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Abstract. There has been considerable recent interest in the use of
haplotype structure to aid in the design and analysis of case-control as-
sociation studies searching for genetic predictors of human disease. The
use of haplotype structure is based on the premise that genetic variations
that are physically close on the genome will often be predictive of one
another due to their frequent descent intact through recent evolution.
Understanding these correlations between sites should make it possible
to minimize the amount of redundant information gathered through as-
says or examined in association tests, improving the power and reducing
the cost of the studies. In this work, we evaluate the potential value
of haplotype structure in this context by applying it to two key sub-
problems: inferring hidden polymorphic sites in partial haploid sequences
and choosing subsets of variants that optimally capture the information
content of the full set of sequences. We develop methods for these ap-
proaches based on a prior method we developed for predicting piece-wise
shared ancestry of haploid sequences. We apply these methods to a case
study of two genetic regions with very different levels of sequence di-
versity. We conclude that haplotype correlations do have considerable
potential for these problems, but that the degree to which they are use-
ful will be strongly dependent on the population sizes available and the
specifics of the genetic regions examined.

1 Introduction

Since the release of draft consensus human genome sequences [8, 24], much at-
tention has turned to studying the variations in the genome that distinguish one
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person from another. These variation occur predominantly in the form of single
nucleotide polymorphisms (SNPs) at which a single DNA base pair has two com-
mon variants in the population. It is hoped that characterizing these variations
and correlating them with phenotype through case-control association studies
can assist in locating genes or specific genetic variants that influence human dis-
ease risk. Association-based studies are likely to allow much finer-scale mapping
than was possible with the traditional pedigree-based linkage studies (See, for
example, Cardon and Bell [2]). Furthermore, they are potentially much better
suited to tracking down genetic influences on common, complex diseases, which
are believed to have substantial genetic components but for which these compo-
nents are obscured by strong environmental influences and the likely interaction
of many distinct genetic factors [19]. Despite some successes [13], however, these
benefits so far remain largely hypothetical.

One leading approach to improving the power of these studies is to rely on
correlations between physically close SNPs by grouping SNPs into conserved
haplotypes. By performing association studies on these haplotypes instead of
individual SNPs, we can greatly reduce the number of distinct hypotheses be-
ing considered in an association study, allowing us to lower our standards of
proof for each hypothesis and thereby increase the power of the study. Some sta-
tistical approaches have attempted to incorporate haplotype structure directly
into association tests for this purpose [14, 21, 15, 12]. An alternative strategy
is to characterize the haplotype structure in a recombining population indepen-
dently of its application to a particular association test, a strategy that has been
pursued from many directions [11, 7, 26, 27, 25, 28, 3, 20, 23].

One widely adopted approach to the direct characterization of haplotype
structure stems from a seminal study by Daly et al. [4], which suggested that
the human genome could be decomposed into segments of low haplotype diver-
sity separated by regions inferred to be frequent sites of recombination. Locating
the “haplotype blocks” of low diversity would allow one to reduce the complex-
ity of the inference problem by working with haplotype block alleles instead of
individual polymorphic sites. In addition, the use of “haplotype tagging” SNPs,
which are subsets of SNPs in a block adequate to characterize a large fraction
of its population diversity, could potentially significantly reduce the cost of con-
ducting association studies without substantially hurting their power [10, 29].
A variety of methods have been proposed for defining optimal block decomposi-
tions [4, 10, 18, 9, 6]. Optimal block decompositions can be efficiently computed
for a broad class of objective functions, a task that can also simultaneously yield
minimal informative SNP subsets for the given block decomposition [30]. Block
decompositions also yield straightforward algorithms for inferring missing sites
based on best-matching alleles within each block.

While these discrete block decompositions are algorithmically convenient,
though, they do not capture all of the available information that might be use-
ful for downstream analyses. There are often correlations between consecutive
blocks [6], suggesting the presence of longer-range information than is captured
by the block decompositions. Similarly, there may be finer structure the decom-
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positions obscure. These additional sources of information can be expected to be
much more pronounced when rarer alleles are included than in the Daly et al.
and Gabriel et al. studies, as may be required for fine-scale mapping of genetic
influences on common diseases. These factors argue for examining the feasibility
of approaching the downstream problems using haplotype inferences that do not
rely on discrete block decompositions.

