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ABSTRACT

In this report, we examine the validity of the haplotype block concept by comparing block
decompositions derived from public data sets by variants of several leading methods of block
detection. We � rst develop a statistical method for assessing the concordance of two block
decompositions. We then assess the robustness of inferred haplotype blocks to the speci� c
detection method chosen, to arbitrary choices made in the block-detection algorithms, and to
the sample analyzed. Although the block decompositions show levels of concordance that are
very unlikely by chance, the absolute magnitude of the concordance may be low enough to
limit the utility of the inference. For purposes of SNP selection, it seems likely that methods
that do not arbitrarily impose block boundaries among correlated SNPs might perform
better than block-based methods.
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1. INTRODUCTION

Single nucleotides polymorphisms (SNPs) in the genome show great promise as predictors of
disease, but the large number of known SNPs presents a signi� cant challenge in locating those mean-

ingfully correlated with disease phenotypes. The detection of a haplotype block structure to the human
genome (Daly et al., 2001; Jeffreys et al., 2001; Johnson et al., 2001; Patil et al., 2001)—in which the
genome is largely made up of regions of low diversity, each of which can be characterized by a small
number of SNPs—presents a possible way to reduce the complexity of the problem. However, whether
construction of haplotype blocks is the most ef� cient way to reduce the number of SNPs that one needs
to type to represent the extant genetic variation remains a controversial topic.

Many methods have been suggested for de� ning block structures, which can be roughly classi� ed into
three groups. One group consists of linkage disequilibrium (LD) methods, such as that of Gabriel et al.
(2002), which de� ne blocks so as to enforce generally high pairwise LD within blocks and generally low
pairwise LD between blocks. Another group consists of diversity-based methods, such as that of Patil
et al. (2001), which de� ne blocks so as to enforce low sequence diversity, by some diversity measure,
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within each block. Finally, there are methods that look for direct evidence of recombination, such as the
four-gamete test applied by Hudson and Kaplan (1985), de� ning blocks as apparently recombination-free
regions. In addition to distinct block de� nitions, blocking methods can differ according to the optimization
criterion by which the best block decomposition is chosen among all possible decompositions satisfying
the block test. Two important optimization criteria, which were examined by Zhang et al. (2002) in a paper
describing a general algorithm for ef� cient block decomposition, are minimization of the number of blocks
consistent with the block de� nition and minimization of the number of SNPs needed to characterize all
sequences within each block.

Here we assess the merits of haplotype block inference by examining robustness of the block concept
to multiple variants in block detection strategies. If haplotype blocks are genuinely capturing islands of
low diversity separated by recombination sites, as they are generally represented by proponents, then
the various methods proposed in the literature for locating blocks ought to derive essentially the same
decompositions each time they are applied. We assess this prediction by developing a statistic for comparing
block decompositions and applying it to decompositions derived on publicly available phase-known datasets
using variants of the commonly used block detection methods.

In the remainder of this paper, we describe our empirical analysis of the robustness of the block concept.
We � rst present our methodology, describing computational methods used for calculating block boundaries
and presenting a statistical method for comparing two block decompositions. We then describe results
of an analysis assessing the robustness of block methods to variants in the block detection protocol. In
particular, we examine robustness to changes in block de� nition, optimization criterion, and population
sample, as well as robustness to arbitrary choices made in the algorithms. We conclude that different block
decompositions of a single genetic region tend to be far more consistent than can be explained by chance,
but that the absolute similarity is nonetheless frequently small. It therefore appears that while there is a
common underlying structure to haplotype blocks which all methods detect, that structure is less rigidly
de� ned than individual block decompositions might suggest.

