
275

Algorithmic Strategies in Combinatorial Chemistry

Deborah Goldman* Sorin Istrail~ Giuseppe Lancia ~ Antonio Piccolboni ~

Brian Walenz ¶

A b s t r a c t

Combinatorial Chemistry is a powerful new technology
in drug design and molecular recognition. It is a wet-
laboratory methodology aimed at "massively parallel"
screening of chemical compounds for the discovery of
compounds that have a certain biological activity. The
power of the method comes from the interaction be-
tween experimental design and computational model-
ing. Principles of "rational" drug design are used in the
construction of combinatorial libraries to speed up the
discovery of lead compounds with the desired biological
activity.

This paper presents algorithms, software develop-
ment and computational complexity analysis for prob-
lems arising in the design of combinatorial libraries for
drug discovery. We provide exact polynomial time al-
gorithms and intractability results for several Inverse
Problems - formulated as (chemical) graph reconstruc-
tion problems - related to the design of combinatorial
libraries. These are the first rigorous algorithmic re-
sults in the literature. We also present results pro-
vided by our combinatorial chemistry software package
OCOTILLO for combinatorial peptide design using real
data libraries. The package provides exact solutions for
general inverse problems based on shortest-path topo-
logical indices. Our results are superior both in accuracy
and computing time to the best software reports pub-
lished in the literature. For 5-peptoid design, the com-
putation is rigorously reduced to an exahustive search
of about 2% of the search space; the exact solutions are
found in a few minutes.

1 I n t r o d u c t i o n

1.1 T h e C o m b i n a t o r i a l C h e m i s t r y F r a m e w o r k
C h e m i c a l Ind ices a n d I n v e r s e Des ign P r o b -

l e m s b a s e d on t h e m . T h e area of quantitative
structure-activity relationship (QSAR) identified for

~ B e r k e i e y , dgoldman@cs.berkeley.edu
tSandia National Laboratories, scistra@cs.sandia.gov
**University of Padova, lancia~dei.unipd.it
§ UC Davis, piccolboQucdavis.edu
¶Sandia National Laboratories, bwalenz@cs.sandia.gov

chemical compounds various measures, or indices, that
provide correlations with the likelihood of biological ac-
tivity. There are 2D measures (at the level of the chem-
ical graph) and 3D measures (at the level of coordi-
nates for its atoms in the 3D space). In our context,
"biological activity" is a complex process of molecular
recognition, binding, and possible conformation change
between one small compound, and a large biological
complex (e.g., a protein complex). It is very diffi-
cult to capture the notion of biological activity within
the framework of numerical measures at the compound
level. However, some measures were found that that
work well. One notorious example is the Wiener index
defined as the sum of pairwise shortest path distances
between atoms in the chemical graphs of the compound.
It correlates with physicochemical characteristics such
as the boiling point. A variety of chemical topological
(2D) and topographical (3D) indices were introduced
and much research was performed towards the under-
standing of their correlation with various types of ac-
tivities.

A chemical index is a map from the set of chemical
compounds to the Real numbers. One could think of
the co-domain of this function as the "activity space".
Compounds with similar activity are mapped "close"
in the space. Typically huge numbers of compounds are
mapped to identical, or near identical index values. In a
natural way, given some activity level/value, or a region
in the activity space, one wants to design chemical
compounds having that index value, or whose index is
in that region. Solving these types of inverse problems
is the subject of our paper. The input data for these
computational problems are laboratory experiments,
where some lead compounds were identified. The
problem is to generate new laboratory experiments that
will accelerate the likelihood of discovering new, more
powerful, compounds. In order to do so we have to
solve inverse problems based on specific indices. One
wants several solutions for the inverse problem that are
as "diverse" (different chemcial structure) as possible.
Based on them, a new combinatorial library is created,
and new lead compounds are discovered.

276

Chemical Graph Reconstruct ion Problems.
New types of graph reconstruction problems occur in
this area whose solutions are needed for the design of
combinatorial libraries. One type involves constructing
graphs or trees having a given topological index. A sec-
ond type involves selecting chemical fragments from a
l ibrary and creating "artificial proteins", called combi-
natorail peptides, that match a given index.