In this work, we assess the value of block-free predictions of shared haplo-
type ancestry in characterizing the information content of haploid sequences.
We accomplish this by applying a prior method of ours for block-free piecewise
inference of ancestry [20] to two key sub-problems in the design and analysis of
inference studies: inferring missing data and choosing informative SNP subsets.
Inferring missing data based on sequence context provides a good test of our
general ability to detect and apply statistical correlations found through hap-
lotype context information. Locating reduced subsets of SNPs that allow us to
characterize the remaining missing sites with high accuracy gives us an approx-
imate idea of how much we can hope to reduce assay sizes while still adequately
capturing the available sequence diversity. We develop simple methods for both
problems and evaluate their performance using cross-validation studies of two
real genetic datasets. We conclude that haplotype data provides a considerable
amount of information usable for such problems but that there may be signif-
icant limits to what can be accomplished given reasonable sizes of population
samples, depending on the specific genetic region examined.

2 Methods

2.1 Predicting Sequence Ancestry

We predict sequence ancestry using a method introduced in Schwartz et al. [20].
That work presented the problem of ancestry inference in terms of what we call
“haplotype coloring,” coloring each site of a sequence so as to indicate from
which of a set of ancestral sequences it is most likely to have descended at each
polymorphic site. We presented two methods for the problem. The first, which
was simultaneously introduced by Ukkonen [23], predicts ancestry by building
on block decompositions. That method first finds a block decomposition for a
set of sequences, then joins alleles in adjacent blocks using a maximum matching
algorithm. The second method, which forms the basis of the present work, uses
a restricted hidden Markov model (HMM) to represent the possible ways of
combining ancestral sequences to yield a modern population.

The basis of the HMM coloring method is optimization of a function ex-
pressing the probability of generating an observed sequence and coloring given
site-specific frequencies for ancestral haplotypes. To generate a modern sequence
under this model, we first sample among all possible ancestral sequences, each
of which has a characteristic starting probability. At each subsequent site, we
either continue with the current sequence or undergo a recombination event,
with a global uniform probability of recombination. If a recombination event
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occurs between two sites, then we resample among all potential ancestral se-
quences according to the characteristic site-specific frequency for each sequence
to chose the ancestor at the next site. We also allow, at each polymorphic site,
a uniform mutation probability of the generated sequence differing from its pre-
dicted ancestor at that site. This model is similar to that used by Stephens et
al. [22] for the related problem of haplotype phase inference, although it differs
in the use of a global recombination probability and site- and sequence-specific
ancestral haplotype frequencies. These changes are intended to reduce the data
dependence of the learning methods by reducing the number of parameters to
be inferred from quadratic to linear in the number of sequences, a change that
comes at a cost in generality of the model. The log of the probability implied by
this model, normalized by a factor independent of the coloring and frequencies,
yields the following objective function:

G = fh1 +
n∑

j=1

mD(shj , σj) +

n∑

j=2

(fhj + r)D(hj , hj−1) + log((1 − er) + er+fhj )(1 − D(hj , hj−1))

where

– n is the number of polymorphic sites per sequence
– fij is the frequency with which haplotype i is chosen following a recombina-

tion between sets j − 1 and j.
– hj is the color assigned to site j of the target sequence
– sij is allele value of site j of reference sequence i
– σj is the allele value of site j of the target sequence
– m is the log prior probability of mutation at any site
– r is the log prior probability of recombination between any two sites
– D(a, b) is 0 if a = b and 1 if a �= b

In the above equation, the first term is the contribution of the probability of
starting with particular color. The second term is the sum of mutation contri-
butions accounting for errors in matching the predicted ancestors. The third is
a sum of the log probabilities of two possible events at each site: choosing a new
haplotype following a recombination event or sticking with the prior haplotype
either because there was no recombination or because there was a recombination
with a sequence sharing the same common ancestor at that site. The set of values
h1 . . . hn maximizing G is the maximum probability coloring for a single target
sequence. Because sequences are colored independently of one another, finding
the optimal coloring for each target sequence will yield the globally optimal col-
oring for all sequences for a given set of frequencies. We solve for this objective
by a Viterbi-like dynamic programming algorithm in which, for each site j and
ancestral sequence k, we find the optimal coloring of a target sequence on sites
1 through j terminating with color k.
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We determine likely ancestral sequences from a modern population and es-
tablish their site-specific frequencies by an expectation-maximization algorithm
[1]. The algorithm takes as input a single reference population and finds a lo-
cally optimal set of frequencies for that population and coloring in terms of those
frequencies. Optimal coloring is achieved given a set of frequencies by applying
the above dynamic programming algorithm for each sequence independently. Lo-
cally optimal frequencies are derived at each site by a steepest descent search
for frequency values maximizing the contribution to G at that site. We initialize
the method by assuming that each sequence in the data set is ancestral and
that its frequency at all sites is equal to the measured frequency of the full se-
quence in the modern population. We then repeatedly apply the discrete coloring
algorithm followed by the continuous frequency optimization until the method
converges on a solution. This method is similar to the standard Baum-Welch
method, although it is complicated by the interdependencies between transition
probabilities introduced by our attempts to reduce the data dependence of the
method. For more details on the haplotype coloring models and algorithms, see
Schwartz et al. [20].