2. METHODS AND DATA

2.1. Finding block boundaries

In this paper, we compare variants of the three general block-detection methodologies that have so far
appeared in the literature: recombination-based, diversity-based, and linkage-disequilibrium (LD) based.
We use the four-gamete test (Hudson and Kaplan, 1985) as the simplest example of a recombination-based
test. One problem with the four-gamete test is that it is based on the in� nite sites model (in which a given
site mutates at most once during a sequence’s evolutionary history) and can falsely infer recombination
events when that model fails due to recurrent mutations. That problem is not a signi� cant drawback for
block construction, however, since sites of recurrent mutation can be reasonably considered to disrupt
block patterns even if they do not correspond to recombination sites. For a diversity-based test, we use a
generalization of the Patil et al. (2001) test. In their test, a region is a block if at least 80% of the sequences
occur in more than one chromosome. This test was developed for a sample of only 20 chromosomes and
does not scale well to larger sample sizes as it will tend to yield larger blocks as more chromosomes are
studied. We generalized this test by de� ning a region as a potential block if sequences within that region
(haplotypes) accounting for at least 80% of the sampled population each occur in at least 10% of the
sample. Finally, we developed a test based on the D’ statistic, similar to that used by Gabriel et al. (2002)
but with the test of signi� cance tuned to produce more meaningful results on small population samples. In
this approach, we consider a set of SNPs to form a block if they are contiguous and the D’ value of every
pair of SNPs within the block shows signi� cant LD with a P-value of < 0:001, as estimated by simulations
using the empirically measured single-site allele frequencies for a given SNP pair and the assumption of
complete linkage equilibrium.

We further consider the two common optimization criteria discussed in the introduction: minimizing the
total number of blocks and minimizing the number of SNPs needed to characterize the block decomposition
of every sequence assuming all sequences contain only observed haplotypes within each block. We solve
optimally for each measure using a variant of the dynamic programming algorithm of Zhang et al. (2002)
modi� ed to sample uniformly at random from all optimal solutions rather than deterministically choosing
a single optimum. All of the methods were implemented in C++ running on DEC Alpha Unix machines.
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2.2. A statistic for block comparison

We use the number of shared block boundaries as a statistic for the similarity of two block partitions.
This yields a computationally tractable method for exactly computing the p-value for rejecting the null
hypothesis that two block decompositions were chosen at random (uniformly) and independently from one
another. If B1 and B2 are the number of boundaries in the two partitions, m the number of boundaries shared
by the partitions, and S the total number of SNPs, then the probability they share exactly m boundaries
under the null hypothesis is
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This measure thus allows us to test the hypothesis that two partitions are related and provides a degree of
con� dence with which we can reject the null hypothesis of independence.

2.3. Data

For evaluation,we rely on two publicly available datasets. The � rst is the Perlegen chromosome 21 dataset
(Patil et al., 2001), which consists of 24,047 SNPs typed on 20 phased chromosomes. This dataset contains
a large contiguous set of SNPs providing an excellent test of blocking algorithms. Although a substantial
portion of chromosome 21 was not covered by multi-SNP blocks by any method, it yielded enough long
blocks to clearly detect statistically signi� cant concordances between distinct block decompositions. We
also use a dataset derived from 71 individuals typed at 88 polymorphic sites in the human lipoprotein lipase
(LPL) gene (Nickerson et al., 2000), from which we ignored one multi-alleic site to simplify our analysis.
The fewer SNPs in the LPL dataset makes it more manageable for illustrative purposes. In addition, its
greater depth of coverage allows us to draw more con� dent predictions and provides enough individuals
to compare results from distinct subsets of the population sample.

3. RESULTS

We � rst asked whether the concept of blocks is robust to the various block measures. We conducted
comparisons by running the available algorithms on the two datasets and comparing the outcomes using
the shared boundary statistic described above. Table 1 describes the results when run on the chromosome
21 data of Patil et al. (2001). We note that it is also possible to compare an algorithm to itself because
of the fact that the block de� nitions generally yield many equally good solutions of which the algorithms
must choose just one. By independently sampling among the optima, we can compare distinct runs of a
single algorithm, revealing what is robust to that single de� nition as well as providing a baseline for how
much solutions derived by distinct methods can possibly coincide with one another. Although the percent
similarities between distinct methods or even within any one method are not high in an absolute sense,
they are much greater than can be explained by chance. The four-gamete test appears much closer to the
diversity- and LD-based tests than either of those is to the other. Furthermore, minimum SNP solutions
appear to have more in common with one another than minimum block solutions.

