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Abstract. Recent evidence for a “blocky” haplotype structure to the
human genome and for its importance to disease inference studies has
created a pressing need for tools that identify patterns of past recom-
bination in sequences of samples of human genes and gene regions. We
present two new approaches to the reconstruction of likely recombination
patterns from a set of haploid sequences which each combine combinato-
rial optimization techniques with statistically motivated recombination
models. The first breaks the problem into two discrete steps: finding re-
combination sites then coloring sequences to signify the likely ancestry of
each segment. The second poses the problem as optimizing a single prob-
ability function for parsing a sequence in terms of ancestral haplotypes.
We explain the motivation for each method, present algorithms, show
their correctness, and analyze their complexity. We illustrate and ana-
lyze the methods with results on real, contrived, and simulated datasets.

1 Introduction

The sequencing of the human genome [12,25] has created a tremendous oppor-
tunity for medical advances through the discovery of genetic predictors of dis-
ease. So far, though, catalogs of the genetic differences between individuals have
proven difficult to apply. Examined in isolation, these differences - which occur
predominantly in the form of isolated changes called single nucleotide polymor-
phisms (SNPs) - may fail to distinguish real relationships from the background
noise millions of SNPs produce. Recent analysis of the structure of the human
genome [14] has given hope that greater success will be achieved through studies
of haplotypes, sets of alleles from all SNPs in a region that tend to travel together
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R. Guigó and D. Gusfield (Eds.): WABI 2002, LNCS 2452, pp. 44–59, 2002.
c© Springer-Verlag Berlin Heidelberg 2002



Methods for Inferring Block-Wise Ancestral History from Haploid Sequences 45

A ACGATCGATCATGAT
GGTGATTGCATCGAT
ACGATCGGGCTTCCG
ACGATCGGCATCCCG
GGTGATTATCATGAT
GGTGATTGGCTTGAT

B ACGATCG|ATCAT|GAT
GGTGATT|GCATC|GAT
ACGATCG|GGCTT|CCG
ACGATCG|GCATC|CCG
GGTGATT|ATCAT|GAT
GGTGATT|GGCTT|GAT

C
---A---|G---C|-C-
---G---|A---T|-A-
---G---|G---T|-C-
---A---|A---T|-A-

Fig. 1. An illustration of the value of haplotype blocks. A: A hypothetical population
sample of a set of polymorphic sites. B: A pattern of haplotype blocks inferred from
the population sample. C: The results of a hypothetical assay conducted on additional
individuals based on the block patterns. If the original sample adequately captured the
full population variability, then typing four sites per individual would be sufficient to
determine their block patterns, allowing inference of their untyped sites.

through evolutionary history. Several recent studies [3,13,20] have suggested that
the human genome consists largely of blocks of common SNPs organized in hap-
lotypes separated by recombination sites, such that most human chromosome
segments have one of a few possible sets of variations. It may therefore be possi-
ble to classify most human genetic variation in terms of a small number of SNPs
identifying the common haplotype blocks. If so, then determining the genome’s
haplotype structure and defining reduced SNP sets characterizing common hap-
lotype variants could greatly reduce the time and cost of performing disease
association studies without significantly reducing their power to find disease-
related genes and genetic predictors of disease phenotypes. Figure 1 illustrates
haplotype blocks and their potential value with a contrived example.

There is considerable prior work on detecting ancestral recombination events
from a sample of gene sequences of known haplotype phase (i.e. haploid se-
quences). Some methods, such as those of Sawyer [22], Maynard Smith [17], and
Maynard Smith and Smith [18], detect whether any recombination has occurred
in a set of sequences. Others, such as the methods of Hudson and Kaplan [11]
and Weiler [27] further attempt to find the locations of the recombination events.
More difficult is assigning haplotypes and recombination patterns to individual
sequences in a sample — as was done for example by Daly et al. [3] and Zhang et
al. [29] — which provides the information that would be necessary for haplotype-
based LD mapping and associated inference studies. The ultimate goal of such
methods would be reconstruction of the ancestral recombination graph from a
set of sequences, a problem addressed by the methods of Hein [9], Kececioglu
and Gusfield [15], and Wang et al. [26]. Simulation studies of recombination de-
tection methods [28,21,6] suggest some room for improvement. One suggestion
of these studies is that more adaptable methods and methods suited to special
cases of recombination might have greater power in detecting recombination.