1.2 Algori thmic Challenges
In this paper we will consider in particular the

Wiener index (the sum of the distances in the graph
between each pair of vertices), which is probably the
most widely known ([1]).

The Wiener index, W, was devised by the chemist
Harold Wiener in 1947 [2], who found a strong correla-
tion between W and a variety of physical and chemical
properties of alkanes, alkenes and arenes.

With respect to the inverse problem on unrestricted
graphs, we will show that in general it has a simple
solution both in its decision (does a graph with a given
Wiener index exist?) and construction versions. The
problem however becomes more complex if we add the
constraint that the graph must be a tree. For this case
we give a pseudo-polynomial dynamic programming
procedure which builds a tree with a given Wiener index
(if one exists), but we do not know the complexity of the
decision version: While analyzing the inverse problem
on trees, we come to the definition of a new interesting
topological property, that is the loads distribution for
the edges. We show that finding a tree whose edges
have given load values is NP-complete, and describe a
search procedure which solves the problem very quickly
in practice.

As far as the construction of peptoids is concerned,
our work focuses on inverse problems based on 2D and
3D QSAR descriptors (which include the Wiener index,
but also the Atom Pairs, the Bemis-Kuntz histogram
of triangles) that have been proven effective in a num-
ber of projects for selecting active molecules from large
databases. Formulated as graph reconstruction prob-
lems, a typical inverse problem is defined as follows.
Given a combinatorial library for peptides with N units,
with fragment libraries for every position of maximum
size L and an integer W, find a set of high diversity
peptides whose Wiener index is W.

We present a polynomial time algorithm, based on
dynamic programming, for such inverse problem. Fur-
ther, we describe a software implementation of a search
algorithm, capable of finding all possible solutions, that
outperform the existing methods proposed in the liter-
ature (see e.g. [3, 4, 5, 6]). Our strategy is based on
an effective pruning of the search space, via the intro-

duction of a simple computational filter - the flower
compression - and show how it can be used to group
many graphs which have related Wiener indices and
discard, at once, whole families of unfeasable solutions
without examining their members in detail. Our al-
gorithms can be easily generalized to find all (or any)
feasible molecule whose topological index of interest is
within some given range from a specific target. Our
software package OCOTILLO contains the implemen-
tations of several algorithms that exactly solve inverse
problems based on general shortest-paths indices.

1.3 Previous Work
Combinatorial chemistry research started in the

early 1990s (see [5, 7, 8, 9] for early develoments and
history).

A lot of studies were devoted topological indices and
correlations with biological activity [10, 11, 12, 13, 14],
including an entire book "Chemical Graph Threory" , N.
Trinajstic [15].

Heuristic approaches to combinatorial chemistry
design problems are discussed in [3, 16].

1.4 An outl ine of the paper
The remainder of the paper is organized as follows.

In section 2 we introduce some suitable notation. Sec-
tion 3 is devoted to the inverse Wiener index problem
for general graphs (subsection 3.1) and trees (subsec-
tion 3.2). Section 4 discusses the problem of recon-
structing a tree from its set of splits. In section 5 we
address the problem of building a peptoid with a given
Wiener index. Subsection 5.1 contains a polynomial
algorithm, based on dynamic programming, for find-
ing one such peptoid, while subsection 5.2 describes a
fast search procedure capable of listing all feasible so-
lutions and reports on our computational results of the
OCOTILLO package.

2 Prel iminary Definit ions

DEFINITION 2.1. Given a graph G = (V, E), by dG(i, j)
we denote the shortest path (i.e. with the smallest
number of edges) between two vertices i and j. I f G
is a tree, then dG(i,j) is the length of the unique path
between i and j. We simply write d(i, j) if the graph or
tree is understood from the context.

As is customary, we may often denote by n, or n(G),
the number of nodes of a graph. We denote by Kn the
complete graph on n nodes. Sn is a star on n nodes (all
nodes but one are leaves). Pn is a path of n nodes.

For ease of notation, in the following definition and
in the remainder of the paper, when we write ~ , j e y ,
the summation has to be understood as actually re-

277

v j

VI] V3

Figure 1: A 3-peptoid; the three fragments are anchored
on a linear scaffold at positions vl, v2 and v3.

stricted to pairs of distinct vertices.

