JOURNAL OF COMPUTATIONAL BIOLOGY
Volume 6, Number 2, 1999

Mary Ann Liebert, Inc.

Pp. 143-162

Lattice Simulations of Aggregation
Funnels for Protein Folding

S. ISTRAIL,! R. SCHWARTZ,? and J. KING?

ABSTRACT

A computer model of protein aggregation competing with productive folding is proposed. Our
model adapts techniques from lattice Monte Carlo studies of protein folding to the problem
of aggregation. However, rather than starting with a single string of residues, we allow in-
dependently folding strings to undergo collisions and consider their interactions in different
orientations. We first present some background into the nature and significance of protein
aggregation and the use of lattice Monte Carlo simulations in understanding other aspects of
protein folding. The results of a series of simulation experiments involving simple versions of
the model illustrate the importance of considering aggregation in simulations of protein fold-
ing and provide some preliminary understanding of the characteristics of the model. Finally,
we discuss the value of the model in general and of our particular design decisions and exper-
iments. We conclude that computer simulation techniques developed to study protein folding
can provide insights into protein aggregation, and that a better understanding of aggregation
may in turn provide new insights into and constraints on the more general protein folding
problem.
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1. INTRODUCTION

1.1. Protein aggregation

PROTEIN AGGREGATION refers to the self-association of protein chains into insoluble, biologically inactive
agglomerations during a folding reaction. These masses of protein, referred to as “inclusion bodies” if
they form within cells, form very high molecular weight particles with diameters up to one micron (Krueger
et al., 1990). This aggregated state is distinct from the precipitated state. Aggregated proteins are not in
equilibrium with correctly folding protein, and in general proteins cannot be separated from inclusion bodies
by dilution into native buffer conditions (Marston, 1986); strong denaturants are required to break apart
aggregated proteins (Mitraki et al., 1991).

Protein aggregation has become a significant problem for work involving the expression of cloned genes.
Prior to the widespread use of cloning, aggregation was primarily a concern when refolding proteins in
laboratory experiments, and could usually be controlled in these cases by denaturing and refolding at low
concentrations (Anfinsen and Haber, 1961). However, as it became possible to clone genes into heterologous
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hosts, aggregated states were found to be a common outcome of cloned gene expression (Marston, 1986;
De Bernardez-Clark and Georgiou, 1991). Developing an understanding of aggregation, and thus potentially
finding ways to control it, would have implications both for biological research and for the large-scale
production of proteins by the biotechnology industry.

Aggregation of protein folding intermediates or protein unfolding intermediates has been implicated in a
variety of human diseases. One class of these is referred to as amyloid diseases because of the accumulation
of inclusion body-like protein deposits with certain common features. These include light chain amyloidosis,
familial amyloid polyneuropathy, and Alzheimer’s disease (Wetzel, 1997). Attempts to prevent the self-
association of the amyloid precursor in Alzheimer’s disease is a major area of therapeutic approach. In other
diseases, including cystic fibrosis and certain defects of alpha-antitrypsin, mutations cause folding defects and
defective chains aggregate, though not into amyloid deposits. It is important to distinguish the association of
transient partially folded or unfolded species from the incorrect association of properly folded proteins (Betts
et al., 1997). The polymerization of sickle hemoglobin into filaments is the best studied example of the latter.

Prior theoretical work has studied the high-level kinetics and thermodynamics of inclusion body formation.
Ziff (1984) explored a quantitative model of aggregation developed through Smoluchowski’s coagulation
equation. Kiefthaber et al. (1991) modeled the problem as a simple kinetic competition between the first-
order correct folding reaction and higher-order aggregate formation. Speed et al. (1996) compared three
quantitative models, matching each to experimental data, and concluded that a multimeric polymerization
model best described the observed data. In addition, Patro and Przybycien (1994, 1996) have conducted
lattice simulations to explore the structure of inclusion bodies and the kinetics of their formation. While these
approaches have provided insight into the kinetics of the aggregation reaction, they have not explored the role
of the folding process in facilitating aggregation or the properties of sequences that may promote or inhibit
aggregation during folding.

Experimental evidence indicates that protein aggregation results from interactions of partially folded inter-
mediates. Temperature sensitive mutations of the P22 tailspike have been shown to promote inclusion body
formation at temperatures at which the native protein rarely aggregates (Haase-Pettingell and King, 1988).
However, when these temperature-sensitive mutants are folded at permissive temperature, the resulting folded
protein is equivalent to the folded native, and maintains the correct fold at temperatures far above those that
produce misfolding (Thomas et al., 1990). Aggregation rates have also been found to be reduced by folding
in the presence of high concentrations of chaperonins (Gordon et al., 1994).

Questions about folding kinetics have often proven difficult to answer through laboratory work. Existing
experimental techniques have had only limited success in determining the folds of the transient, partially folded
intermediates leading to native states since even early intermediates are large multimers of partially folded
chains. Aggregation events have been even more difficult to analyze, as aggregated proteins appear during
the folding process since their formation is kineticly controlled (Zettlmeissl et al., 1979; Speed et al., 1996);
they therefore cannot in general be studied through equilibrium thermodynamics. Computational methods,
including Monte Carlo simulations, have proven crucial in providing insight into aspects of the kinetics of
protein folding that current laboratory techniques cannot provide, and may therefore have similar value for
studies of aggregation.

1.2. Adapting lattice Monte Carlo methods to the study of aggregation

Lattice Monte Carlo models have long been a popular approach to studying the protein folding problem.
Early lattice models attempted to model biologically relevant proteins, and were biased to fold to known native
states (Taketomi et al., 1975; Go and Taketomi, 1978). Later protein folding models tended to be simpler,
often using the HP model (Dill, 1985) and the two-dimensional square or three-dimensional cubic lattice.
Since then, more complicated lattice models have been developed, which attempt to provide more flexibility
and better capture realistic folds and side-chain packing.