There is also a need for better integration of the statistical theory of recom-
bination with the theory of algorithmic optimization methods. With the notable
exception of the work of Kececioglu and Gusfield, there has been little interac-
tion between these fields; it seems likely that progress will be best achieved at
the intersection of the best models and the best methods for solving for them.
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Our hope is to suggest methods that may help in better combining statistically
motivated recombination models with combinatorial optimization methods.

We specifically address the problem of inferring from a set of haploid se-
quences the recombination patterns and regions of shared recent ancestry be-
tween sequences in the sample, similar to the computational problem approached
by Daly et al. [3]. We formulate the task as two variants of what we call the
“haplotype coloring problem,” the goal of which is to assign colors to regions
of haploid sequences to indicate common ancestry. Thus, shared colors between
sequences at a given site would indicate descent from a common haplotypes at
that site. Shared colors between sites in a single sequence would indicate descent
of those sites from a common ancestral sequence undisrupted by recombination.
The first method treats the problem as two discrete steps: locating haplotype
blocks and coloring sequences to indicate likely ancestry of haplotypes. The sec-
ond method performs all aspects of haplotype coloring as the optimization of a
unified objective function. We also describe an iterative expectation maximiza-
tion (EM) algorithm based on the second method to allow simultaneous inference
of population haplotype frequencies and assignment of haplotypes to individual
haploid sequences within a sample. In the remainder of this paper, we formal-
ize the methods as computational problems, describe algorithms, prove their
correctness, and analyze their efficiency. We also describe applications of the
methods to contrived, real, and simulated data. Finally, we discuss implications
of the methods and prospects for future work.

2 The Block-Color Method

Inferring ancestry in the presence of recombination can be decomposed into two
distinct stages: infer the block pattern of the haplotypes and color haplotypes
in individual sequences in the way that is most likely to reflect the ancestry of
the observed sequences. Related problems are commonly understood in terms
of the neutral infinite sites model [16], which assumes that any site mutates at
most once in the ancestral history of a genomic region. Under the assumptions
of the infinite sites model, the only way that gametic types AB, Ab, aB, and
ab can all be present in a sample is if recombination had generated the fourth
gametic type from the others. Recurrent or back mutations could also produce
the fourth gamete in reality, but are assumed not to occur under the infinite sites
model. Thus, any pair of sites for which all 4 gametes are found can be inferred
to have incurred a recombination between them at some time in the past [11].
Tallying all pairs of sites having four gametes allows one to infer a minimum
number of recombination events necessary, giving rise to a two-step method for
the haplotype coloring problem. First, identify maximal blocks of sites for which
no pair has all four gametes and separate sequences within blocks into distinct
haplotypes. Second, color sequences within each block to minimize the number
of color changes across blocks over all sequences. When the infinite sites model is
not obeyed, as is often the case with real data, recurrent mutation at a site also
generates site-pairs with all four gametes, but the pattern of haplotypes is quite
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different. We would therefore like the method to be insensitive to minor changes
between haplotypes generated by such recurrent mutation. Very rare variants
and mistyping errors are also difficult to distinguish, and past recombination
events may be obscured by subsequent mutation events. We thus perform a pre-
filtering step that removes from consideration all polymorphic loci for which the
minor variant occurs in less than a user-specified fraction of the total population.

The two-step method is meant to apply the well-understood four-gamete test
to the broader problem of inferring the ancestral history of the set of sequences.
The additional coloring stage provides a method for inferring which sequences
were likely to have been formed through recombinations at identified recombi-
nation sites, allowing us to infer a history of the sequence sample and reduce the
amount of information needed to specify an individual’s haplotypes.

2.1 Identifying Blocks

Hudson and Kaplan [11] developed a method for finding the minimum number of
blocks in a set of phased sequences such that the four-gamete constraint is satis-
fied within each block. Their method finds a minimum-size set of blocks for any
set of phased sequences such that all blocks satisfy the four-gamete constraint.
Gusfield [8] developed a method for testing for the equivalent perfect phylogeny
constraint in unphased sequences. Gusfield’s method can be applied straightfor-
wardly to simultaneously infer haplotypes and a block structure by locating the
minimal size set of blocks consistent with a perfect phylogeny for each block.
Within each block, haplotypes can be inferred efficiently using an earlier algo-
rithm of Gusfield [7] for inferring phylogenetic trees. Either the Gusfield method
for unphased data or the Hudson and Kaplan method for phased data can there-
fore be used to derive sets of blocks associated with haploid sequences, which
provides the input necessary for the coloring stage of our block-color method.