For purposes of illustration, we provide visual comparisons of block assignments for the LPL dataset of
Nickerson et al. (2000). Due to the much smaller number of SNPs in the LPL dataset compared to the chro-
mosome 21 dataset, pairwise comparisons do not generally yield statistically signi� cant results, although
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Table 1. Comparisons of Block De� nitions on the Chromosome 21
Dataset of Patil et al. Minimizing Blocksa

4-gamete Diversity LD

Min. blocks
4-gamete 45.3%/7:25 £ 10¡1206 15.7%/3:02 £ 10¡162 12.3%/1:70 £ 10¡18

Diversity -/- 33.8%/2:97 £ 10¡626 7.19%/3:89 £ 10¡5

LD -/- -/- 54.3%/3:09 £ 10¡1761

Min. SNPs
4-gamete 65.3%/2:16 £ 10¡2276 22.6%/5:30 £ 10¡366 16.0%/1:03 £ 10¡54

Diversity -/- 51.5%/6:71 £ 10¡1222 9.70%/6:14 £ 10¡23

LD -/- -/- 70.5%/7:67 £ 10¡2921

aEach element of the matrix gives the percentage of block boundaries assigned by either method that are
shared by both, followed by the p-value of the overlap. Elements comparing a method to itself show values for
two distinct runs of the same algorithm each of which is choosing an optimal solution uniformly at random.

FIG. 1. Pairwise comparison of block boundaries for the different block de� nitions for the LPL dataset of Nickerson
et al. Each image shows the block boundaries as vertical lines, with boundaries above the horizontal line coming from
the � rst method and those below the horizontal line coming from the second method. Those boundaries appearing
above and below the horizontal line are shared by both methods and are drawn thicker in order to highlight them.

Table 2. Comparisons of Minimal Block to Minimal SNP
Optimization Criteria for Each Block De� nition on the

Chromosome 21 Dataset of Patil et al.a

Tests % Identity P-value

4-gamete 41.4% 4:51 £ 10¡1038

Diversity-based 29.9% 6:75 £ 10¡526

LD-based 49.8% 7:19 £ 10¡1513

aEach element of the table gives the percentage of block boundaries assigned by
either method that are shared by both, followed by the p-value of the overlap.

they show comparable percent agreement to the pairwise comparisons. Figure 1 illustrates the correspon-
dence between the different block measures by showing side-by-side comparisons of block boundaries for
each. The results appear to show generally poor agreement between block boundaries derived from distinct
measures, with somewhat better agreement between distinct runs of a single measure.

In order to assess the role of optimization criteria in concordance, we conducted further pairwise com-
parisons between the two criteria—minimum blocks or minimum SNPs—for each of the three block
de� nitions. Table 2 shows comparisons of the two criteria for each of the three block de� nitions examined.



ROBUSTNESS OF HAPLOTYPE BLOCK INFERENCE 17

FIG. 2. Pairwise comparison of block boundaries for the different optimization methods for the LPL dataset of
Nickerson et al. The comparisons shown are (A) 4-gamete (B) diversity-based (C) LD-based.

Table 3. Comparisons of Runs of a Single Block Assignment Algorithm on
Two Halves of a Balanced Randomly Selected Partition of the

LPL Dataset of Nickerson et al.

Minimizing blocks Minimizing SNPs

Tests % Identity P-value % Identity P-value

4-gamete 35.1% 0.00287 34.0% 0.024
Diversity-based 0.00% 1.00 13.8% 0.372
LD-based 22.9% 0.072 16.3% 0.569

FIG. 3. Comparisons of block assignments using distinct population samples for a single method. Each row shows,
for a single block de� nition and optimization criterion, a comparison of boundaries derived from one part of the
partitioned dataset to boundaries derived from the other part followed by comparisons of each of the partial-dataset
solutions to the full-dataset solution.