These methods have been successful in exploring aspects of folding kinetics that have not been amenable to
other techniques. The earliest models explored the relative importance of short- and long-range interactions
and the nature of transitions between the native and denatured states (Taketomi et al., 1975). Later simplified
models provided information on coil-globule transitions (Sali et al., 1994a,b) and the origin of secondary
structure (Chan and Dill, 1989, Lau and Dill, 1990). More complicated models have provided more detailed
theories for the formation of secondary structure and the forces driving it (Skolnick and Kolinski, 1991). For
simple lattices, lattice methods can allow exhaustive enumeration of all small peptides and of all possible
folds of those peptides (Lau and Dill, 1989).
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Since protein aggregation during refolding results from interactions of kinetics intermediates (Zettlmeissl
et al., 1979; Speed et al., 1996), studying aggregation should require a reasonable model of folding and
the intermediates produced. Lattice Monte Carlo models have provided the only computationally tractable
simulation method for studying this class of problem for large numbers of sequences, and furthermore, seem
to be a reasonable simplification for studying aggregation events. We have therefore chosen to simulate
aggregation through these methods.

2. METHODS

Our overall approach is to fold chains separately using conventional Monte Carlo techniques while testing
for packings of the pairs of conformations in which aggregation is “favorable”” However, just as many
variants exist for such methods for studying protein folding, many design decisions are required to apply
them to aggregation. At this stage, it remains unclear how effective different reasonable variations of these
models will be at answering questions that come up in studies of aggregation. However, we can speculate on
the benefits and drawbacks of different decisions by examining how analogous methods have performed for
general protein folding problems. In Results, we describe those variants of the model we have applied to the
present work; however, we include a discussion here of how the model might be applied differently and what
the trade-offs in doing so might be. We divide the discussion of the simulation model into two broad areas,
the folding model and the aggregation model, each of which must be specified in order to define a usable
simulation model. In the appendix, we discuss some algorithmic issues in implementing such a simulation
model.

2.1. The folding model

A necessary prerequisite to studying aggregation during folding is developing a model of the folding process
itself. The folding model can influence aggregation directly, by limiting when and how aggregation can occur,
or indirectly, by affecting the kinetics of the folding process. We now consider four basic areas in which the
folding model can be adapted: the lattice, the amino acid alphabet, the energy matrix, and the model dynamics.

2.1.1. Lattice. One of the most important considerations in defining a lattice Monte Carlo model is the
choice of lattice. Our proposed model is generalized with respect to the lattice, and should be adaptable to all
major crystal lattice models. The advantages and disadvantages of each for our purposes are similar to those for
the general protein folding problem. Simple lattices, such as the two-dimensional square lattice, may distort or
fail to capture crucial aspects of the folding process. For example, they may not provide a sufficiently realistic
model of secondary structure, which could be a serious problem if the packing of secondary structure elements
on different proteins is an important factor in aggregation, as suggested by Brems et al. (1986). However,
simple models greatly reduce computational time. In addition, two-dimensional models may be more accurate
than three-dimensional models at producing realistic surface area to volume ratios for the small chain lengths
that can be modeled (Chan and Dill, 1991). More complicated lattices, such as the 210 lattice (Skolnick
and Kolinski, 1991), can more accurately model real proteins, allowing realistic depictions of secondary
structure and more accurate packing of amino acids. However, if we rely on techniques involving exhaustive
enumeration then more complicated lattices will require more computer time, although it is possible that with
other methods more realistic lattices could prove more computationally tractable than simpler ones (Hart and
Istrail, 1997a,b). As with standard protein folding simulations, important results about aggregation might be
derived from even the simplest models, but more detailed work will likely require more realistic lattices.

2.1.2. Amino acid alphabet. Another important property of a lattice Monte Carlo model is the alphabet
used for encoding amino acids. The simplest is the HP alphabet (Dill, 1985). This alphabet does not accurately
represent the full range of differences between amino acids and tends to result in comparatively few sequences
with unique native states (Chan and Dill, 1996), but is easily handled computationally and is simple enough
to allow exhaustive enumeration of short peptides (Lau and Dill, 1989). Other models effectively support an
unbounded alphabet by allowing each residue a unique set of interaction energies, determined by knowledge of
the native conformation (Taketomi ez al., 1975). While such unbounded alphabets can produce rapid folding,
they may be difficult to justify biologically. Another extension of the alphabet is the addition of solvent/amino
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acid interaction energies (Sun et al., 1995), which may better capture the effects of hydrophobic forces. Again,
simple models may provide useful results which can then be probed more carefully by more realistic models.

2.1.3. Energy matrix. Another key consideration is the energy function for interactions between neigh-
boring amino acids and between amino acids and the solvent. In a contact energy model, this energy function
takes the form of a matrix of interaction values. The choice of energy matrix can affect aggregability directly,
by influencing the energetics of forming aggregation complexes, or indirectly, by changing the kinetics (Miller
etal., 1992) or thermodynamics (Chan and Dill, 1996) of the folding process. We provide simulation evidence
for the effect of the energy matrix on kinetics in section 3.3. Considerations in selecting the interaction energies
include: how physically reasonable the energy matrix is; whether it tends to produce stable, unique natives;
and how it affects the folding rate, which can be slowed by making folding less directed or by stabilizing local
minima (Miller et al., 1992). Alphabets can be selected empirically, based on amino acid contact frequencies
observed in solved protein structures (Tanaka and Scheraga, 1975), although simulation evidence indicates
that values derived in this way may not accurately reflect actual energy functions (Thomas and Dill, 1996).
An alternative technique deduces an energy matrix, given some known native and nonnative folds of one or
more chains, through a series of linear constraints imposed by the assumption of a gap between the native
and nonnative free energies (Crippen, 1996). For simple alphabets, an energy matrix may be derived by trial
and error, in order to give reasonable folding behavior for typical sequences.