DEFINITION 2.2. Given a graph G = (V,E) , its Wiener
index w(G) is the total node-to-node path length. That
is, w(G) = ~'~.i,jev dG(i , j) .

The following graphs are used to describe formally
the problem of the combinatorial synthesis of specific
molecular structures.

DEFINITION 2.3. A (chemical) fragment is a graph G
with a special vertex v denoted as its anchor, or hook-
ing point. A peptoid is a graph obtained by join-
ing in a linear fashion from left to right, k fragments
G1, . . . , Gk via a path through their hooking points (Fig-
ure i). Note that, when k = 1, a fragment is a spe-
cial case of a peptoid. For a peptoid D = (V, E), by
l(D) := ~ i c u dG(i,vk) we denote the total distance of
all vertices from the rightmost hooking point vk. For
k = 1, lO gives the total distance from all nodes of a
fragment to its anchor.

We can think of a rooted tree as a special case of
fragment whose hooking point is its root. Henceforth
we have the following definition for rooted trees.

DEFINITION 2.4. Given a tree T = (V,E) with root
v C V, the total distance of its vertices from the root
is l(T) := ~,.i~y d(i, v).

3 T h e I n v e r s e W i e n e r I n d e x P r o b l e m

We have developed graph theoretic results for the
reconstruction problem based on the Wiener index.

3.1 T h e i n v e r s e W i e n e r i n d e x p r o b l e m for
g r a p h s

THEOREM 3.1. For any W # 2, 5 there exists a graph
G such that w(G) = W

In order to prove this theorem, we need the follow-
ing lemma:

LEMMA 3.1. For every graph G = (V, E) with diameter
2 and Wiener index W , the graph G' = (V, E U {e}) for
e ~ E has Wiener index W - 1.

Proof. Let e -- (vl, v2). Clearly riG(v1, v2) = 2 and
de, (vl, v2) -- 1. Any other distance is preserved by t h i s
transformation. •

We are now ready to prove Theorem 3.1.

Proof. Let Go = Sn, the s tar of size n. We have
w(Go) = (n - 1) 2 and the diameter of Go is two. Let
G1 be the graph obtained by adding to Go an edge not
already contained in it. G1 is either K~ or has diameter
two, and by the above lemma w(G1) = w(Go) - 1.
It it possible to repeat this procedure until the graph
obtained is Kn and w(Kn) = n(n - 1)/2. At any step,
the lemma guarantees tha t w(Gk) = w(Gk-1) - 1. Thus
each number in the interval IN = [n(n - 1)/2, (n - 1) 2]
is the Wiener index of Gk for some k.

Since the intervals overlap for n > 4, and including
the interval values for n = 4, we find for W > 5 there is a
graph G such tha t w(G) -- W. 1,3 and 4 are the Wiener
index of P2 (a pa th of length 2), K3 and P3, resp. To
prove tha t there is no graph G such tha t w(G) = 2, it
is enough to observe tha t the graph on n nodes with
the smallest Wiener index is Kn, and the one with the
largest is Pn, but w(P2) = 1 and w(K3) = 3. •

The theorem is constructive and leads in a straight-
forward way to an algorithm solving the search problem,
that is output t ing a graph with the required given in-
dex. Since the size of the graph is polynomial in the
Wiener index and a number can be represented with a
logarithmic number of bits, this algorithm can be classi-
fied as pseudo-polynomial - - tha t is, it is polynomial in
the parameters describing the problem but not on the
size of the representation of the input. More in detail,
the computat ion t ime is dominated by the time neces-
sary to output the graph, that is O(n2). Since for the
class of graphs considered n(n - 1)/2 _< W < (n - 1) 2,
the t ime complexity is also O(W).

3.2 T h e i n v e r s e W i e n e r p r o b l e m for t ree s
The problem we will be concerned with in this

subsection is the following: given a positive integer W ,
find whether there exists a tree T s.t. w(T) = W . We
will consider also the problem of finding such a tree.
Clearly, Theorem 3.1 involves non-trees, and thus it
does not apply to this more constrained setting. Indeed,
there are many integers that are the Wiener index of
some graph but not of any tree. Using an algorithm we

278

will describe in the following, we checked exhaustively
for W < 10000 and 159 turns out to be the largest such
example. This experimental evidence together with the
analogy with the case of graphs leads to the following
conjecture:

CONJECTURE 3.1. Every positive integer but a finite
set 1 is the Wiener index of some tree.