We see substantially higher correspondence between distinct optimization criteria for a single block de� -
nition than we saw between distinct block criteria for a single optimization method. This result suggests
that minimizing the number of blocks is a reasonable approximation to minimizing the number of SNPs.
Figure 2 illustrates this greater concordance in the LPL data, particularly for the four-gamete method.
Furthermore, the � gure shows that when block decompositions do disagree, it is often because of a slight
slippage in some boundaries rather than a sizable overall change in block structure.

It is also important to assess our ability to detect haplotype blocks for realistic sizes of datasets. We
assessed this with the LPL data by dividing the dataset into two subsets, randomly placing individuals into
one or the other, then comparing block decompositions drawn from the two samples by a single method.
We did not attempt this analysis on the Patil et al. (2001) chromosome 21 dataset because the number
of chromosomes would have been too small for the half-size datasets to yield reasonable results. Table 3
describes the results. There was substantially worse agreement between runs on separate half-size samples
(each with 71 chromosomes) than we saw between distinct runs on the same full-size sample (with 142
chromosomes). This is discouraging news, because it shows that even a sample of 35 individuals may be
too small to reliably capture haplotype block structures. The four-gamete test shows the most robustness
to sample and the diversity-based test the least. We attribute the lack of statistical signi� cance of most
results primarily to the small number of SNPs in the dataset.

Figure 3 illustrates the similarities of the block decompositions.Different block decomposition algorithms
show noticeably weaker correspondence than when the same algorithm is run twice on the same full-size
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dataset. Some slippage of boundaries no longer seems an adequate explanation for the discrepancies. While
the block structures have some correspondence, individual boundaries in one no longer generally have clear
corresponding boundaries nearby in the other.

4. DISCUSSION

Our results for comparisons between distinct methods support the notion that there is a tendency for the
variability in the human genome to be organized into blocks of adjacent sites that share ancestral history.
These blocks can be identi� ed crudely by a variety of ad hoc algorithms. Our results show unequivocally
that the different block-� nding algorithms identify similar structure to an extent that cannot be explained
by chance. They also show, however, that the absolute correspondence between block assignments can
differ markedly in response to changes in both block de� nition and optimization criterion.

Our results appear consistent with two contradictory explanations: that haplotype blocks are a valid
scienti� c reality but require greater sample sizes or better algorithms to detect reliably, or that the population
level processes of mutation, drift, and recombination that give rise to haplotype blocks do so in a way that
makes it very dif� cult to settle on a single uni� ed de� nition that best captures that history. We argue in
favor of the latter hypothesis on the grounds that if the blocks were simply and universally well-de� ned,
then current methods ought to be robust to a variety of measures of diversity, linkage disequilibrium,
and recombination probability. The fact that these measures do not consistently provide the same block
decomposition suggests that the imperfections lie in the blocks themselves and not the methods.

This result does not contradict the evidence for recombination hotspots in the genome (Jeffreys et al.,
2001), but does suggest that hotspots do not in general lead to a well de� ned block structure; this may be
either because existing computational methods cannot detect them reliably or because they do not account
for a suf� ciently large fraction of the total recombination in the genome. Nor do our results contradict
the notion that there are genuine regions of low diversity, high linkage disequilibrium, or low historic
recombination in the human genome. Rather, they argue that such regions are not as sharply de� ned as
the concept of discrete blocks would imply. Nonetheless, the fact that blocks, however de� ned, do allow
one to signi� cantly compress the information in SNP datasets suggests that they can be quite useful for
the primary task of representing SNP datasets by an informative subset of the SNPs. The inconsistency of
block decompositions, however, coupled with the correlation of SNPs among adjacent blocks, suggests that
other methods might perform better than haplotype blocks. In particular, we suggest considering methods
for reducing haplotype redundancy, such as the Alignment Algorithm of Schwartz et al. (2000), that detect
conserved haplotype regions without requiring a global block structure.
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