2.1.4. Dynamics. One key issue in the model dynamics is the choice of move set. The move set can
affect folding kinetics (Chan and Dill, 1994), and thus, potentially, aggregability. Some issues that must be
considered when evaluating potential move sets are whether or not they are ergodic, how physically reasonable
they are, and how quickly they allow movement between different conformations. Considering aggregability
also suggests that we examine whether a move set biases chains to fold in ways that expose them to or protect
them from aggregation. It is beyond the scope of this paper to consider the many move sets that have been
proposed, their physical justifications, or their effects in practice. However, it is likely that aggregability will
depend on choice of move set, as foldicity does (Chan and Dill, 1994).

Once a move set has been determined, it is necessary to decide the transition probabilities between neigh-
boring folds of the chain. The most widely used method is the asymmetric Metropolis criterion (Metropolis
et al., 1953), which we can generalize for multiple chains either by randomly choosing one move among all
moves possible for all chains, or by accepting one move for each chain per Metropolis step. We could also
apply other variations on the more general idea of Kawasaki dynamics (Kawasaki, 1966a—c). For example,
we can determine the energy AG; of each possible move i, then choose one move at random among all moves
with probability distribution:

e~ AGi/kT
pi = Zj e—AG;/kT

This method yields identical thermodynamics to the asymmetric Metropolis method, but potentially very
different kinetics. It is not clear what effects these or other reasonable models of dynamics should have on
aggregation rates, suggesting a need for further study.

2.2. The aggregation model

In general, we test aggregability of two chains by folding them independently and performing a test for the
aggregability of the two current conformations after each folding event. Knowing the number of ways they
can aggregate and the energies of those potential aggregation events as a function of time can allow us to
estimate the probability that those two chains, folding together in a solution of known volume, will aggregate
to each other. To achieve a realistic estimate, it would be necessary to incorporate statistics derived from the
aggregation simulation model on the number of possible dimer interactions and their energetics into a more
complicated formula accounting for other factors affecting the favorability of aggregation, such as the nature
of the solvent, the solution concentration, and the temperature. This in turn would allow us to estimate the
probability that a solution of a known concentration of simultaneously folding chains will produce a particular
yield of non-aggregating, high-throughput proteins. For more accurate results, it may be necessary to model
large numbers of chains explicitly; however, due to the computational difficulties this would involve, we
currently restrict ourselves to two chains at a time.
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A

FIG. 1. Aggregation packings for a pair of chains. Two conformations of a short peptide are packed into two distinct
packings, each of which has three H-H contacts. Each sphere in these pictures represents a single amino acid, with the
lighter color representing hydrophobic and the darker hydrophilic amino acids.

2.2.1. Conditions for aggregation. Perhaps the most crucial issue in incorporating aggregation into a
folding model is deciding under what conditions aggregation can occur. One simple answer is to use an
energy cutoff. Specifically, we compare possible “aggregation packings” of two partially folded chains and
allow aggregation to occur if the energy change of some packing is below a specified threshold. We define
an aggregation packing of two chain conformations to be a way of placing those two conformations against
each other on the lattice used in the simulation such that the chain folds are unchanged and the two chains
do not overlap. Aggregation packings are illustrated in Fig. 1. This model allows for a relatively simple
aggregation test. In addition, given an accurate estimate of the entropy loss of aggregation, we should be able
to provide a realistic threshold at which aggregation becomes energetically favorable. A similar approach
would allow aggregation for any packing energy, but with the probability of aggregation determined by the
energy change of the aggregation packing; this would be a more complicated model and most likely would
be less consistent between runs, but may be more realistic. Another very different approach involves adding
geometric constraints, allowing aggregation only when a sizable portion of one chain can be packed into a
corresponding pocket of the other. However, it is not currently known whether geometric constraints will more
accurately model actual aggregation, and including them could substantially complicate the computational
aspects of aggregation testing. Further investigation will likely be needed to determine the robustness of
aggregation measures to such issues.

2.2.2. Initial conditions. Another issue is the initial condition of chains in an aggregability test. We must
specify some starting state, and an unrealistic choice might significantly disrupt measured probabilities over
the course of a folding reaction. The simplest model would begin all chains in a linear state. However, for many
reasonable folding models, two identical chains will be highly aggregable when both are in linear states, since
all hydrophobic residues will be exposed. This high aggregability early on could skew the total aggregation
probabilities over the course of the folding process. Another possibility is to begin chains in a random state;
this would largely eliminate the problem described above, but may be difficult to justify biologically. Although
this is physically reasonable for fully denatured chains, it is a poor representation of the newly synthesized
chain within cells. We might also allow chains to fold without the possibility of aggregation for some amount
of time before we begin testing for aggregation. However, this requires finding some reasonable value for
the time before aggregation can occur. A fourth possibility is to start chains in some “partially protected”
state, which would reduce the probability of aggregation early in the simulation. One such state might be a
maximally compact globule; we could justify this from results indicating that chains fold quickly to a compact
state, then slowly to the native (Sali et al., 1994a; Tiktopulo ez al., 1994), suggesting that the aggregation
test should sample predominantly from intermediates that occur after the chain reaches a compact state. A
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different and possibly more biologically reasonable model would begin chains in a helix or helix-like state,
defensible from results suggesting that chains are placed in a helical configuration as they exit the ribosome
(Lim and Spirin, 1985).

2.2.3. Simplified testing procedures. All of the approaches for aggregation testing described above can
require considerable run-time, and it is therefore useful to consider how we might simplify the problem without
substantially changing our results. One simplification is to test for aggregation only periodically, rather than
after each folding event. If aggregability of a chain changes slowly over time, then this may still provide an
accurate count of potential aggregation events while reducing run-time. However, if aggregability changes
rapidly and aggregation events are comparatively rare, then a long time between samples could substantially
alter measured aggregabilities. It should be possible to distinguish between these possibilities by comparing
results with and without periodic sampling. However, it may be difficult to determine how robust the result is
to changes in sequences and model parameters. We could also increase performance by randomly sampling
possible ways two chains could collide, rather than exhaustively searching them. The number of aggregation
packings of two chains against each other can potentially be proportional to [,/5(d — 2), where /; and [, are
the lengths of the two chains and d is the degree of the lattice; thus, avoiding exhaustive checking could lead
to a significant speedup even for moderately small chains. However, this may come at the expense of requiring
many more simulation runs in order to produce reliable data.

