model to include other types of recombination and hybridization events

We plan to explore these avenues and improve the algorithms presented to generate provably optimal

ARGs from variation data. Such analyses are increasingly important, as data sets for larger populations are

gathered.
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FIG. 5. Output of minimum directed steiner arborescence heuristic on Kreitman Drosophila data.
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