The above conjecture appeared first in [17], where
it was verified for W up to 1206 by a complete enumer-
ation of all unlabeled non isomorphic trees of up to 20
nodes. I f true, it would imply that the decision problem
is trivial, but the proof would not necessarily lead to an
efficient solution of the search problem.

3.2.1 A recurrence relation for t h e Wiener in-
dex

I t is possible to prove a recurrence relation for the
Wiener index of trees which is closely related to the
one we will prove for peptoids in 5.1. Let T = (V, E)
be a tree and (vi,v2) an edge. Let T1 = (Vi ,Ei) and
27.2 = (V2, E2) be the two trees obtained by removing
(Vl, v2). Let us assume tha t T and T1 are rooted in vl
and 2"2 in v2. We have the following recurrence for w(-),
l(-) and n(-):

THEOREM 3.2.

(3.1) n(T) = n(T1) + n(T2)

(3.2) l(T) = l(T1) + l(T2) + n(T2)

(3.3) w(T) = w(Ti) + w(T2) + l(T1)n(T2) +

I(T2)n(T1) + n(Ti)n(T2)

Proof. 3.1 is obvious. To prove 3.2 we use the definition
of l(-) and rearrange the summations slightly, as follows:

t(T) = Z d (v l , v)
vEV

= d(Vl, + E d(vl, v)
vEV1 t, EV2

= e(v , + Z v) + 1) + 1
vE Vi vE V2

= *(T1) + t(T2) + n(r2)

The same technique leads to the proof of 3.3

--r--NNamely:{2, 3, 5, 6, 7, 8, 11, 12, 13, 14, 15, 17, 19, 21, 22, 23,
24, 26, 27, 30, 33, 34, 37, 38, 39, 41, 43, 45, 47, 51, 53, 55, 60, 61,
69, 73, 77, 78, 83, 85, 87, 89, 91, 99, 101, 106, 113, 147, 159}

w(T) = Z
v,wEV

= Z + Z +
v,wE V1 v ,wE V2

Z e(v,w)
vE V1 ,wEt'?

= w(r~) + w(T2) +

Z (d(v, v l) + l + d (v 2 , w))
vE V1 ,wE V2

= w(r~) + w(r2) + l (T1)n(r. ,) +

l(T2)n(T1) + n(Ti)n(T2)

3.2.2 A dynamic programming algorithm for
the inverse Wiener index problem

This recurrence relation leads natural ly to a dy-
namic programming algorithm for the problem of find-
ing a tree T with assigned w(T) , l(T) and n(T) .
The key observation is the following: every tree with
a t least one edge can be decomposed in the way dic-
t a t ed by the above recurrence, tha t is by removing an
edge. Whatever the edge removed, we obtain two trees
Ti,i = 1, 2, and for each i, w(Ti) < w(T), l(Ti) < l(T)
and n(Ti) < n(T). Let us define a matr ix M so that
MW, L,N be 1 if there is a tree T such tha t w(T) = W,
l(T) = L, and n(T) = N, 0 otherwise. According to the
above recurrence MW, L,N can be computed if MW,,L,,N,
is known for every W' < W, L ' < L and N ' < N. This
implies that it is possible to compute the entries of M,
s tar t ing form the initial value Mo,oA = 1 and evaluating
to 0 all the entries corresponding to W, L, N values out-
side feasible bounds, proceeding in an orderly fashion.

This algorithm solves as well the inverse Wiener
index problem: given W, we compute upper bounds
for the largest L and N such tha t the triple (W, L, N)
is feasible. Then we fill the mat r ix M up to the entry
M W , L,N. If for any L' <_ L, N' < N M W , L, ,N, = 0 then
there is no tree T such tha t w(T) = ~V.

The algorithm can be extended so as to return a
tree with the required properties: as it is customary in
dynamic programming, it is enough to stor~, whenever
an entry of M is set to 1, the indexes of the two entries
to which the recurrence relation has been successfully
applied.