2.2.4. Reversibility. A final issue is whether we allow reversible aggregation events. The simplest model
would assume that aggregated chains cannot subsequently detach and fold to the native, in accordance with
experimental observations of the properties of inclusion bodies, which are irreversibly associated under
the conditions of their formation (Marston, 1986; Chrunyk et al., 1993). However, we could permit some
probability of chains breaking apart after aggregation, allowing the folding process to resume. This is closely
related to considerations of aggregation conditions. If we allow aggregation to occur with some probability
even when it is energetically unfavorable or only slightly favorable, then gathering realistic aggregation rates
might require allowing reversible aggregation events. On the other hand, if we use a threshold to restrict
aggregation events to very stable complexes, then allowing the reaction to reverse itself might have very little
impact on the results and therefore be an unnecessary complication. Resolving the question of how to account
for reversibility in the simulation model also may require further experimental investigation.

3. RESULTS

We have applied a basic variant of this model to several experiments on the nature and source of aggregability
and the influence of the model on experimental results. For these preliminary experiments, we used simple
variations on the model, both because those variations are computationally easier to implement and run and
because we believe it is useful to learn what we can from the simplest models before attempting to extend
them. All of the experiments described below therefore use a two-dimensional lattice and either an HP or
HP/solvent alphabet. In addition, all apply an energy threshold aggregation test, with the threshold energy set
at —15 kcal/mole, and treat aggregation events as nonreversible. We use a helix-like initial state for all chains.
For these tests, we have worked only with very short sequences, because at longer lengths the computational
time becomes prohibitive.

3.1. Predicting aggregability

Our first experiments investigated the robustness of aggregability as a sequence property and the identifi-
cation of characteristics of a sequence which influence its propensity for aggregation. For this experiment,
we have tested all sequences of length 16 that have unique native states for the HP model using only H-H
contact energies on the two-dimensional square lattice. For each such sequence, we ran Metropolis Monte
Carlo simulations of two instances of that sequence, using the MS2 move set of Chan and Dill (1993), an
energy of —5 kcal/mole, and a temperature of 293 K. We sampled the possible ways the two could aggregate
every 100 steps. We will henceforth refer to the model created by this choice of parameters as our standard
model. Because the gaps between the energies of the natives and the energies of other nearby conformations
are too small to stabilize chains of this length, we artificially froze each chain’s state when it reached native.
We terminated each test when both chains reached the native state. We have defined the aggregability of a



LATTICE SIMULATIONS OF PROTEIN AGGREGATION 149

A B 4
7000 T . . . 10
— SHs
© BH
x 7H:
6000 | Mg
3 —-11H;
> 10
3‘ 5000 L
A oo
—~ —
o -
g g
o 4000 ¢ o
g g0
g g
< 3000} &
: g
g g
2000 ¢ 1
o o
10
z Z
1000 |
0
0 . . 10 . . . L
4 6 8 - 10 12 14 2 3 4 S 6 7
# hydrophobic residues # hydrophilic blocks

FIG. 2. Average aggregability as a function of HP sequence. Average aggregability data is shown for native-unique
sequences of length 16. Aggregability is defined as the number of ways of packing two folding chains together with energy
at most —15 kcal/mole, sampling every 100 moves until both chains have folded to the native state. (A) Aggregability
data separated according to number of hydrophobic residues. (B) Semi-log plot of data further subdivided by the number
of disjoint blocks of hydrophilic residues (i.e., groups of consecutive hydrophilic residues containing no hydrophobic
residues). Data in B is shown only for numbers of hydrophobic residues that would produce at least two data points.

chain to be the number of possible aggregation events we counted, sampling every 100 moves, for the chain
folding alongside a copy of itself.

3.1.1. Aggregability and HP sequence. The first concern was in the direct relationship between aggre-
gability and HP sequence. As we would expect, as the number of hydrophobic residues increases, average
aggregability increases. This is illustrated in Fig. 2A. This in itself suggests some competition between ag-
gregability and foldicity, at least for the HP model and the sequence length we considered, as sequences with
unique native states have slightly more hydrophobic residues than would be expected by chance, with 8.67
hydrophobic residues per sequence among native-unique sequences of length sixteen, versus 8.00 among all
sequences of length 16. However, the numbers of hydrophobic and hydrophilic residues alone do not entirely
determine the aggregability. Even when the number of hydrophobic residues is held constant, aggregability is
related to how concentrated hydrophobic and hydrophilic residues are in contiguous blocks of the sequence.
Figure 2B shows average aggregabilities for fixed numbers of hydrophobic residues as a function of the num-
ber of disjoint blocks of hydrophilic residues. This data illustrates a general, although not entirely consistent,
trend in which fewer blocks of either type leads to increased aggregability; a similar trend holds, although
with more inconsistencies, if we look instead at the number of hydrophobic blocks. These trends implies
that sequences which alternate often between hydrophobic and hydrophilic residues are better protected from
aggregation than those that concentrate all hydrophobics and all hydrophilics into a few large groups.