2.2 Missing Data Inference

We can adapt the block-free HMM method straightforwardly to the problem
of missing data inference with a minor modification of the probability model
allowing for the scoring of unknown sites. We treat an unknown site value as
a match to any allele at that site, thus eliminating the potential for mismatch
penalties at the unknown site. This model is equivalent to assuming that all
known alleles are equally likely at an unknown site, and thus each possible match
incurs the same penalty. This assumption allows us to color sequences with
unknown values using the dynamic programming algorithm described above,
with only the change that D(shj , σj) = 0 if shj or σj is unknown. This change
has no effect on the asymptotic run time of the coloring algorithm.

Given the coloring of an unknown target sequence in terms of a reference
population, we can then fill in likely missing values. For a polymorphic site of
unknown allele value that has been assigned a color, we predict that the true
allele value is the most frequent one among all known alleles assigned the same
color in the reference population used in the EM frequency estimation. It might
be more sound in terms of the model to chose the allele corresponding to the
predicted ancestral sequence at the polymorphic site, even if it is not the most
common allele for its predicted descendants. We chose the most common value,
however, to allow for the possibility that the reference ancestral sequences may
themselves have unknown values which can nonetheless be inferred based on
their predicted descendants.

2.3 Informative SNP Selection

While much of the field has focused on SNP selection by blocks, creating an
algorithmically convenient framework at the cost of some loss in usable infor-
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mation content, we choose in this work to deal with the more general block-free
framework and accept a cost in our ability to solve optimally and efficiently for
the informative SNP selection problem. This decision gives us the freedom to
work with a difficult objective function that closely matches a reasonable mea-
sure of the value of the chosen SNP set. We define the optimal SNP set of a
given size to be the SNP set that maximizes the number of sites outside that
set that would be predicted correctly in our training data based only on sites in
the chosen SNP set, using our coloring-based missing data inference algorithm
of section 2.2.

As we do not have an exact algorithm to find an optimal SNP set for our
objective function, we worked with a simple heuristic method using a genetic
algorithm. The hallmark of a genetic algorithm is a method for “mating” estab-
lished solutions to produce new solutions that may yield better answers. Our
mating method proceeds as follows:

1. Choose two solutions at random, S1 and S2, presumed to each contain k
SNPs.

2. Chose a random crossing SNP site j.
3. Construct a new solution S3 = {s|(s < j ∧ s ∈ S1) ∨ (s ≥ j ∧ s ∈ S2)}
4. If |S3| < k then add k− |S3| SNPs chosen uniformly at random from among

all s �∈ S3 to S3.
5. If |S3| ≥ k then remove k − |S3| SNPs chosen uniformly at random from

among all s ∈ S3 from S3.
6. Return S3 as a new candidate solution.

The mating method forms the core of an algorithm for heuristically generat-
ing and testing possible solutions to attempt to find an optimal or near-optimal
choice. We begin the overall algorithm by constructing an initial set of 20 candi-
date solutions by choosing 20 SNP sets uniformly at random among all possible
subsets of k our n SNPs. We then assign a score to each candidate solution by
hiding all sites not in the candidate in our training set, predicting the hidden
sites using the algorithm of section 2.2, and counting the fraction of hidden sites
correctly predicted from the training data. Among the 20 ranked SNP sets, we
keep the top half and produce an equal number of new sets by mating the 10
old sets we keep, yielding 10 old and 10 new sets. We repeat this process for 100
rounds for each value of k, finally returning the highest-scoring SNP set in the
final round as our approximate optimum.