Jeffreys et al. [13] suggested that within the hotspots of high recombination,
the recombination events might localize to a few nearby markers rather than
occurring at a single point. It may therefore be valuable to develop methods for
enumerating or sampling optimal or near-optimal solutions or finding common
substructures among them, rather than finding a single optimum. We might also
want to consider other tests for block viability than the four-gamete constraint
that are more robust to the number of sequences or more liberal or conservative
in selecting which regions may be considered blocks. We have therefore also
developed a slower but more general dynamic programming algorithm for the
block-identification problem, similar that used by Zhang et al. [29], which takes
an arbitrary set of pair-wise constraints and constructs bottom-up a minimum-
size partition into blocks such that every constraint spans a block boundary. Due
to space limitations, we omit a detailed description of this algorithm.

2.2 Coloring

Our goal in block coloring is to assign colors to blocks such that each distinct
haplotype on a given sequence region is assigned a different color so as to mini-
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A B C D E
ACT|GAAC
ACT|GAAC
CGA|GAAC
CCG|CTAT
ACT|CTAT

ACT|GAAC
ACT|GAAC
CGA|GAAC
CCG|CTAT
ACT|CTAT

Fig. 2. An illustration of one step in the coloring algorithm. A: Two consecutive blocks
in an example set of sequences. The sequences in the first block are assumed to have
already been colored. B: The graph construction, with each node on the left representing
one of the three haplotypes in the first block and each node on the right representing
one haplotype in the second block. The uppermost edge (between the red and gray
nodes) is thicker to represent the fact that two examples of that haplotype pair occur
and the edge therefore has double weight. C: The solution to the maximum matching.
D: The coloring of the right nodes implied by the matching. E: The translation of the
coloring back into the sequences yielding a coloring of the haplotypes in the second
block that minimizes color changes between the blocks.

mize the total number of color changes between haplotypes in our sequence set.
Intuitively, this procedure is meant to explain the data with as few recombina-
tions as possible, providing a maximally parsimonious solution to the coloring
problem given the assumption that recombination events are relatively rare. For
the purposes of this analysis, we will decompose each sequence into a string of
haplotypes arranged in blocks, with all sequences sharing the same block struc-
ture. We informally define a block to be an interval of polymorphic sites and the
set of haplotypes that occur on that interval. Within each block, distinct haplo-
types are assigned distinct colors and identical haplotypes are assigned identical
colors. Where two consecutive haplotypes in a sequence are given the same color,
it is implied that they are likely to have come from a common ancestral sequence.
Where colors change between two haplotypes in a sequence, the implication is
that a recombination event was likely involved in forming that sequence from
two different ancestral sequences that were sources of the two haplotypes. In ex-
pressing the coloring stage as a computational problem, we more formally define
the input as the following:

B, a sequence b1, . . . , bk of blocks where each bi is a set of haplotypes in
a given interval of polymorphic sites. Element x of bi is denoted bi,x.

S, a set of block-decomposed sequences s1, . . . , sn where each sequence
si ∈ b1 × · · · × bk has a multiplicity ni. Element j of si is denoted si,j .
Let C be a set of positive integer colors. Then our output is a set of as-
signments X = χ1, .., χk where each χi is a function from bi to C such that
bi,x = bi,y ⇔ χi(bi,x) = χi(bi,y), for which we minimize the following objective
function (expressing the sum of color changes):

G =
k−1∑
j=1

n∑
i=1

niID(χj(si,j) �= χj+1(si,j+1)),whereID(b) =
{

1 if b is true
0 if b is false

}
.
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The function ID tests whether for a given i and j there is a color change in
sequence i between blocks j and j + 1. G thus counts the total number of color
changes between consecutive blocks over all sequences. We will show two key
properties of this problem that allow us to solve it efficiently. First, greedily
coloring each block optimally in terms of the previous block (minimizing the
number of color changes given the previous block’s coloring) yields a globally
optimal solution. Second, coloring each block is an instance of the weighted
bipartite maximum matching problem, for which there exist efficient algorithms
[5]. Figure 2 illustrates the resulting method, which we now examine.