3.1.2. Aggregability and folding time. We have also analyzed aggregability as a function of folding time.
This data is illustrated in Fig. 3A. The data is clustered near the origin, meaning that most native unique
sequences have relatively low folding times and aggregabilities. Those that have very high aggregability
tend to have intermediate folding times. Those with the longest folding times tend to have comparatively
low aggregabilities. The low aggregabilities of the fastest folding sequences can be largely explained by
the fact that they have little time in which to aggregate before they fold to native. We can confirm this
by looking at aggregability divided by folding time, as a function of folding time, illustrated in Fig. 3B.
This illustrates that sequences with rapid folding times tend to have comparatively high propensities for
aggregation before they finish folding, but that this is more than offset by the short time they spend before
folding to native. The low aggregabilities of slow-folding chains appears to be due to their unusually large
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FIG. 3. Aggregability versus folding time. Aggregability values are plotted against the time required for both chains of

a pair to fold to native for all native-unique sequences of length 16 using our standard model. (A) Aggregability versus
folding time. (B) Aggregability divided by folding time versus folding time.

numbers of hydrophilic residues, making the folding process less directed while simultaneously reducing the
possibilities for aggregation. On the whole, this data suggests that while rapid foldicity often accompanies low
aggregability, they are distinct properties with neither guaranteeing the other and with occasional competition
between the two.

3.1.3. Aggregability and the native energy. Finally, we looked at how aggregability relates to the native
state. Figure 4A shows that lower native energies tend to produce greater aggregability. However, this may be a
side effect of the correlation we would expect between low native energies and large numbers of hydrophobic
residues. We can confirm this by breaking data down according to numbers of hydrophobic residues per
sequence, shown in Fig. 4B. We then see that if the number of hydrophobic residues is held constant, then
sequences tend to become less aggregable with decreasing native energies. This suggests that properties of
the native state, and in particular, how well the native state buries its hydrophobic residues, can help to
predict aggregability during the folding process. We chose to look at the native energy because it is an easily
calculated sequence property on the lattice which exhibits a reasonable amount of variation among the 16-mers
we consider in these experiments; other sequence properties may prove stronger predictors of aggregability
when calculated using more realistic models and more biologically relevant sequence lengths.
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FIG. 4. Aggregability versus native energy. (A) Average aggregability as a function of the number of H-H contacts in
the minimum energy state for all native-unique 16-mers. (B) Average aggregability as a function of the number of native
H-H contacts for native-unique 16-mers with fixed numbers of hydrophobic residues.

3.2. Properties of aggregability

In order to better understand the nature of aggregability, we have attempted more thorough testing of a
small number of slightly longer sequences. We chose 10 sequences randomly from among the native-unique
sequences of length eighteen and ran each through 10 repetitions of an aggregability test using our standard
model, as described for the previous experiment. We recorded both the number of ways of aggregating and
the energy of each sequence as a function of number of Monte Carlo moves completed, sampled every 100
moves. This data is illustrated in Fig. 5.

3.2.1. Aggregability as a sequence property. One feature of this data is that the general level of aggrega-
bility per unit time of a particular chain pair during the folding process is approximately consistent between
separate runs of a single chain and often noticeably different between runs of separate chains. For example,
the difference between Fig. 5B and Fig. SF is noticeably greater than that between distinct runs of either
particular chain. This confirms the notion that aggregability as we measure it is a meaningful and intrinsic
property of sequences. However, we can also note that the large differences in folding time between runs can
significantly affect overall aggregability.

3.2.2. Aggregability of the native state. A second important feature is that in all cases there is a noticeable
drop in aggregability once one chain reaches the native state and is frozen there by the simulator. In some
cases, the aggregability of the pair drops to zero as soon as either one reaches native, while in others it remains
nonzero but always at significantly lower levels than when both were folding. This may be explained by the
fact that the native would be expected to bury its hydrophobic residues more effectively than the folding
intermediates, thereby insuring that there are few exposed hydrophobics with which an aggregation event can
occur. This observation creates the notion that some conformations of a sequence, including the native, are
better “protected” than others and are therefore less susceptible to aggregation.

3.3. Dependence on the energy matrix

In order to begin exploring the robustness of the model, we have examined how the results depend on the
energy matrix. For this experiment, we have examined three different energy matrices:
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FIG. 5. Aggregability as a function of time for 10 peptides (A, B, C, D, E, F, G, H, I, and J) in 10 experiments each.
Each picture plots the number of potential aggregation events per unit time measured for a pair of identical chains during
the folding process, for each of 10 separate runs. Data was sampled every 100 Monte Carlo steps. The change from black
to grey in each graph shows where one of the chains first reached the minimum energy state, at which point it was frozen
in that state. A run was ended once both chains had reached their minimum energy state.

e M,: H-H contact energy is —5; all others are 0.
® M,: H-H contact energy is —3; H-solvent is 1; all others are 0.
® M;: H-H contact energy is —1; H-solvent is 2; all others are 0.

M, corresponds to the standard HP energy of Dill (1985), while M, and Mj; are variants on the sHP model of
Sun et al. (1995). These matrices were chosen so that in each case the net energy contribution caused by an
H-H contact (which is equal to the H-H contact energy minus twice the H-solvent contact energy) will be —5.
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FIG. 6. Aggregability versus folding time for three energy matrices. Aggregability tests were performed for the three
energy matrices, using all sequences of length 16 that have unique native states on the two-dimensional square lattice for
all three matrices. Testing conditions were otherwise identical to those in section 3.1. (A) Data from M. (B) Data from
Mj. (C) Data from M3.

As in section 3.1, we used sequences of length 16. In order to insure that results are comparable between the
three matrices, we have examined only those sequences that have unique native states for all three matrices.
Otherwise, experimental conditions are identical to those of section 3.1.

3.3.1. Features preserved between energy functions. One notable observation is that all three experiments
share the qualitative features observed in section 3.1, although there are significant quantitative differences
between them. Plots of aggregability as a function of folding time are shown for the three matrices in Fig. 6.
For all three matrices, rapidly folding and slowly folding sequences have comparatively low aggregation
rates, with high aggregability sequences concentrated around intermediate folding times. Figure 7 shows three
representative tables of aggregability as a function of numbers hydrophilic blocks, displaying the same general
trend observed in section 3.1, although less strongly as H-solvent energy increases. Despite these similarities,
average aggregabilities increase as we increase the H-solvent energy, with values of 246, 264, and 416 for
M, M,, and M3, respectively. The increased aggregabilities are not surprising, since any aggregation packing
for M, must have at least as much energy as the same packing for M;, and any aggregation packing for M;
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must have at least as much energy as the same packing for M,. Therefore, these results would be expected if
the folding pathways were similar for the three matrices.