While the use of a genetic algorithm for a computational genetics problem
may seem an odd choice, we would in fact expect the model of meiotic mutation
and recombination used by a genetic algorithm to be a good match to the nature
of information locality in actual recombining sequences. As a result, the genetic
algorithm appears likely to be a reasonable choice as heuristic methods go.

3 Results

We evaluated the methods using two real datasets: a set haploid sequences from
22 biallelic variations (21 SNPs and one two-base deletion polymorphism) in
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Fig. 1. Colorings of APOE and LPL datasets. In each image, rows of color
represent distinct sequences and columns represent distinct polymorphic sites.
Like colors within an image represent an inference of descent from a common
ancestral sequence. Colors do not in general have any correspondence between
images. A: coloring of the full APOE dataset. B: coloring of the full LPL dataset.
C: coloring of the APOE training set. D: coloring of the LPL training set.

192 chromosomes for the apolipoprotein E (APOE) gene [16, 5] and a set of
computationally inferred haplotypes from 71 SNPs in 142 chromosomes for the
lipoprotein lipase (LPL) gene [17].

We first established colorings for the two datasets. For both data sets, we
used a mutation parameter of -4. For APOE we used a recombination parameter
of -1 and for LPL a recombination parameter of -0.5, selected empirically based
on a visual analysis of the colorings they yielded. Figures 1A and 1B show the
colorings yielded for these parameters for each data set. To evaluate the method,
we further randomly split each data set into two equal-sized subsets of chromo-
somes: a training set and a testing set. Figures 1C and 1D show the coloring
derived for the same parameter sets using just the training data. For APOE,
the training data alone yields the major features of population-wide haplotype
structure found in the full data set. For LPL, some noticeable structural ele-
ments from the full population are detected from the training data alone, while
others are missed.

We next used the data sets to evaluate the ability of the coloring methods to
perform missing site inference. For each fraction of hidden sites, in increments of



Inferring Piecewise Ancestral History from Haploid Sequences 69

5%, we created an artificial data set from the testing data by creating ten copies
of each sequence in the testing data and independently at random hiding the
chosen fraction of hidden sites in each sequence. Finally, we applied the block-
free coloring method to infer an HMM on the training set and used this HMM
to color the artificial testing set sequences and fill in hidden sites based on the
coloring. Finally, we evaluated the accuracy of the predictions compared to the
true values of the hidden sites in the testing data.

Figure 2 shows the effectiveness of the methods on the two data sets data. We
used two measures of quality: accuracy per base in predicting individual hidden
sites and accuracy per sequence in predicting all hidden sites in a given sequence
correctly, each as a function of the fraction of sites hidden. For APOE, per-
base accuracy remains consistently high for all numbers of hidden sites, largely
reflecting the fact that many polymorphisms have relatively rare minor variants
in this data set. Per-sequence accuracy, however, shows a gradual decline as a
greater fraction of sites are hidden. LPL shows a more nuanced profile, consistent
with its greater diversity in the population. Per-base accuracy shows a slight
decline with the fraction of sites hidden until reaching a plateau of about 80%
accuracy at about 65% of sites hidden. Full-sequence accuracy falls off far more
steeply, dropping rapidly up to about 20% hidden sites, then more gradually
decreasing to zero.

We evaluated the effectiveness of the informative SNP selection method with
a similar protocol to that used for missing data inference, judging the ability of
the methods to infer hidden sites when those sites are computationally chosen.
We used the same partition of APOE and LPL data sets into testing and training
sets and the same program parameters as with missing site prediction. Instead
of randomly hiding sites, however, we used the SNP selection method described
in section 2.3 to choose the sites to be hidden based on the training data. We
then evaluated our ability to predict the hidden sites using the testing data. We
repeated this analysis for each possible number of hidden SNPs sites (0–22 for
APOE and 0–71 for LPL).