In our implementat ion we use a technique related
to dynamic programming called memoization. Instead
of filling the matr ix M bo t t om up, this technique ap-
plies recursively the recurrence relation. To avoid re-
computat ion of the same entries, intermediate results

279

get stored in M. It can be thought of as a top-down
version of basic dynamic programming. I t is worth not-
ing that without storage of intermediate results the time
complexity would blow-up exponentially, because of the
repeated recomputat ion of the same entries in M. This
technique is valuable when an algorithm can be termi-
nated without filling completely the matr ix M. Other-
wise, the number of entries evaluated is the same, but
there is a slight overhead due to function calls and stack
management. For our problem, memoization turns out
to be much faster for "yes" instances. For example,
(524,36,19) is a "yes" instance and requires less than one
second to compute, while (525,36,19) is a "no" instance,
requiring 145 seconds. This example is ra ther extreme,
but this behavior is absolutely consistent. This evidence
prompts for further research along different lines:

• quantify and analyze this asymmetry between
"yes" and "no" instances;

• exploit it to make the computation more efficient (is
it safe to "give up" after a reasonably short running
time? In exploiting the recurrence, is it faster to
compute many entries in parallel and stop when the
first successful computation is over?)

As a further algorithmic refinement, already ex-
ploited in the above mentioned experimental results,
we adopt also a divide and conquer strategy, whenever
possible. Since there are many possible ways of using
the recurrence relation, we try first the ones for which
n(T1) ~- n(T2). This way we proceed directly to the
smallest possible sub-problems. This approach is in-
effective in the worst case (consider W = (N - I) 2,
L -- N - I, that is a star on N nodes), but suggests a
sensible order in which to proceed.

The pseudo-code is given in Appendix A.

3.2.3 Recurrence relations for the Wiener in-
dex of bounded degree trees and k-ary trees

Often the graphs of molecular structures have in-
trinsic constraints on the degree of the nodes. For in-
stance, when the nodes represent individual a toms and
edges chemical bonds between them, we obtain a graph
whose maximum degree is not greater than 4 ([15]).

Unfortunately, Theorem 3.1 does not apply to
bounded ~egree graphs. On the contrary, the use of
graphs with high degree seems essential to its proof.
The situation is bet ter for trees, since we can develop
recurrence relations of the same kind of the one in Theo-
rem 3.2, and this recurrences lead to dynamic program-
ming algorithms similar to the one just shown. Let us
first deal with bounded degree trees. Besides the quan-
tities used so far - - w(.), l(.) and n(T) - - we need two
more definitions. Let mdeg(-) be the max imum degree

of a tree and rdeg(-) the degree of its root. As for The-
orem 3.2, let T = (V,E) be a tree and (vl ,v2) an edge.
Let T1 = (171, El) and T2 = (V2, E2) be the two trees ob-
tained by removing (vl, v2). Let us assume that T and
T1 are rooted in vl and T2 in v2. We have the following:

THEOREM 3.3.

mdeg(T) = max(mdeg(T1), mdeg(T2),

rdeg(T1) + 1, rdeg(T2) + 1)

rdeg(T) = rdeg(T1) + 1

Together with Theorem 3.2, Theorem 3.3 character-
izes the existence of a tree with the required properties
and thus can be used to define a dynamic programming
algorithm. This time, though, the ma t r ix M contain-
ing the partial solutions will have five dimensions, to
account also for mdeg(.) and rdeg(-). The worst case
bound for the running t ime has to be updated accord-
ingly.

We turn now to k - a ry trees. To develop a recur-
rence for the Wiener index in this case, we still rely on
the quantities that proved useful so far - - namely w(.),
l(-) and n(T) -- , but we decompose a tree in a differ-
ent w a y . Instead of using cuts as before we exploit the
definition of k-axy tree. Let T ---- (V~ E) be a k -a ry tree
and let Ti = (Vi, Ei) be the k subtrees hanging from its
root. We can prove a yet more complex recurrence for
the Wiener index in this case.

THEOREM 3.4.

