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A b s t r a c t  

Combinatorial Chemistry is a powerful new technology 
in drug design and molecular recognition. It is a wet- 
laboratory methodology aimed at "massively parallel" 
screening of chemical compounds for the discovery of 
compounds that  have a certain biological activity. The 
power of the method comes from the interaction be- 
tween experimental design and computational model- 
ing. Principles of "rational" drug design are used in the 
construction of combinatorial libraries to speed up the 
discovery of lead compounds with the desired biological 
activity. 

This paper presents algorithms, software develop- 
ment and computational complexity analysis for prob- 
lems arising in the design of combinatorial libraries for 
drug discovery. We provide exact polynomial time al- 
gorithms and intractability results for several Inverse 
Problems - formulated as (chemical) graph reconstruc- 
tion problems - related to the design of combinatorial 
libraries. These are the first rigorous algorithmic re- 
sults in the literature. We also present results pro- 
vided by our combinatorial chemistry software package 
OCOTILLO for combinatorial peptide design using real 
data libraries. The package provides exact solutions for 
general inverse problems based on shortest-path topo- 
logical indices. Our results are superior both in accuracy 
and computing time to the best software reports pub- 
lished in the literature. For 5-peptoid design, the com- 
putation is rigorously reduced to an exahustive search 
of about 2% of the search space; the exact solutions are 
found in a few minutes. 

1 I n t r o d u c t i o n  

1.1 T h e  C o m b i n a t o r i a l  C h e m i s t r y  F r a m e w o r k  
C h e m i c a l  Ind ices  a n d  I n v e r s e  Des ign  P r o b -  

l e m s  b a s e d  on  t h e m .  T h e  area of quantitative 
structure-activity relationship (QSAR) identified for 
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chemical compounds various measures, or indices, that  
provide correlations with the likelihood of biological ac- 
tivity. There are 2D measures (at the level of the chem- 
ical graph) and 3D measures (at the level of coordi- 
nates for its atoms in the 3D space). In our context, 
"biological activity" is a complex process of molecular 
recognition, binding, and possible conformation change 
between one small compound, and a large biological 
complex (e.g., a protein complex). It is very diffi- 
cult to capture the notion of biological activity within 
the framework of numerical measures at the compound 
level. However, some measures were found that  that  
work well. One notorious example is the Wiener index 
defined as the sum of pairwise shortest path distances 
between atoms in the chemical graphs of the compound. 
It correlates with physicochemical characteristics such 
as the boiling point. A variety of chemical topological 
(2D) and topographical (3D) indices were introduced 
and much research was performed towards the under- 
standing of their correlation with various types of ac- 
tivities. 

A chemical index is a map from the set of chemical 
compounds to the Real numbers. One could think of 
the co-domain of this function as the "activity space". 
Compounds with similar activity are mapped "close" 
in the space. Typically huge numbers of compounds are 
mapped to identical, or near identical index values. In a 
natural way, given some activity level/value, or a region 
in the activity space, one wants to design chemical 
compounds having that index value, or whose index is 
in that  region. Solving these types of inverse problems 
is the subject of our paper. The input data  for these 
computational problems are laboratory experiments, 
where some lead compounds were identified. The 
problem is to generate new laboratory experiments that  
will accelerate the likelihood of discovering new, more 
powerful, compounds. In order to do so we have to 
solve inverse problems based on specific indices. One 
wants several solutions for the inverse problem that  are 
as "diverse" (different chemcial structure) as possible. 
Based on them, a new combinatorial library is created, 
and new lead compounds are discovered. 
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Chemical  Graph Reconstruct ion Problems.  
New types of graph reconstruction problems occur in 
this area whose solutions are needed for the design of 
combinatorial libraries. One type involves constructing 
graphs or trees having a given topological index. A sec- 
ond type involves selecting chemical fragments from a 
l ibrary and creating "artificial proteins", called combi- 
natorail peptides, that  match a given index. 

1.2 Algori thmic  Challenges 
In this paper we will consider in particular the 

Wiener index (the sum of the distances in the graph 
between each pair of vertices), which is probably the 
most widely known ([1]). 

The Wiener index, W, was devised by the chemist 
Harold Wiener in 1947 [2], who found a strong correla- 
tion between W and a variety of physical and chemical 
properties of alkanes, alkenes and arenes. 

With respect to the inverse problem on unrestricted 
graphs, we will show that  in general it has a simple 
solution both in its decision (does a graph with a given 
Wiener index exist?) and construction versions. The 
problem however becomes more complex if we add the 
constraint that  the graph must be a tree. For this case 
we give a pseudo-polynomial dynamic programming 
procedure which builds a tree with a given Wiener index 
(if one exists), but  we do not know the complexity of the 
decision version: While analyzing the inverse problem 
on trees, we come to the definition of a new interesting 
topological property, that  is the loads distribution for 
the edges. We show that  finding a tree whose edges 
have given load values is NP-complete, and describe a 
search procedure which solves the problem very quickly 
in practice. 