3.3.2. Distinctions between energy functions. Another important observation is that the difference in
aggregability between runs with M; and M, is dependent on the number of hydrophobic residues in the
sequence. Figure 8 shows a semi-log plot of average aggregability as a function of number of hydrophobic
residues for the three matrices. We discarded data from three chains that had four hydrophobic residues each,
because they did not aggregate at all with M; and therefore could not be plotted on a semi-log plot. We can
note that chains with six to 10 hydrophobics were on average more aggregable with M, than with M, while
for any other number, chains were more aggregable with M, than with M,. Because, as stated above, any
particular pair of intermediates must be at least as aggregable with M, as they are with M, this result implies
that some chains folded with M, favor less aggregable intermediates than they do when folded with M.
This effect may occur because M, will tend to favor conformations that bury hydrophobic residues, even if
it is through H-P contacts instead of H-H contacts, thereby lowering aggregability of chains with sufficiently
many hydrophilic residues. It is unclear whether the small increase in aggregability for chains with four or
five hydrophobic residues folded with M, relative to M, reflects an actual trend or noise in the data due to the
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small number of sequences in those two categories (29 out of 1,424). However, the overall result is significant
in that it demonstrates that some folding funnel regions leading to the native may be better protected from
aggregation than others, and an accurate model of folding kinetics may therefore be necessary to reliably
estimate aggregability.

3.4. Energy landscape

One aspect of folding that is not strictly related to aggregation but can help in interpreting other results is
the nature of the energy landscape of folding. Of specific interest is the nature of conformations along the
folding pathway that are reachable in a single Monte Carlo step from those on the pathway. The simulation
tools were modified to gather statistics on those conformations over the course of the folding process of a
protein. The results for five randomly selected native unique 16-mers are shown in Fig. 9. Figure 9A shows
the average number of conformations reachable from the current conformation as a function of the number of
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FIG.9. The nature of the energy landscape in the immediate vicinity of the folding pathway for five randomly chosen
native-unique 16-mers. (A) The number of valid conformations reachable in one Monte Carlo step from the current
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(B) The number of valid conformations reachable in one Monte Carlo step from the current conformation that have lower
energy than the current conformation, over the course of a folding reaction, as a function of the number of hydrophobic-
hydrophobic contacts.
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hydrophobic-hydrophobic contacts of the current conformation over the course of the folding reaction. The
graph shows a notable downward trend, with fewer conformations reachable the lower the energy becomes.
One interesting feature is that for four of the five, the number of neighbors noticeably increases between the
second lowest and lowest energy states. Figure 9B shows the average number of conformations reachable from
the current conformation that contain more hydrophobic-hydrophobic contacts than the current conformations,
again as a function of the number of hydrophobic-hydrophobic contacts in the current conformation. This
graph shows an even more pronounced trend than Fig. 9A, with numbers of neighbors of lower energy dropping
sharply as energy drops.

4. DISCUSSION

A primary conclusion of our experiments is that aggregability is a meaningful and consistent property
of protein sequences. We can define a quantifiable measure of aggregability that is reasonably consistent in
multiple tests of a single chain and distinguishes between different chains. Furthermore, this quantity is related
to measurable sequence properties, suggesting the possibility of developing predictive routines for estimating
aggregability where simulation work would require an unreasonable amount of time. However, because some
significant variability is introduced by differences in folding time from one trial to another, it may be that
aggregability and folding time must be considered together in order to give an accurate picture of aggregation
probabilities. We should also note that the property of aggregability appears to occur along a continuum,
rather than to be either present or absent. Furthermore, we would expect from laboratory results that whether
a chain actually aggregates during synthesis will depend not only on the innate aggregability of the sequence,
but also on concentration during the folding process (Anfinsen and Haber, 1961; Kiefhaber et al., 1991), the
temperature (King et al., 1996), and the presence of chaperonins (Gordon et al., 1994). It will most likely
require a much more sophisticated understanding of the interactions of these and other factors influencing
aggregability to reliably predict whether particular sequences will aggregate in significant numbers under a
given set of folding conditions.

A related conclusion is that aggregability is primarily a property of kinetic intérmediates, rather than native
conformations, consistent with the results of experimental work on aggregation (Zettimeissl ez al., 1979).
As section 3.2 demonstrates, aggregability of a pair of chains drops considerably when one is frozen in
the native state, suggesting that some conformations, including the native, tend to be well-protected from
aggregation. Section 3.3 confirms this by showing that changing the energy function in a way that would tend
to affect folding pathways can alter aggregability of many sequences in a consistent manner. The evidence
that some conformations of a chain are better protected from aggregation than others implies that chains that
tend to fold predominantly or exclusively through such “protected” conformations can be expected to have
relatively low aggregability. Results from section 3.3 suggest that a sufficiently large ratio of hydrophilic to
hydrophobic residues can promote the existence of protected conformations. We can conjecture that other
sequence properties that diminish aggregability, such as increasing numbers of hydrophilic blocks, may also
favor the emergence of protected conformations.

On the basis of these conclusions, we can propose a model for “protected folding” of globular proteins, in
which hydrophilic residues quickly form a barrier around an initially disordered hydrophobic core, allowing
the hydrophobic core to fold to its native state while preventing hydrophobic interactions with other chains.
This model s illustrated in Fig. 10. Understanding better the nature of protected conformations or how their use
as folding intermediates can be encouraged could be an important part of adding knowledge of aggregability
to sequence design work.