Lemma 1. Any set X such that χj+1 minimizes Gj(X) =
∑n
i=1 ID(χj(si,j) �=

χj+1(si,j+1)) given χj ∀j ∈ [1, k − 1] will minimize the objective function G.

Proof. Assume we have a mapping X such that χj+1 minimizes Gj(X) given
χj for all j in [1, k − 1]. Assume further for the purposes of contradiction that
there exists another solution X ′ such that

∑k−1
j=1 Gj(X

′) <
∑k−1
j=1 Gj(X). Then

there must be some smallest j such that Gj(X ′) < Gj(X). We can then create
a new X ′′ such that X ′′ is identical to X up to position j and χ′′j+1(c) = χ′′j (c)
if and only if χ′j+1(c) = χ′j(c). Then X ′′ must have the same cost as X ′ for
the transition from region j to j + 1, which is strictly lower than that for X on
that transition. Thus, X could have chosen a better solution for the transition
from j to j + 1 given its solutions for all previous transitions, contradicting the
assumption that X minimizes Gj(X) given χj for all j. Thus, X ′ cannot exist
and X must minimize G.

Lemma 2. Finding the optimal χj+1 given χj can be expressed as weighted
maximum matching.

Proof. We prove the lemma by construction of the instance of
weighted maximum matching. We first rewrite G as (k − 1)

∑n
i=1 ni −∑k−1

j=1
∑n
i=1 niID(χj(si,j) = χj+1(si,j+1)). Since (k − 1)

∑n
i=1 ni does not

depend on X, minimizing our original objective function is equivalent to
maximizing

∑k−1
j=1

∑n
i=1 niID(χj(si,j) = χj+1(si,j+1)). We create a bipartite

graph B in which each node ui in the first part corresponds to a haplotype
cji in block j and each node vi′ in the second part corresponds to a haplotype
cj+1,i′ in block j + 1. If any sequence has haplotypes cji and cj+1,i′ , then we
create an edge (ui, vi′) with weight

n∑
i=1

niHASj,i,i′(si), where HASj,i,i′(s) =
{

1 if sj = cj,i and sj+1 = cj+1,i′

0 otherwise

}
.

A matching in B corresponds to a set of edges pairing haplotypes in block j with
haplotypes in block j + 1. We construct X so that it assigns the same color to
cj+1,i′ as was assigned to cj,i if and only if the matching of B selects the edge
between the nodes corresponding to those two haplotypes. Any given matching
will have a weight equal to the sums of the frequencies of sequences sharing
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both of each pair of haplotypes whose corresponding nodes are connected by
the matching. Thus the coloring corresponding to a maximum matching will
maximize

∑n
i=1 ni

∑k−1
j=1 ID(χj(si,j) = χj+1(si,j+1)), which yields an optimal

assignment of χj+1 given χj .

Lemmas 1 and 2 imply the following algorithm for optimal coloring, which
we refer to as Algorithm 1:

create an arbitrary assignment χ1 of haplotypes to distinct colors in block 1
for i = 2 to m

construct an instance of weighted maximum matching as described above
solve the instance with the algorithm of Edmonds [5]
for each pair (ci−1,j , ci,k) joined in the matching assign χi(ci,k) =
χi−1(ci−1,j)
for each ci,k that is unmatched assign an arbitrary unused color to χi(ci,k)

Theorem 1. Algorithm 1 produces a coloring of haplotype blocks minimizing
the number of color changes across sequences in time O(mn2 log n).

Proof. The proof of correctness follows directly from Lemmas 1 and 2. Creat-
ing an instance of weighted maximum matching and assigning colors requires
O(n) time. The run time for each iteration of i is therefore dominated by the
O(n2 log n) run time of the maximum matching algorithm for this type of dataset
(where the number of non-zero edges of the graph is bounded by n). There are
O(m) rounds of computation, yielding a total run time of O(mn2 log n).

Using the Hudson and Kaplan algorithm for block assignment gives the block-
color method an overall complexity of O(nm2 +mn2 log n) for n sequences and
m polymorphic sites. In practice, the input data would typically come from
resequencing some number of individuals in one sequenced gene - with a bound
on m and n typically on the order of 100 - yielding run times well within what
can be handled by standard desktop computers.