As far as the construction of peptoids is concerned, 
our work focuses on inverse problems based on 2D and 
3D QSAR descriptors (which include the Wiener index, 
but  also the Atom Pairs, the Bemis-Kuntz histogram 
of triangles) that  have been proven effective in a num- 
ber of projects for selecting active molecules from large 
databases. Formulated as graph reconstruction prob- 
lems, a typical inverse problem is defined as follows. 
Given a combinatorial library for peptides with N units, 
with fragment libraries for every position of maximum 
size L and an integer W, find a set of high diversity 
peptides whose Wiener index is W. 

We present a polynomial time algorithm, based on 
dynamic programming, for such inverse problem. Fur- 
ther,  we describe a software implementation of a search 
algorithm, capable of finding all possible solutions, that 
outperform the existing methods proposed in the liter- 
ature (see e.g. [3, 4, 5, 6]). Our strategy is based on 
an effective pruning of the search space, via the intro- 

duction of a simple computational filter - the flower 
compression - and show how it can be used to group 
many graphs which have related Wiener indices and 
discard, at once, whole families of unfeasable solutions 
without examining their members in detail. Our al- 
gorithms can be easily generalized to find all (or any) 
feasible molecule whose topological index of interest is 
within some given range from a specific target. Our 
software package OCOTILLO contains the implemen- 
tations of several algorithms that  exactly solve inverse 
problems based on general shortest-paths indices. 

1.3 Previous  Work 
Combinatorial chemistry research started in the 

early 1990s (see [5, 7, 8, 9] for early develoments and 
history). 

A lot of studies were devoted topological indices and 
correlations with biological activity [10, 11, 12, 13, 14], 
including an entire book "Chemical Graph Threory" ,  N. 
Trinajstic [15]. 

Heuristic approaches to combinatorial chemistry 
design problems are discussed in [3, 16]. 

1.4 An outl ine of  the paper 
The remainder of the paper is organized as follows. 

In section 2 we introduce some suitable notation. Sec- 
tion 3 is devoted to the inverse Wiener index problem 
for general graphs (subsection 3.1) and trees (subsec- 
tion 3.2). Section 4 discusses the problem of recon- 
structing a tree from its set of splits. In section 5 we 
address the problem of building a peptoid with a given 
Wiener index. Subsection 5.1 contains a polynomial 
algorithm, based on dynamic programming, for find- 
ing one such peptoid, while subsection 5.2 describes a 
fast search procedure capable of listing all feasible so- 
lutions and reports on our computational results of the 
OCOTILLO package. 

2 Prel iminary Definit ions  

DEFINITION 2.1. Given a graph G = (V, E), by dG(i, j)  
we denote the shortest path (i.e. with the smallest 
number of edges) between two vertices i and j. I f  G 
is a tree, then dG(i,j) is the length of the unique path 
between i and j. We simply write d(i, j)  if the graph or 
tree is understood from the context. 

As is customary, we may often denote by n, or n(G),  
the number of nodes of a graph. We denote by Kn the 
complete graph on n nodes. Sn is a star on n nodes (all 
nodes but one are leaves). Pn is a path of n nodes. 

For ease of notation, in the following definition and 
in the remainder of the paper, when we write ~ , j e y ,  
the summation has to be understood as actually re- 
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Figure 1: A 3-peptoid; the three fragments are anchored 
on a linear scaffold at positions vl, v2 and v3. 

stricted to pairs of distinct vertices. 

DEFINITION 2.2. Given a graph G = (V,E) ,  its Wiener 
index w(G) is the total node-to-node path length. That 
is, w(G) = ~'~.i,jev dG(i , j ) .  

The following graphs are used to describe formally 
the problem of the combinatorial synthesis of specific 
molecular structures. 

DEFINITION 2.3. A (chemical) fragment is a graph G 
with a special vertex v denoted as its anchor, or hook- 
ing point. A peptoid is a graph obtained by join- 
ing in a linear fashion from left to right, k fragments 
G1, . . . , Gk via a path through their hooking points (Fig- 
ure i). Note that, when k = 1, a fragment is a spe- 
cial case of a peptoid. For a peptoid D = (V, E), by 
l(D) := ~ i c u  dG(i,vk) we denote the total distance of 
all vertices from the rightmost hooking point vk. For 
k = 1, lO gives the total distance from all nodes of a 
fragment to its anchor. 

We can think of a rooted tree as a special case of 
fragment whose hooking point is its root. Henceforth 
we have the following definition for rooted trees. 

DEFINITION 2.4. Given a tree T = (V,E) with root 
v C V,  the total distance of its vertices from the root 
is l(T) := ~,.i~y d(i, v). 

3 T h e  I n v e r s e  W i e n e r  I n d e x  P r o b l e m  

We have developed graph theoretic results for the 
reconstruction problem based on the Wiener index. 