We can also note that, in our model, aggregability is strongly influenced by folding rate, and that rapid
folding can protect against aggregation. This suggests that we cannot understand or predict aggregation
without also considering sequence properties that control the rate of folding. It may be possible to incorporate
knowledge of aggregability into a more general understanding of protein folding pathways. Efficient folding
would require finding energetically favorable pathways that avoid not only standard potential wells in all
simultaneously folding proteins, but also the kinetic traps created by aggregability constraints. Results on
the nature of the energy landscape suggest that the local regions searched will tend to shrink as a chain gets
closer to its native state; this is most likely due to a combination of the collapse of the chain leading to fewer
self-avoiding neighbors and the difficulty of improving the energy as the chain approaches its native state.
These results would be expected to lead to a more directed search when the conformation is close to the native;
this may suggest that proteins need to have relatively large areas of their conformational space protected from
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FIG. 10. Proposed model of protected folding. This diagram illustrates a model of protein folding which favors interme-
diates that are protected from aggregation. (A) Abstract model of protected folding. Black regions are hydrophobic, while
grey regions are hydrophilic. Folding proceeds from an initially unfolded protein through an early folding intermediate in
which a hydrophobic core is shielded by hydrophilic regions, providing protection against aggregation during the folding
process, to the final folded form, which is protected from aggregation. (B) An illustration of how such a model might
appear for the folding process on a lattice.

aggregation early in the folding reaction, but could have only narrow protected regions as they get close to
the native. The additional constraints these factors place on the nature of folding could be expected to impose
greater restrictions on valid folding pathways than are accounted for by prior lattice folding studies, which
did not consider the effects of aggregation.

Finally, we note that considerations of aggregation may place additional constraints on what models can be
considered reasonable for studying aggregability and for more general protein folding problems. Our results
indicate that aggregation in our model results primarily from the interactions of folding intermediates. It has
already been demonstrated that folding intermediates are affected by the choice of move set (Chan and Dill,
1994). It might be possible to develop aggregation estimates independent of the move set by enumerating
all possible pairs of conformations that are capable of aggregating to each other; however, this may prove
computationally difficult and also will lose information on folding kinetics. Furthermore, as we demonstrate
in section 3.3, the choice of energy function can also influence folding intermediates and thereby affect
aggregation rates. Developing more realistic simulations of aggregation will therefore require determining



158 ISTRAIL ET AL.

which choices for these and other parameters are most physically reasonable. Conversely, testing how well
simulation models match aggregation behavior observed in the laboratory may provide an additional method
for testing how physically reasonable various design decisions are in more general protein folding models.

Caution is required in interpreting results derived from a simplified model such as ours, particularly in the
very basic variants so far implemented. We have attempted to explore the robustness of the model within a
limited scope by varying the energy function. This experiment demonstrates that some important qualitative
aspects of simulations are consistent across variations in this parameter, while quantitative data tends to
be sensitive to this parameter and probably cannot be relied upon without a better understanding of what
parameter values are reasonable. Furthermore, we have used only a simple two-dimensional model, used
only HP and HP-solvent alphabets, and restricted ourselves to short sequences; all these simplifications could
significantly affect our results. Learning which aspects of our model are reliable and which are not will require
exploring their robustness to many other variations.

The software used for these simulations will be made available to interested readers as part of the Tortilla
package of protein folding tools, to be released by Sandia National Laboratories. The specific software
described here includes code suitable for running all of the simulations described above. In addition, it is
designed to be easily modified to incorporate other variations on the model; it may therefore be useful as a
starting point for developing more sophisticated lattice simulations of aggregation during the folding process.

A. ALGORITHMS

A.l. Finding and counting aggregation packings

Our primary algorithmic concern involves a basic question we would like to be able to answer efficiently:
given two chain conformations and an energy threshold, how many aggregation packings of the two confor-
mations are there such that the energy of the packing is at least the threshold. Solving this problem is critical
to measuring the aggregability of chains in a simulation. The problem will depend on the energy matrix and
the choice of lattice; we describe an algorithm that is general with respect to those parameters, although in
section A.3 we outline some improvements that can be made for particular design decisions. A related but
less significant problem is, given that an aggregation packing of at least the threshold energy exists, that of
finding one such packing. We show that both of these problems yield polynomial time algorithms.

The key to our algorithmic approach is that we can exhaustively enumerate aggregation packings without
repetition in polynomial time in the sequence length and the degree of the lattice. Once we accomplish this,
the answers to the questions we posed can be easily derived. We will therefore only describe in detail how to
count aggregation packings using exhaustive enumeration, since finding an aggregation packing will then be
straightforward. Pseudo-code for the counting algorithm is given in Fig. 11.

The intuition behind the algorithm is to attempt all ways of packing the two chains with at least one
connection such that repeats are eliminated. We can assume that chain a is frozen in a particular position
and orientation, and we therefore only need to move chain b into different positions and orientations relative
to a. The outermost for loop defines the orientation of chain b, by iterating over all ways of rotating or
flipping the lattice. The second loop picks one residue from the first chain, against which the second will
be packed. The third loop iterates over the vectors defining the lattice, i.e., the set of directions from each
lattice point to all of its neighboring lattice points; this corresponds to choosing one face of the residue of
chain a chosen in the previous for loop. The next for loop iterates over the residues of chain b, choosing one
to pack against the chosen residue of chain a. This specifies both the position and orientation of chain b, at
which point the individual residues of b can be positioned one at a time on a’s lattice. Since these loops will
cover all residues of each chain, and pack each pair of faces of each residue in all possible ways, they will
cover every conformation. However, an additional complication is needed to insure conformations are not
overcounted. This is the purpose of the matrix M, which records the position of the first residue of chain b for
each orientation of b. Since chain a does not move, specifying the orientation of chain » and the position of
a single residue completely specifies the position of the entire chain. Therefore, checking for repeated values
of the position of a particular residue, for a fixed orientation, eliminates all duplicated packings.