Figure 3 shows the results of the missing site prediction using informative
SNP selection for the two data sets. The graphs show a substantial improvement
in accuracy compared to the results for randomly hidden sites. In both cases, the
gradual decay approaching a plateau seen with per-sequence accuracy for random
data is replaced by a slow decay at lower numbers of hidden sites followed by an
increasingly steep decline for larger numbers of hidden sites. Per-site accuracy
is also substantially improved for both until almost all sites are hidden. The
benefits of selected versus random hidden sites is more pronounced for APOE
than for LPL. In APOE, the accuracy drops minimally until 80% of sites are
hidden, then falls sharply. For LPL, there is a continual decay, but it is much
slower than when random hidden sites are chosen. The jerkiness of the LPL
graph compared to the APOE graph appears primarily to reflect the fact that
LPL’s training set is less predictive of the haplotype patterns in its testing set
than is the case with APOE.
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Fig. 2. Results of missing data inference. Graphs show accuracy in predicting
individual sites and complete sequences as a function of the fraction of hidden
sites for each data set when sites are hidden independently at random. A: results
on APOE. B: results on LPL.
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Fig. 3. Results of SNP selection. Graphs show accuracy in predicting individual
sites and complete sequences as a function of the fraction of hidden sites for
each data set when hidden sites are computationally selected to optimize per-
site accuracy in the training data. A: results on APOE. B: results on LPL.

4 Discussion

We have presented computational methods for approaching some key problems
in understanding haploid genetic data and applying it to the design and anal-
ysis of association studies. We showed how a previously developed method for
piece-wise ancestry prediction could be adapted to the problems of inferring
missing data and choosing informative SNP subsets. We further showed results
of the ancestry prediction itself and its application to the two problems for two
gene regions. These results indicate that there is substantial redundant informa-
tion contained in sequences of polymorphic sites that we can exploit by using
haplotype sequence context. They also suggest, though, that the value of such
methods is likely to vary significantly between different genetic regions and may
be severely limited for some regions if population samples are of inadequate size.
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We can draw several general conclusions from our results about the prospects
for haplotype-based studies. The comparison of randomly hidden to selectively
hidden SNPs indicates that the right choice of SNPs can substantially improve
our ability to infer the hidden sites, lending support to the idea of choosing
haplotype tagging SNPs as a way to reduce assay costs [10]. On the other hand,
the results, for LPL in particular, suggest that there may be limits on our ability
to predict missing sites for reasonable sizes of data sets. Although the ability
to predict hidden sites is a more stringent test than might be necessary for
our true goal of association study design, it does provide an estimate of how
well any given subset of sites captures the information content of the full set.
For APOE, we can characterize about 80% of the population with only 25%
of the SNPs and about 90% of the population with about 50% of the SNPs,
although we require almost all SNPs to get close to 100% of the population.
For LPL, the picture is more pessimistic, with hardly any resolving power until
about half of the SNPs are used and with almost all SNPs required to reliably
distinguish over 90% of sequences. The inability of the method to capture the
last 10% of population diversity when only a few SNPs are hidden largely reflects
the fact that the training data is not adequate for characterizing a significant
fraction of sequence variants that are found only in the testing data. For any
initial set of polymorphic sites sampled and any population sample size, we can
expect similar absolute limits on the value of informative SNP selection methods
determined by how well the sampled data characterizes the variability in the full
population. As the differences between our results on the two data sets illustrate,
the magnitude of the problem of inadequate sampling can vary considerably
depending on local properties of particular genes of interest. These conclusions
seem unlikely to be dependent on the specifics of our methods, but rather are
likely to apply to all methods for these problems. They should therefore be
considered in future assessments of methods for informative SNP selection, by
performing cross-validation in evaluating methods and by explicitly building
models of statistical significance of chosen SNP sets into the methods themselves.

There are many avenues by which this work can be continued. The basic
models for ancestry detection are in some ways highly simplified. For example,
they do not adjust for variations in recombination or mutation propensity across
the genome or explicitly account for many specific genetic processes, such as
hyper-variable sites, recombination hotspots, or gene conversion. More detailed
models that incorporate a greater range of existing knowledge about the origins
of genetic variation may perform better in practice. On the other hand, the mod-
els are too dependent on unknown parameters — particularly the user-supplied
mutation and recombination rates — and are likely to be more practically use-
ful if these parameter can be eliminated or automatically inferred. The actual
methods for the problems could also likely be significantly improved, particularly
the crude heuristic method used in this work for informative SNP selection. We
might also consider extensions of these methods for unphased data or pooled
data sets from multiple individuals. The measures used to test accuracy — per-
site and per-sequence — are both imperfect and could use refinement. More
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generally, the practical importance of these problems suggests a need for estab-
lished benchmarks of performance under various conditions, such as levels of
genetic diversity and population sample size.
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