3.1 T h e  i n v e r s e  W i e n e r  i n d e x  p r o b l e m  for 
g r a p h s  

THEOREM 3.1. For any W # 2, 5 there exists a graph 
G such that w(G) = W 

In order to prove this theorem, we need the follow- 
ing lemma: 

LEMMA 3.1. For every graph G = (V, E) with diameter 
2 and Wiener index W ,  the graph G' = (V, E U  {e}) for 
e ~ E has Wiener  index W - 1. 

Proof. Let e -- (vl, v2). Clearly riG(v1, v2) = 2 and 
de, (vl, v2) -- 1. Any other distance is preserved by t h i s  
transformation. • 

We are now ready to prove Theorem 3.1. 

Proof. Let Go = Sn, the s tar  of size n. We have 
w(Go) = (n - 1) 2 and the diameter  of Go is two. Let 
G1 be the graph obtained by adding to Go an edge not 
already contained in it. G1 is either K~ or has diameter  
two, and by the above lemma w(G1) = w(Go) - 1. 
It  it possible to repeat  this procedure until the graph 
obtained is Kn and w(Kn)  = n(n  - 1)/2. At any step, 
the lemma guarantees tha t  w(Gk)  = w(Gk-1)  - 1. Thus 
each number in the interval IN = [n(n - 1)/2, (n - 1) 2] 
is the Wiener index of Gk for some k. 

Since the intervals overlap for n > 4, and including 
the interval values for n = 4, we find for W > 5 there is a 
graph G such tha t  w(G) -- W. 1,3 and 4 are the Wiener 
index of P2 (a pa th  of length 2), K3 and P3, resp. To 
prove tha t  there is no graph G such tha t  w(G) = 2, it 
is enough to observe tha t  the graph on n nodes with 
the smallest Wiener index is Kn,  and the one with the 
largest is Pn, but  w(P2) = 1 and w(K3) = 3. • 

The theorem is constructive and leads in a straight- 
forward way to an algorithm solving the search problem, 
that  is output t ing a graph with the required given in- 
dex. Since the size of the graph is polynomial in the 
Wiener index and a number can be represented with a 
logarithmic number  of bits, this algorithm can be classi- 
fied as pseudo-polynomial - -  tha t  is, it is polynomial in 
the parameters  describing the problem but not on the 
size of the representation of the input. More in detail, 
the computat ion t ime is dominated by the time neces- 
sary to output  the graph, that  is O(n2). Since for the 
class of graphs considered n(n  - 1)/2 _< W < (n - 1) 2, 
the t ime complexity is also O(W).  

3.2 T h e  i n v e r s e  W i e n e r  p r o b l e m  for t ree s  
The problem we will be concerned with in this 

subsection is the following: given a positive integer W ,  
find whether there exists a tree T s.t. w(T)  = W .  We 
will consider also the problem of finding such a tree. 
Clearly, Theorem 3.1 involves non-trees, and thus it 
does not apply to this more constrained setting. Indeed, 
there are many  integers that  are the Wiener index of 
some graph but not of any tree. Using an algorithm we 
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will describe in the following, we checked exhaustively 
for W < 10000 and 159 turns out to be the largest such 
example. This experimental  evidence together  with the 
analogy with the case of graphs leads to the following 
conjecture: 

CONJECTURE 3.1. Every positive integer but a finite 
set 1 is the Wiener index of some tree. 

The above conjecture appeared first in [17], where 
it was verified for W up to 1206 by a complete enumer- 
ation of all unlabeled non isomorphic trees of up to 20 
nodes. I f  true, it would imply that  the decision problem 
is trivial, but  the proof would not necessarily lead to an 
efficient solution of the search problem. 

3.2.1 A recurrence relation for  t h e  Wiener in- 
dex 

I t  is possible to prove a recurrence relation for the 
Wiener index of trees which is closely related to the 
one we will prove for peptoids in 5.1. Let T = (V, E) 
be a tree and (vi,v2) an edge. Let T1 = (Vi ,Ei )  and 
27.2 = (V2, E2) be the two trees obtained by removing 
(Vl, v2). Let us assume tha t  T and T1 are rooted in vl 
and 2"2 in v2. We have the following recurrence for w(-), 
l(-) and n(-): 

THEOREM 3.2. 