The above algorithm yields a polynomial run-time in all inputs. The outermost loop iterates over rotations
of the lattice, which can be bounded by |L|?, since a rotation of the lattice can be specified by anchoring
any two lattice edges that are not parallel. The next loop requires |a| iterations, the third |L|, and the fourth
|b|. The code inside these four loops will therefore be run at most |L|?|a||b| times. Placing chain b in
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Given chains a and b, energy threshold T, and a set L of vectors defining the lattice, define a; to be residue i of a,
@i = (Uz,i,Uy,i, uz,i) to be the position of residue ¢ of a, and Azy. to be i if 4; = (x,y,2), 0 otherwise. Similarly,
define b; to be residue ¢ of b, #; = (vz,i,vy,i,;,i) to be the position of residue 7 of b:
define an array of boolean values, M, with the same dimension as the lattice, with size
2max(|al, |b}) maxreL(“ﬂloo) in each dimension; an integer count, initially 0; a boolean variable collision; and a
new coordinate array w of length |b}
for each rotation o of the lattice vectors which preserves the lattice:
Mzy, « false,Vz,y,z
fori=1to |a|:
for each leL:
forj =1to|b|:
collision + false
Wi d; +1
if Aw,'j,wv_’. W g # 0 then collision «+ true
k—j-1
while (k > 1) and —collision:
Wy Wr41 + (T — Tr41)
if sz,k,wv’k,w,‘k # 0 then collision + true
k—k-1
end while
k—j+1
while (k < |b|) and —collision:
Wy & Wiy + (T — Tp—1)
if Aw, powy pow, i 7 0 then collision « true
k+—k+1
end while
if_'MVz.l'vy.l'ux.l
then M.,,,‘l,,,‘,_l,.,,‘l <« true
else if ~collision and (energy(4€ U w) — energy(@) — energy(v)) > T then count « count + 1
end if
end for
end for
end for
end for

FIG. 11. Pseudo-code for counting aggregable packings exceeding a threshold energy.

its new position and orientation requires O(|b|) time, while computing the energy change of the packing
requires O(|L|min(|a|, |b|)) time. This accounts for everything except clearing matrix A, which requires
O(max(|al, |b|)?) time for a two-dimensional lattice and O(max(|a|, |b|)?) time for a three-dimensional
lattice, for each of O(|L|?) iterations. However, we can easily maintain a separate list of elements of A that
have been set on each pass through the outer loop, and use that list to clear the array, reducing the total run-time
for all calls to this operation to O(|L|?|b|). Combining all of these factors gives a run-time complexity of
O(|L)|b| +|L?|a||b|> + |L|*|a]|b| min(|a]|, |b])). Because the problem is symmetrical with respect to the
two chains, we can assume without loss of generality that |a| > || to give a bound of O(|L|*|a||b|?).

The space complexity of the algorithm is also polynomially bounded. The only data structures main-
tained that are not linear in all parameters are the three arrays A, B, and M. For a two-dimensional
lattice, each of these has size O((max(|al, |b|)max;e,_(||l||°o))2), while for three-dimensional lattice, it is
O((max(|a|, |b]) max;, L(llilloo))3). Since there are only a constant number of data structures in use at any
time, those values provide a bound on the space complexity of the entire algorithm. Applying the assumption
that |a| > |b| gives a space bound of O(}a|?) for two dimensions and O(|a|?) for three dimensions.

A.2. Reducing memory overhead

Two modifications have been incorporated to reduce the memory usage of the algorithm. Both rely on
replacing multi-dimensional arrays with hash tables.

The first modification replaces the array M with a hash table. We can note that while M contains O(Ja|?)
elements for a two-dimensional lattice and O(|a|?) elements for a three-dimensional lattice, we will never
use more than |b| elements of either at any one time. Therefore, we can replace M with a hash table of size
O(|b|) while still retaining an expected O(1) time to modify or examine elements of the table. The second
modification replaces array A with a hash table. As with the previous modification, the hash table need only
be proportional in size to |a|, rather than to |a|? for a two-dimensional lattice or |a|? for a three-dimensional
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lattice. This modification will also preserve the expected O(1) time to search or modify a single element of
either data structure.

Combining these modifications results in a reduction in space complexity in both the two- and three-
dimensional cases. For both cases, we can observe that there are still only a constant number of data structures
in use, and none, other than the two arrays we are replacing with hash tables, requires more than O(|a|)
space. Therefore, in the two-dimensional case, replacing those arrays with hash tables will reduce the overall
space complexity from O(|a|?) to O(|a|). In the three dimensional case, the reduction will be from O(Ja|?)
to O(|al).

A.3. Heuristics

The run-time of the algorithm might be improved given certain assumptions about the input data or the
variant of the model used. Neither of these modifications will give an asymptotic improvement for general
data, although they might give noticeable improvements for typical data.

The first heuristic is designed to improve performance in cases where we use an energy threshold test and
our energy matrix is negative for hydrophobic-hydrophobic contacts and zero for all others. This condition
is valid for most of the experiments described in section 3. The heuristic is based on the observation that
aggregation in this model can only occur if at least one hydrophobic-hydrophobic contact is made. Therefore,
the for loops that iterate over residués of the two chains need only iterate over hydrophobic residues. If
we precompute the indices of the hydrophobic residues, then iterate only over those precomputed indices,
then we can conceivably speed computations by a factor of nearly four for typical chains (i.e., those with
approximately as many hydrophobic residues as hydrophilic) and potentially by much more for chains with
few hydrophobic residues, without appreciably increasing run time for any input.

An alternate version of the first modification from section A.2 can improve run-time, but at the cost of
greater memory usage. This modification replaces M with a hash table indexed by position and residue number,
rather than just position. We then store a value of true in element (i, k) for each w; we assign. This allows
us to check for duplicated packings by checking (%;, j), thus avoiding the two innermost for loops when
there is a duplicate. In order to allow O(1) accesses of the hash table, we must increase its size to O(|b|?),
which could then dominate the overall space complexity. However, the algorithm would discover repeated
packings in constant time, rather than the O(|b|) time needed with the algorithm as previously described. This
heuristic could therefore reduce run-time considerably when there are many repeated packings. However, it
will also add a constant overhead to the innermost for loop, and therefore could hurt performance when |b|
or the number of repeated packings are small.
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