(3.4) n(T) =

(3.5) l (T) =

(3.6) w(T) =

2 n(Ti) + 1

Z (l(Ti) + n(Ti))
i

+ l(ri) + , , (rd) +
i

Z l(Ti)n(Tj) + E 2n(T~)n(Tj)
i ~ j i<j

The proof is similar to the one for Theorem 3.2 and
will be omitted.

4 T h e S P L I T S reconstruction problem

In this section we address the following tree reconstruc-
tion problem: Find a tree such tha t for each edge the
sizes of the two shores of the cut tha t the edge defines
are equal to some given input values, or report that no
such tree exists. As we will see, this problem is closely
related to the inverse Wiener index problem for trees.
We s tar t with some definitions.

DEFINITION 4.1. For a tree T = (V, E) we define the
split an edge e C E, denoted by s(e) as the number of

2 8 0

nodes on the smallest shore of the unique cut identified
bye. The load of the edge, denoted by l(e), is the number
s(e) × (n - s(e)) of paths in T which contain the edge e.

By using the loads, we can rewrite the Wiener index
for a tree as w(T) = ~-~eeE l(e)-

The last bit of the Wiener index and the last bit
of n are not independent , as the following proposition
shows. This result appears also in [17, 18], where it
is derived by considering trees as bipart i te graphs and
arguing on the par i ty of paths. We give a much simpler
proof.

PROPOSITION 4.1. Any tree with an odd number of
nodes has an even Wiener index.

Proof. For each edge either s(e) or n - s(e) is even, so
the load is even. •

The problem of finding a tree of a given Wiener
index asks therefore to find n - 1 loads whose sum is W.
This prompted us to the following question: assume we
are given such loads; can we find the tree? Since for a
fixed n the loads uniquely determine the splits, we can
rephrase the problem as: given splits s l , . . . , sn-1 find
a tree T such tha t the edges of T have the given input
splits. This is a problem of tree reconstruction and the
set of splits can be viewed as yet another topological
property tha t characterizes a family of trees. Further-
more, the problem of reconstructing a tree from its
set of splits is interesting on its own. Unfortunately,
the reconstruction problem turns out to be NP-complete

THEOREM 4.1. The problem, SPLITS, of reconstruct-
ing a tree from its set of splits is NP-complete.

Proof. We reduce from the problem, 3-PARTITION. In
this problem we are given a bound, B, and 3m elements,
S l , . . . ,s3m, such tha t for each i E {1 , . . . , 3 m } , B / 4 <
si < B/2 . The problem asks whether there exists a
partition of the {si} into into 3-element disjoint sets
such that the sum~of the elements in each set is B.

We map the instance of 3-PARTITION to the
following instance of SPLITS: the value B + 1 ap-
pears m times and, for each i, we include the values,
si,s~ - 1 , . . . ,1. If we are given a yes instance of 3-
PARTITION, we can build a tree in the following way:
the root has m children (an m-star) each corresponding
to a 3-element set in the solution to 3-PARTITION and
then departing from each of these there are three paths
of length equal to the size of items tha t belong to that
set. It can be easily verified that we obtain the given
splits. Conversely, suppose we are given a tree with the
set of splits listed above. We show tha t it is necessarily

of the form we just described. Inductively, the tree must
necessarily contain 3m paths of length mini{s/} consist-
ing of edges with splits min{si} , min{s i} - 1 , . . . , 1 (for
example, each edge with a split of two must necessar-
ily be connected to an edge with a split of one). At
this point, we conclude that , in fact, we must have 3m
similar paths of length si each start ing from an edge
with split si (which contain the former paths) since we
are now only able to at tach loads >_ min{s~} and, by as-
sumption on the si sizes, max{s/} < 2 min{si}: for each
edge with split s between min{s~} + 1 and max{s i} , the
only edge with smaller load tha t we can a t tach must
have load exact ly s - 1. Finally, also from the bounds
on the s~, we infer tha t exactly three paths depart from
each leaf of an initial m-star , the edges of which all
have split size B + 1. As above, the s~ values of the
edges depart ing from the star edges provide a solution
to the instance of of 3-PARTITION. Since the reduction
is clearly polynomial t ime computable, this completes
the proof of the theorem. []

The problem of reconstructing a tree from its set
of splits can be solved by the following enumerative
algorithm. Sort the splits so as to have sl > . . . >
sn-1 = 1. Star t ing with a tree consisting of a single
node of weight n, we insert the edges one at a time,
ending Up with a tree on n nodes, each of weight 1. At
step k we

1. look -exaus t ive ly - for a node i whose weight w~ is
larger than sk

2. augment: at tach to node i a new node node j ,
setting wj := Sk and decreasing wi to wi - sk.