3 The Alignment Method

Although solving the problem in well-defined stages has advantages, it may also
be fruitful to find a unified global solution to all aspects of the problem. Our
hope is that such an approach will help in finding more biologically meaningful
probabilistic models that capture the essential features of the system but are
computationally tractable. We therefore developed a second approach based on
techniques from sequence alignment. Sequence alignment can be viewed as as-
signing to each position of the target sequence a frame of a reference sequence,
with changes of frame representing gaps. We can analogously “align” a single
target to multiple references, but instead of shifting frames to model gaps, shift
reference sequences to model recombination. Figure 3 illustrates this analogy.
This approach is similar to the Recombination Cost problem of Kececioglu and
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A ACTAGCTAGCATCG
ACTAGCTAGCATCG
ACTAGCTAGCATCG
ACTGCTTCATCG

B TGAGGCATGTACGA
TCAAGTTTCTACCG
ACTAGCTAGCATCG
ACTAGTTTGTATGA

Fig. 3. An illustration of the analogy between sequence alignment and haplotype col-
oring as variants of the problem of “parsing” a query sequence in terms of a set of
reference sequences. Each sub-figure shows a query sequence (bottom) aligned to three
reference sequences (top). A: sequence alignment as parsing of a sequence in terms of a
set of identical reference sequences in distinct frames; B: haplotype coloring as parsing
a sequence in terms of a set of distinct reference sequences in identical frames.

Gusfield [15] and the “jumping alignments” of Spang et al. [23]. We, however,
assume we have a population sequenced for specific polymorphic sites and there-
fore need not consider insertion/deletion costs. Deletion polymorphisms can be
treated simply as additional allowed symbols. Dealing with missing data is more
complicated, but can be handled through the use of a special symbol represent-
ing an undefined site, which can match any other symbol. Bayesian methods,
similar to that of Stephens et al. [24], might also be used to impute missing data.

A major advantage of this technique over our other method is that it does
not assume that there are recombination hotspots or a block structure. It may
therefore be better suited to testing that assumption or examining genomes or
genome regions in which it proves to be inapplicable. It should also allow us
to distinguish recent recombination sites affecting a small fraction of the se-
quenced population from more ancient or frequently recombining sites and is
easily parameterized to be more or less sensitive to recent mutations in iden-
tifying haplotypes. Among its disadvantages are that it requires an additive
objective function and therefore uses a probability model different from those
traditionally used in LD studies and that it is parameterized by values that may
be unknown and difficult to estimate. In addition, the function being optimized
is harder to understand intuitively than those used in the block-color method,
making the alignment method harder to judge and improve upon.

Our probability model parses a sequence as a string of haplotype identifiers
describing the ancestral source of each of its polymorphic sites. A given sequence
chooses its first value from a distribution of haplotypes at the first polymorphic
position. Each subsequent polymorphic site may follow a recombination event
with some probability ρ. If there is no recombination event then the sequence
continues with the same haplotype as it had at the prior site. Otherwise, the
sequence samples among all available haplotypes according to a site-specific dis-
tribution for the new site. There is also a mutation probability µ that any given
site will be mutated from that of its ancestral haplotype. This model leads to
the following formalization of the inputs:

m, the log probability of a mutation event at any one site of a sequence
r, the log probability of a recombination event between any two sites
S = s1, . . . , sn, a set of n reference sequences. Each si is a sequence of l

polymorphic sites si1, . . . , sil
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F , an n× l matrix of log frequencies in which fij specifies the probability
of choosing a given haplotype i at each site j following a recombination imme-
diately prior to that site

Σ = σ1, . . . , σt, a set of t target sequences. Each σi is a sequence of l
polymorphic values, σi1, . . . , σil
Our goal is to produce a t×l matrix H, where hij specifies which haplotype from
the set [1, n] has been assigned to position j of target sequence σi, maximizing
the following objective function:

G(H) =
t∑
i=1

fhi11 +
t∑
i=1

l∑
j=2

(fhijj + r)D(hi,j , hi,j−1)

+
t∑
i=1

l∑
j=2

log((1− er) + er+fhijj )(1−D(hi,j , hi,j−1)) +
t∑
i=1

l∑
j=1

M(shi,j ,j , σi,j)

where D(a, b) =
{

0, a = b
1, a �= b

}
and M(a, b) =

{
0, a = b
m, a �= b

}
.