(3.1) n(T) = n(T1) + n(T2) 

(3.2) l(T) = l(T1) + l(T2) + n(T2) 

(3.3) w(T) = w(Ti) + w(T2) + l(T1)n(T2) + 

I(T2)n(T1) + n(Ti)n(T2) 

Proof. 3.1 is obvious. To prove 3.2 we use the definition 
of l(-) and rearrange the summations slightly, as follows: 

t(T) = Z d ( v l , v )  
vEV 

= d(Vl, + E d(vl, v) 
vEV1 t, EV2 

= e(v , + Z v) + 1) + 1 
vE Vi vE V2 

= *(T1) + t(T2) + n(r2) 

The same technique leads to the proof  of 3.3 

--r--NNamely:{2, 3, 5, 6, 7, 8, 11, 12, 13, 14, 15, 17, 19, 21, 22, 23, 
24, 26, 27, 30, 33, 34, 37, 38, 39, 41, 43, 45, 47, 51, 53, 55, 60, 61, 
69, 73, 77, 78, 83, 85, 87, 89, 91, 99, 101, 106, 113, 147, 159} 

w(T) = Z 
v,wEV 

= Z + Z + 
v,wE V1 v ,wE V2 

Z e(v,w) 
vE V1 ,wEt'? 

= w(r~) + w(T2) + 

Z (d(v, v l ) + l + d ( v 2 , w ) )  
vE V1 ,wE V2 

= w(r~)  + w(r2) + l (T1)n(r. , )  + 

l(T2)n(T1) + n(Ti)n(T2) 

3.2.2  A dynamic programming algorithm for  
the inverse Wiener index problem 

This recurrence relation leads natural ly to a dy- 
namic programming algorithm for the problem of find- 
ing a tree T with assigned w(T) ,  l(T) and n(T) . 
The key observation is the following: every tree with 
a t  least one edge can be decomposed in the way dic- 
t a t ed  by the above recurrence, tha t  is by removing an 
edge. Whatever  the edge removed, we obtain two trees 
Ti,i = 1, 2, and for each i, w(Ti) < w(T), l(Ti) < l(T) 
and n(Ti) < n(T). Let us define a matr ix  M so that  
MW, L,N be 1 if there is a tree T such tha t  w(T) = W, 
l(T) = L, and n(T) = N, 0 otherwise. According to the 
above recurrence MW, L,N can be computed if MW,,L,,N, 
is known for every W'  < W, L '  < L and N '  < N. This 
implies that  it is possible to compute  the entries of M, 
s tar t ing form the initial value Mo,oA = 1 and evaluating 
to 0 all the entries corresponding to W, L, N values out- 
side feasible bounds, proceeding in an orderly fashion. 

This algorithm solves as well the inverse Wiener 
index problem: given W, we compute  upper  bounds 
for the largest L and N such tha t  the triple (W, L, N) 
is feasible. Then we fill the mat r ix  M up to the entry 
M W ,  L,N.  If for any L' <_ L, N'  < N M W ,  L, ,N,  = 0 then 
there is no tree T such tha t  w(T) = ~V. 

The algorithm can be extended so as to return a 
tree with the required properties: as it is customary in 
dynamic programming,  it is enough to stor~, whenever 
an entry of M is set to 1, the indexes of the two entries 
to which the recurrence relation has been successfully 
applied. 

In our implementat ion we use a technique related 
to dynamic programming called memoization. Instead 
of filling the matr ix  M bo t t om up, this technique ap- 
plies recursively the recurrence relation. To avoid re- 
computat ion of the same entries, intermediate results 
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get stored in M. It  can be thought of as a top-down 
version of basic dynamic programming. I t  is worth not- 
ing that  without storage of intermediate results the time 
complexity would blow-up exponentially, because of the 
repeated recomputat ion of the same entries in M.  This 
technique is valuable when an algorithm can be termi- 
nated without filling completely the matr ix  M.  Other-  
wise, the number of entries evaluated is the same, but 
there is a slight overhead due to function calls and stack 
management.  For our problem, memoization turns out 
to be much faster for "yes" instances. For example,  
(524,36,19) is a "yes" instance and requires less than  one 
second to compute, while (525,36,19) is a "no" instance, 
requiring 145 seconds. This example is ra ther  extreme, 
but this behavior is absolutely consistent. This evidence 
prompts for further research along different lines: 

• quantify and analyze this asymmetry  between 
"yes" and "no" instances; 

• exploit it to make the computation more efficient (is 
it safe to "give up" after a reasonably short running 
time? In exploiting the recurrence, is it faster to 
compute many entries in parallel and stop when the 
first successful computation is over?) 

As a further algorithmic refinement, already ex- 
ploited in the above mentioned experimental results, 
we adopt also a divide and conquer strategy, whenever 
possible. Since there are many possible ways of using 
the recurrence relation, we try first the ones for which 
n(T1) ~- n(T2). This way we proceed directly to the 
smallest possible sub-problems. This approach is in- 
effective in the worst case (consider W = (N - I) 2, 
L -- N - I, that is a star on N nodes), but suggests a 
sensible order in which to proceed. 

The pseudo-code is given in Appendix A. 

3.2.3 Recurrence relations for the Wiener  in- 
dex of  bounded degree trees and k-ary trees 

Often the graphs of molecular structures have in- 
trinsic constraints on the degree of the nodes. For in- 
stance, when the nodes represent individual a toms and 
edges chemical bonds between them, we obtain a graph 
whose maximum degree is not greater than 4 ([15]). 