G(H) gives a normalized log probability of the assignment H given the sequences
and haplotype frequencies. The first sum reflects the probabilities of choosing
different starting haplotypes. The next two sums reflect the contributions of
respectively choosing to recombine at each site or choosing not to recombine.
The final sum gives the contribution to the probability of mismatches.

The function implies some assumptions about the independence of different
events whose validity must be considered. The assumptions that probabilities of
recombination and mutation are independent and identical at all sites are imper-
fect but may be reasonable a priori in the absence of additional information. It
is less clearly reasonable to assume that the selection of recombination positions
and the choices of haplotypes between them can be considered independent,
although this too may be reasonable absent additional information.

It is important to note that there is no unique “correct” pair of r and m
parameters for a given genome or gene region. The right parameters depend
on how much tolerance is desired in allowing slightly different sequences to be
considered identical haplotypes, analogous to the need for different sensitivities
in sequence similarity searches conducted for different purposes. We can thus
propose that the value of m should be determined by the particular application
of the method, with r then being an unknown that depends on both m and the
nature of the genome region under examination.

3.1 The Alignment Algorithm

We maximize G(H) with a dynamic programming algorithm. The following for-
mula describes the basic dynamic programming recursion for assigning haplo-
types to a single sequence σ:

Cσ(i, j) = max
k

{
Cσ(i, j − 1) + log(1− er + er+fij )

Cσ(k, j − 1) + r + fij

}
+
{

0, σj = sij
m, σj �= sij

}
.
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Cσ(i, j) represents the cost of the optimal parse of sequence σ up to position j
ending with an assignment to haplotype i at position j. The right-hand term
accounts for the mismatch penalty, if any, between σ and haplotype i at position
j. The full algorithm follows directly from the recurrence. The following pseu-
docode describes the complete algorithm, which we call Algorithm 2:

for i = 1 to n: if (σ1 = si1) then Cσ[i, 1]← fi1 else Cσ[i, 1]← fi1 +m
for j = 2 to l: for i = 1 to n:

best← Cσ[i, j − 1] + log(1− er + er+fij ); argbest← i
for k = 1 to n, k �= i:

if (Cσ[k, j − 1] + r + fij < best)
best← Cσ[k, j − 1] + r + fij ; argbest← k

if (σj = sij) then Cσ[i, j]← best else Cσ[i, j]← best+m
Pσ[i, j]← argbest

best← −∞
for i = 1 to n: if Cσ[i, l] > best then best← Cσ[i, l]; Hσ[l]← i
for j = l-1 downto 1: Hσ[j]← Pσ[Hσ[j + 1], j + 1]

Lemma 3. Cσ[i, j] is the optimal cost of any assignment of positions 1 through
j of σ to haplotypes in S such that position j of σ is assigned to haplotype i.

Proof. We prove the statement by induction on j. For the base case of j = 1, each
Cσ[i, j] is uniquely determined by the log frequency fi1 plus a mutation penalty
m if σ1 and si1 do not match. The first for loop sets each Cσ[i, 1] accordingly,
satisfying the inductive hypothesis. Now assume the lemma is true for j− 1. We
can decompose Cσ[i, j] into two terms, Aσ[i, j] +Bσ[i, j], where

Aσ[i, j] =
t∑
i=1

fhi11 +
t∑
i=1

j−1∑
j′=2

(fhij′ j′ + r)D(hi,j′ , hi,j′−1)

+
t∑
i=1

j−1∑
j′=2

log((1− er) + e
r+fh

ij′ j′ )(1−D(hi,j′ , hi,j′−1))

+
t∑
i=1

j−1∑
j′=1

M(shi,j′ ,j′ , σi,j′)

and

Bσ[i, j] =
t∑
i=1

(fhijj + r)D(hi,j , hi,j−1)

+
t∑
i=1

log((1− er) + er+fhijj )(1−D(hi,j , hi,j−1)) +
t∑
i=1

M(shi,j ,j , σi,j).

Aσ is exactly the function optimized by Cσ[i, j− 1]. Bσ depends only on assign-
ments at positions j and j− 1; it is therefore optimized for a given assignment i
at position j by maximizing it over all assignments at position j − 1, which the
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algorithm does in deriving Cσ[i, j] in the second loop. Cσ[i, j] is thus the cost of
the optimal assignment of positions 1 through j ending on haplotype i.

Theorem 2. Algorithm 2 will find an H maximizing G(H) for sets of n refer-
ence sequences S and t target sequences Σ with length l in O(n2lt) time.

Proof. It follows from lemma 3 that Cσ[i, l] will be the cost of the optimal solu-
tion to the global problem terminating in haplotype i. Finding an i maximizing
Cσ[i, l], as is done by the third outer loop, therefore yields the global optimum to
the problem. The final loop performs backtracking, reconstructing the optimal
solution H. Run time is dominated by an inner loop requiring constant time for
each of O(n2l) iterations, for a total of O(n2lt) run time when run on t targets.

The definition of the problem solved by the alignment method requires that
we know in advance the frequencies from which haplotypes are sampled following
a recombination event. As this information may not be available, we would like
a way to estimate it from measured frequencies of full-length haploid sequences.
We therefore developed an iterative method to optimize this probability by suc-
cessively performing a discrete optimization of the coloring given the haplotype
frequencies followed by a continuous optimization of the frequencies given the
coloring, which we perform through a steepest-descent search. The algorithm is
a form of generalized expectation maximization (EM) algorithm [1,4] that treats
the frequencies as hidden variables, repeatedly finding a maximum aposteriori
probability (MAP) coloring H given the frequencies F maximizing Pr(H|F ) by
Algorithm 2 then improving Pr(H|F ) in terms of F by steepest descent. The
number of rounds required for the resulting method to converge might theoreti-
cally be large, although we have found convergence in practice to occur reliably
within ten iterations on real gene region data sets.

4 Results

Both methods were implemented in C++. All tests were run on four-processor
500 MHz Compaq Alpha machines, although the code itself is serial.

We used a contrived data set, shown in Figure 4, to illustrate the strengths
and weaknesses of the methods. We strongly penalized mutations in order to
simplify the illustration. The block-color method correctly detects the recombi-
nation site, although the coloring appears suboptimal due to the constraint that
identical haplotypes must have identical colors. The alignment method correctly
identifies the recombinants, but only with an appropriate choice of parameters.

In order to demonstrate the methods and explore the parameter space, we
further applied the methods to a real data set: the apolipoprotein E (APOE)
gene region core sample of Nickerson et al. [19], a set of 72 individuals typed
on 22 polymorphic sites, with full-length haplotypes determined by a combina-
tion of the Clark haplotype inference method [2] and allele-specific PCR to verify
phases. Figure 5 demonstrates the effects on the block-color algorithm of varying
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Fig. 4. A contrived sample problem. Different colors represent different predicted an-
cestral sequences. A: An ancestral recombination graph showing a proposed sequence
ancestry; B: The extant sequences with frequencies chosen to make the recombinant and
double recombinant relatively rare; C: The output of the block-color method screen-
ing out sites with minor allele frequencies below 0.1; D: The output of the alignment
method with parameters r = −1 and m = −100; E: The output of the alignment
method with parameters r = −2 and m = −100.

tolerance to infrequent SNPs. Moving from considering all SNPs in Figure 5A
to considering only those with minor frequencies above 10% in Figure 5B then
25% in Figure 5C, leads to progressively simpler block structures, with fewer
blocks and less variability within them. Figure 6 illustrates the effects of varying
recombination and mutation penalties for the alignment algorithm with the EM
extension on the same dataset. Higher recombination penalties generally lead
to greater numbers of haplotypes being assigned while higher mutation penal-
ties reveal more subtle regions of variation. We note that inferred haplotype
regions do not necessarily line up at “recombination hotspots,” suggesting that
the data might be more parsimoniously explained by not assuming the existence
of discrete haplotype blocks with the same structure across all sequences.