Unfortunately, Theorem 3.1 does not apply to 
bounded ~egree graphs. On the contrary, the use of 
graphs with high degree seems essential to its proof. 
The situation is bet ter  for trees, since we can develop 
recurrence relations of the same kind of the one in Theo- 
rem 3.2, and this recurrences lead to dynamic program- 
ming algorithms similar to the one just shown. Let us 
first deal with bounded degree trees. Besides the quan- 
tities used so far - -  w(.), l(.) and n(T) - -  we need two 
more definitions. Let mdeg(-) be the max imum degree 

of a tree and rdeg(-) the degree of its root.  As for The- 
orem 3.2, let T = (V,E)  be a tree and (vl ,v2) an edge. 
Let T1 = (171, El)  and T2 = (V2, E2) be the two trees ob- 
tained by removing (vl, v2). Let us assume that  T and 
T1 are rooted in vl and T2 in v2. We have the following: 

THEOREM 3.3. 

mdeg(T) = max(mdeg(T1), mdeg(T2), 

rdeg(T1) + 1, rdeg(T2) + 1) 

rdeg(T) = rdeg(T1) + 1 

Together with Theorem 3.2, Theorem 3.3 character- 
izes the existence of a tree with the required properties 
and thus can be used to define a dynamic  programming 
algorithm. This time, though, the ma t r ix  M contain- 
ing the partial  solutions will have five dimensions, to 
account also for mdeg(.) and rdeg(-). The  worst case 
bound for the running t ime has to be updated  accord- 
ingly. 

We turn now to k - a ry  trees. To develop a recur- 
rence for the Wiener index in this case, we still rely on 
the quantities that  proved useful so far - -  namely w(.), 
l(-) and n(T) -- ,  but we decompose a tree in a differ- 
ent w a y .  Instead of using cuts as before we exploit the 
definition of k-axy tree. Let T ---- (V~ E)  be a k -a ry  tree 
and let Ti = (Vi, Ei) be the k subtrees hanging from its 
root. We can prove a yet more complex recurrence for 
the Wiener index in this case. 

THEOREM 3.4. 

(3.4) n(T)  = 

(3.5)  l ( T )  = 

(3.6) w(T)  = 

2 n(Ti) + 1 

Z (l(Ti) + n(Ti)) 
i 

+ l(ri) + , , ( rd )  + 
i 

Z l(Ti)n(Tj) + E 2n(T~)n(Tj) 
i ~ j  i<j  

The proof is similar to the one for Theorem 3.2 and 
will be omitted. 

4 T h e  S P L I T S  reconstruction problem 

In this section we address the following tree reconstruc- 
tion problem: Find a tree such tha t  for each edge the 
sizes of the two shores of the cut tha t  the edge defines 
are equal to some given input values, or report  that  no 
such tree exists. As we will see, this problem is closely 
related to the inverse Wiener index problem for trees. 
We s tar t  with some definitions. 

DEFINITION 4.1. For a tree T = (V, E)  we define the 
split an edge e C E,  denoted by s(e) as the number of 
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nodes on the smallest shore of the unique cut identified 
bye. The load of the edge, denoted by l(e), is the number 
s(e) × ( n -  s(e)) of paths in T which contain the edge e. 

By using the loads, we can rewrite the Wiener index 
for a tree as w(T)  = ~-~eeE l(e)- 

The last bit of the Wiener index and the last bit 
of n are not independent ,  as the following proposition 
shows. This result appears  also in [17, 18], where it 
is derived by considering trees as bipart i te  graphs and 
arguing on the par i ty  of paths. We give a much simpler 
proof. 

PROPOSITION 4.1. Any tree with an odd number of 
nodes has an even Wiener index. 

Proof. For each edge either s(e) or n - s(e) is even, so 
the load is even. • 

The problem of finding a tree of a given Wiener 
index asks therefore to find n - 1 loads whose sum is W. 
This prompted us to the following question: assume we 
are given such loads; can we find the tree? Since for a 
fixed n the loads uniquely determine the splits, we can 
rephrase the problem as: given splits s l , . . . ,  sn-1 find 
a tree T such tha t  the edges of T have the given input 
splits. This is a problem of tree reconstruction and the 
set of splits can be viewed as yet another  topological 
property tha t  characterizes a family of trees. Further- 
more, the problem of reconstructing a tree from its 
set of splits is interesting on its own. Unfortunately, 
the reconstruction problem turns out to be NP-complete 

THEOREM 4.1. The problem, SPLITS, of reconstruct- 
ing a tree from its set of splits is NP-complete. 

Proof. We reduce from the problem, 3-PARTITION. In 
this problem we are given a bound, B, and 3m elements, 
S l , . . .  ,s3m, such tha t  for each i E {1 , . . .  , 3 m } , B / 4  < 
si < B/2 .  The problem asks whether there exists a 
partition of the {si} into into 3-element disjoint sets 
such that  the sum~of the elements in each set is B. 