While a real dataset can demonstrate the methods, it cannot rigorously vali-
date them, as we do not definitively know the recombination history of any real
gene region. We therefore resorted to simulated data to perform a partial test of
the methods. Simulations were generated through Hudson’s coalescent simulator
[10], using populations of 50 individuals with 70 segregating sites and allowing
recombination between any pair of sites. A simulated data set was generated for
each recombination parameter ρ in the set {0,1,2,5,10,20,30}. We then calcu-
lated for the block-color method how many recombination sites were predicted,
screening out sites with minor allele frequency below 0.1. We further calculated
for the alignment method, with parameters m = −1.5 and r = −1.0, at how
many sites at least one recombination event was predicted. Figure 7 shows the
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A B C

Fig. 5. Coloring of the APOE gene region [19] by the block-color method. A: coloring
using all sites. B: coloring using sites with minor allele frequency above 10%. C: coloring
using sites with minor allele frequency above 25%.

A B C

D E F

G H I

Fig. 6. Coloring of the APOE gene region [19] by the alignment-color method. Param-
eter values are A: r = −1.0 m = −2.0; B: r = −1.0 m = −4.0; C: r = −1.0 m = −6.0;
D: r = −0.5 m = −2.0; E: r = −0.5 m = −4.0; F: r = −0.5 m = −6.0; G: r = 0.0
m = −2.0; H: r = 0.0 m = −4.0; I: r = 0.0 m = −6.0;

resulting plot. As the plot indicates, the number of detected recombination sites
generally increases with increasing recombination rate, although the correlation
is imperfect and grows more slowly than the increase in ρ. Of course the process
of simulating such data involves a high degree of stochasiticity, so one does not
expect a perfect correlation. For the block-color method, this result is consistent
with the analogous experiments performed by Hudson and Kaplan [11].

5 Discussion

We have presented two new methods for detecting recombination patterns in sets
of haploid sequences, phrased in terms of the problem of “coloring” sequences
to reflect their ancestral histories. The first method uses parsimony principles to
separately infer a minimum number of recombination sites capable of explaining
the data and then color sequences between sites to denote likely ancestry. The
second uses a discrete optimization method similar to those used in sequence
alignment to find the most probable parse of a set of sequences in terms of hap-
lotypes. We have also incorporated that technique into an iterative method using
alternating discrete and continuous optimization to simultaneously infer haplo-
type frequencies and color sequences optimally given the inferred frequencies.

Each method has strengths that might make it more appropriate for cer-
tain cases. The block-color method creates a general algorithmic framework in
which optimal solutions can be found efficiently for a range of possible tests of
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Fig. 7. Predicted recombination sites versus coalescent parameter ρ for simulated data.

compatibility of pairs of sites with the assumption of no recombination. It thus
might provide a useful general method for the evaluation and application of new
statistical tests for recombination. The alignment method solves optimally for a
single objective function, making it potentially more useful in testing and apply-
ing a unified probabilistic model of sequence evolution. It also does not rely on a
prior assumption that haplotypes have a block structure and therefore might be
more useful for testing hypotheses about the existence of such a block structure,
finding instances in which it is not conserved, or processing data from organisms
or gene regions that do not exhibit haplotype blocks. The EM algorithm may be
independently useful in estimating haplotype block frequencies.

We can consider possible generalizations of the methods described above. It
may be worthwhile to try other tests for deriving pair-wise constraints for the
block-color method. As Hudson and Kaplan [11] note, the number of recombina-
tion events detected by the four-gamete constraint may be substantially smaller
than the actual number of recombination sites, especially for small population
sizes; their method finds a maximally parsimonious explanation for the data and
will therefore miss instances in which recombination has occurred but has not
yielded a violation of the four-gamete test or in which the population exam-
ined does not contain sufficient examples to demonstrate such a violation. The
Gusfield [8] method for diploid data can be expected to be similarly conserva-
tive, suggesting the value of pursuing more sensitive tests of recombination. The
alignment model could be extended to handle position-specific mutation weights
or recombination probabilities when an empirical basis is available for choosing
them. It might also be possible to adapt the EM algorithm to infer mutation or
recombination probabilities at the same time as it infers haplotype frequencies.
In addition to providing greater versatility and accuracy, automating inference of
the mutation and recombination rates might substantially improve ease-of-use.

Making the best use of sequencing data for understanding human diversity
and applying that understanding to association studies will require first devel-
oping a more complete picture of the processes involved; second, building and
validating statistical and probabilistic models that reliably capture that picture;
and third, developing methods that can best interpret the available data given
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those models. While the preceding work is meant to suggest avenues and tech-
niques for pursuing the overall goal of applying human genetic diversity data,
all three of those steps remain far from resolved.
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