We map the instance of 3-PARTITION to the 
following instance of SPLITS: the value B + 1 ap- 
pears m times and, for each i, we include the values, 
si,s~ - 1 , . . .  ,1. If  we are given a yes instance of 3- 
PARTITION,  we can build a tree in the following way: 
the root has m children (an m-star)  each corresponding 
to a 3-element set in the solution to 3-PARTITION and 
then departing from each of these there are three paths 
of length equal to the size of items tha t  belong to that  
set. It  can be easily verified that  we obtain the given 
splits. Conversely, suppose we are given a tree with the 
set of splits listed above. We show tha t  it is necessarily 

of the form we just  described. Inductively, the tree must 
necessarily contain 3m paths of length mini{s/} consist- 
ing of edges with splits min{si} ,  min{s i}  - 1 , . . .  , 1 (for 
example, each edge with a split of two must necessar- 
ily be connected to an edge with a split of one). At 
this point,  we conclude that ,  in fact, we must  have 3m 
similar paths  of length si each start ing from an edge 
with split si (which contain the former paths) since we 
are now only able to at tach loads >_ min{s~} and, by as- 
sumption on the si sizes, max{s/} < 2 min{si}: for each 
edge with split s between min{s~} + 1 and max{s i} ,  the 
only edge with smaller load tha t  we can a t tach must 
have load exact ly s - 1. Finally, also from the bounds 
on the s~, we infer tha t  exactly three paths depart  from 
each leaf of an initial m-star ,  the edges of which all 
have split size B + 1. As above, the s~ values of the 
edges depart ing from the star edges provide a solution 
to the instance of of 3-PARTITION. Since the reduction 
is clearly polynomial  t ime computable,  this completes 
the proof of the theorem. [] 

The problem of reconstructing a tree from its set 
of splits can be solved by the following enumerative 
algorithm. Sort the splits so as to have sl > . . .  > 
sn-1 = 1. Star t ing with a tree consisting of a single 
node of weight n, we insert the edges one at a time, 
ending Up with a tree on n nodes, each of weight 1. At 
step k we 

1. look -exaus t ive ly -  for a node i whose weight w~ is 
larger than  sk 

2. augment: at tach to node i a new node node j ,  
setting wj := Sk and decreasing wi to wi - sk. 

Note tha t  at  step 1 we may have to break ties. 
The presence of these ties is what makes the algorithm 
exponential,  since we may have to backtrack from a 
wrong choice. I t  is not immediate that  this algorithm 
does indeed work. For instance, the sorting of the .si 
is crucial, as the following example shows: Take n = 4 
and sl = s2 = 1, s3 = 2. Then there is no way of 
placing the split 2 after having placed the two splits 
1. So we need to show that  it is enough to consider 
the sorted permuta t ion  of the splits out of the (n - 1)! 
possibilities. 

PROPOSITION 4.2. If sl > . . .  > sn-1 is a Y E S  
instance of SPLITS,  then the algorithm terminates with 
a feasible solution. 

Proof. We may  reason backwards by start ing from 
the tree and finding the correct sequence of nodes to 
augment.  Let T be a feasible solution. Give weight 1 to 
each node of T and repeat  the following operation, for 
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k = 1 to n - 1, until T has only one node. Take a leaf i 
of T of minimum weight among  the leaves. Let ( i , j (k) )  
be the unique edge out of i. Delete node i and increase 
Wj(k )  a s  Wj (k )  : :  W j ( k )  -~- W i .  By looking backwards at 
the sequence of trees thus obtained, we see a possible run 
of the algorithm which augments  on j ( k  - 1) , . . .  , j (1)  
creating edges of decreasing splits. • 

This argument also implies that  for YES-instances 
there always exists a choice of nodes to augment  which 
requires no backtrack, and indeed this is what  hap- 
pened on the vast major i ty  of small examples which we 
tried initially, before proving tha t  the problem is NP- 
complete. We then performed a more exaustive testing 
in the following way. We generate an unlabeled tree, 
uniformly at random (as described in [19]), then com- 
pute its splits and t ry  to reconstruct it (or a different 
feasible solution). 

Ten instances for each value of n = 10, 20 , . . .  , 100 
were solved immediately, while for n _> 110 the algo- 
r i thm started incurring in some long runs every once in 
a while. By performing the selection at step 1 in an or- 
derly fashion (i.e. t ry  the available nodes by increasing 
order of weight) we solved all generated problems, for n 
up to 300, in less than 1 second each. The good average 
performance raises an interesting theoretical question 
on the probability tha t  the search algorithm may find a 
solution withouth backtracking (or within a small num- 
ber of tries) on a tree generated u.a.r. 

5 Inverse Problems  for Peptoid  Design 

In this section we consider the following problem. In 
the framework of combinatorial  chemistry we are given 
a fragment library, and values (lists, histograms) for 
some index. We want to find combinatorial peptoids 
(a compound of elements from the given library) that  
match exactly that  index. 

5.1 A dynamic program for peptoid construc- 
tion 

THEOREM 5.1. One can compute in polynomial time 
whether there exists a peptoid with a given Wiener 
index, W,  and, if so, output a solution. 

Proof. We use a dynamic programming algorithm sim- 
ilar to the algorithm given to find a tree of a particular 
Wiener index. Note tha t  W is bounded by a polyno- 
mial in the size of the peptoid,  N, and the library size, 
L. Assume we have precomputed  the Wiener indices of 
the fragments in the library. Number  the anchors along 
the peptoid, say from left to right, by 1 through N.  We 
build up our peptoid from left to right by adding a frag- 
ment from the l ibrary to each anchor sequentially. Let 

l(-) denote the sum of t hed i s t ances  to the rightmost 
anchor in a peptoid, or the sum of the distances to the 
anchor of a fragment  from our library (which is just  a 
peptoid with one anchor). Remove the edge linking the 
rightmost two anchors of a peptoid, P ,  leaving a smaller 
peptoid, P ' ,  and a fragment,  F .  The dynamic program- 
ming algorithm follows from the recurrences which we 
present below. Note tha t  by storing one solution (if one 
exists) in each entry of the table we build, we can out- 
put a solution with Wiener index W if one exists. The 
recurrences follow. 

n(P)  = n(P ' )  + n ( F )  

l(P) = l(P')  + n(P ' )  + l(F) 

w(P)  = w(P ' )  + w(G) + n (P ' ) l (F)  + 

n (F) l (P ' )  + n (P ' )n (F) .  

5.2 A Fast Enumerat ive  Algorithm 
In this section, we present a general method for 

inverse problems based on shortest-paths topological 
indices. We also present results from our software 
package O C O T I L L O  on actual combinatorial libraries. 

THEOREM 5.2. The Wiener index of a linear-scaffold 
peptoid constructed with fragments (Figure 1) is 

N N N 

W = Z Z [ndj + (j - i)ninj + nflil + Z wi 
i=l j=i+l i=i 

where ni is the number of nodes in fragment i, wi is the 
Wiener index of the fragment and li is the sum of the 
distance from each node to the anchor. 

Proof. Consider the compound in Figure 1. When we 
compute the shortest  path  between any two atoms, 
there are two cases: either the two atoms are in the 
same fragment,  or they are not. For all pairs of atoms 
that  are in the same fragment  we ~e -compu te  the sum 
of the distance between each pair and denote this value 
w - -  it is just the Wiener index of the fragment. 

For pairs of a toms tha t  are in different fragments, 
the shortest pa th  between the two atoms is always 
through the two anchors associated with the fragments. 
We break this pa th  into three components: 

1. The shortest pa th  from atom i to its anchor. 

2. The shortest pa th  along the scaffold. 

3. the shortest  pa th  from a tom j to its anchor. 
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The sum of distances between all pairs of a toms in 
two different fragments is: 

= E 
iEF. jEF~ 

= nb E d(i, Va) + nanbd(Va,Vb) + 
iEF,, 

jEF~ 

= nbl~ + nanbd(va,Vb) + nalb 

where Va is the anchor atom of fragment a and na is the 
number  of a toms in fragment a. 

The  Wiener index is now the sum of P over all pairs 
of fragments, plus the sum of the Wiener index of the 
individual fragments.  

N N N 

i = l  j : i + l  i=1  

N N N 

: E E [nilj + ninjd(vi ,v j )+nj l i]  + E w i  
i : 1  j : i + l  i----1 
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Figure 2: The percent of constructed flower- 
configuration peptoids that  need to be examined in de- 
tail. A histogram of the number of peptoids with a spe- 
cific Wiener index follows almost the same curve, which 
explains why the pruning algorithm does not prune uni- 
formly for all Wiener index - -  there are just  more pep- 
toids that  match. 

If, as in our case, the scaffold is a linear chain, then the 
distance from the anchor of fragment i to the anchor of 
fragment  j is IJ - i], and, 

N N N 

W .~- E E [nilj  Jr ( j  - i ) n i n j  --t- njl'il "Jr" E wi 
i=1  j = i + l  i=1  

We can rewrite the Wiener index equation as 

N N N N N 

The proof closely follows that  for Theorem 5.2 and is 
omitted. 

We let D be the difference between F on a set 
of fragments and W on a set of fragments  given the 
ordering ~r: 

N N 

D(Tr) = W - F = Z E (J - i)n~(i)n,,(j). 
i ~ l  j = i + l  

For a given set of fragments, the ordering, 7rmi~, with 
the smallest Wiener index is also the ordering with the 

W = E ni E li + E E (j - i)nrnj + E (wi - n i l i )  smallest value of D. This forms our pruning search. 
i=1 ~=z i=1 j=~+l i=1 If  the Wiener index we are looking for is smaller than 

Suppose tha t  we  treat  the entire scaffold as a 
single vertex, fort~xample,  in Figure 1, we would 
compress vl,  v2 and v3 to a single vertex. In effect, 
we have constructed a peptoid with an unordered set 
of fragments,  ra ther  than an ordered list of fragments.  
This is called the flower compression, and is at the heart  
of our fast search method. 

THEOREM 5.3. The Wiener index of a flower- 
compressed peptoid is 

N N N 

i=l j=i+l i : l  

minD + F we do not need to check any orderings for 
the correct Wiener index. 

for  each set of N fragments do  
i f  m i n d  + F < Wta~get 4_ maxD + F t h e n  

examine all orderiugs of the set of fragments  for 
Wtarget. 

e l s e  

discard all orderings of the set of fragments.  

As a first approximation to the minimum and 
maximum, we can replace each ni with the smallest or 
largest value of n in the peptoid, for example,  

N N N 3 - N n~ni~. 
minD > E E (j - i)n~i~ = 6 

i=l j=i+l 
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Figure 3: The CPU time required to search. 

However, this bound is very weak - -  at Wiener index 
9000, we need to examine 32.8% of the peptoids in 
detail, compared to 4.7% when using the optimal values 
for m i n D  and m a x D .  

CONJECTURE 5.1. Given nl  < n2 < . . .  < aN, the 
ordering for the optimal min imum value of D is: 

2 i -  1 i f i  < N/2  
7rmin(i) = 2 ( g - i + l )  if i > N / 2  

CONJECTURE 5.2. An algorithm to compute the order- 
ing for the optimal max imum value of D, given nl <_ 
n.2 < . . .  < aN,  is: 

Lp := 1; L := 0; 
Rp := N ;  R := 0; 
f o r  i := N downto 1 do 

i f  R >_ L t h e n  
7rma~(Lp) := i; Lp := Lp + 1; L := L + ni; 

else 
7rmax(Rp) := i; Rp := Rp - 1; R := R + ni; 

For example, 

i 1 2 3 4 5 6 7 8 

ni 

nTr,~i,~ ( i ) 
n.=a= i z~i5 i O  f l  £ O I O  I I l ~  

Both conjectures have been extensively tested. 
As seen in Figure 2, not many flower peptoids pass 

the test. 
C o m p u t a t i o n a l  R e s u l t s .  We tested the perfor- 

mance of the pruning algorithm by searching for a five- 
fragment peptoid using a fragment library with 350 

amine fragments (resulting in 164 different w,l,n values) 
for each position. This configuration results in 2.6e12 
possible peptoids. 

A brute force enumeration using the w, l, n compu- 
tation explained earlier required 51,786 cpu-seconds, or 
50.5e6 peptoids per second. For comparison, we can 
estimate that without the w, l, n computation, the enu- 
meration would be at least (350/165) 5 ~ 43 times as 
long - -  about one month of cpu time - -  without even 
considering that the Wiener index computation is also 
more difficult. Applying the flower-compression prun- 
ing algorithm achieves a significant speedup as can be 
seen in Figure 3, requring anywhere from 540 seconds 
(4,860e6 peptoids per second) to 3,500 seconds (750e6 
peptoids per second). 
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A A p p e n d i x :  p s e u d o - c o d e  fo r  d y n a m i c  
p r o g r a m m i n g  a l g o r i t h m  for  t h e  i n v e r s e  
W i e n e r  i n d e x  p r o b l e m  

In the pseudo-code description of the a lgori thm that  fol- 
lows, we assume tha t  the mat r ix  M has been initialized 
to a value "undefined" but  for M0,0,1 = 1. 

tree (W,L,N) 
i f N 3 - N < 6 W V ( N - 1 )  ~ > W V L < N - 1 V L >  
N ( N  - 1)/2 t h e n  

return 0 
i f  MW, L,N ~£ u n d e f i n e d  t h e n  

return MW, L,N 
i f  N = 1 t h e n  

return 0 
f o r N 1  := N / 2  to N -  l d o  

N 2 : = N - N 1  
f o r L 1  : = N I - l t o L - N 2  do  

L2 := L -  L1 - N2; 
for  WI := L1 to W - L1N2 - L2NI  - N1N2 do 

W2 := W - l ~  - L12~:2 - L2N1 - N1N2 
i f  tree(W1, L1, N1) = 1 A tree(VV½, L2, N2) = 
1 t h e n  

MW, L,N : :  1 
return 1 

f o r L 1  : - - N I - l t o L - N 1  do  
L2 :-- L - L1 - J¥1 
for  W1 := L1 to W - L1N2 - L2N1 - N1N2 do  

W2 := W - W1 - L1N2 - L2N1 - N I N 2  
i f  tree(W1, L1, N1) = 1 A tree(W:,  L2, N2) = 
1 t h e n  

I~IW, L,N : :  1 
return 1 

MW, L,N := 0 
return 0 