Note tha t at step 1 we may have to break ties.
The presence of these ties is what makes the algorithm
exponential, since we may have to backtrack from a
wrong choice. I t is not immediate that this algorithm
does indeed work. For instance, the sorting of the .si
is crucial, as the following example shows: Take n = 4
and sl = s2 = 1, s3 = 2. Then there is no way of
placing the split 2 after having placed the two splits
1. So we need to show that it is enough to consider
the sorted permuta t ion of the splits out of the (n - 1)!
possibilities.

PROPOSITION 4.2. If sl > . . . > sn-1 is a Y E S
instance of SPLITS, then the algorithm terminates with
a feasible solution.

Proof. We may reason backwards by start ing from
the tree and finding the correct sequence of nodes to
augment. Let T be a feasible solution. Give weight 1 to
each node of T and repeat the following operation, for

281

k = 1 to n - 1, until T has only one node. Take a leaf i
of T of minimum weight among the leaves. Let (i , j (k))
be the unique edge out of i. Delete node i and increase
Wj(k) a s Wj (k) : : W j (k) -~- W i . By looking backwards at
the sequence of trees thus obtained, we see a possible run
of the algorithm which augments on j (k - 1) , . . . , j (1)
creating edges of decreasing splits. •

This argument also implies that for YES-instances
there always exists a choice of nodes to augment which
requires no backtrack, and indeed this is what hap-
pened on the vast major i ty of small examples which we
tried initially, before proving tha t the problem is NP-
complete. We then performed a more exaustive testing
in the following way. We generate an unlabeled tree,
uniformly at random (as described in [19]), then com-
pute its splits and t ry to reconstruct it (or a different
feasible solution).

Ten instances for each value of n = 10, 20 , . . . , 100
were solved immediately, while for n _> 110 the algo-
r i thm started incurring in some long runs every once in
a while. By performing the selection at step 1 in an or-
derly fashion (i.e. t ry the available nodes by increasing
order of weight) we solved all generated problems, for n
up to 300, in less than 1 second each. The good average
performance raises an interesting theoretical question
on the probability tha t the search algorithm may find a
solution withouth backtracking (or within a small num-
ber of tries) on a tree generated u.a.r.

5 Inverse Problems for Peptoid Design

In this section we consider the following problem. In
the framework of combinatorial chemistry we are given
a fragment library, and values (lists, histograms) for
some index. We want to find combinatorial peptoids
(a compound of elements from the given library) that
match exactly that index.

5.1 A dynamic program for peptoid construc-
tion

THEOREM 5.1. One can compute in polynomial time
whether there exists a peptoid with a given Wiener
index, W, and, if so, output a solution.

Proof. We use a dynamic programming algorithm sim-
ilar to the algorithm given to find a tree of a particular
Wiener index. Note tha t W is bounded by a polyno-
mial in the size of the peptoid, N, and the library size,
L. Assume we have precomputed the Wiener indices of
the fragments in the library. Number the anchors along
the peptoid, say from left to right, by 1 through N. We
build up our peptoid from left to right by adding a frag-
ment from the l ibrary to each anchor sequentially. Let

l(-) denote the sum of t hed i s t ances to the rightmost
anchor in a peptoid, or the sum of the distances to the
anchor of a fragment from our library (which is just a
peptoid with one anchor). Remove the edge linking the
rightmost two anchors of a peptoid, P , leaving a smaller
peptoid, P ' , and a fragment, F . The dynamic program-
ming algorithm follows from the recurrences which we
present below. Note tha t by storing one solution (if one
exists) in each entry of the table we build, we can out-
put a solution with Wiener index W if one exists. The
recurrences follow.

n(P) = n(P ') + n (F)

l(P) = l(P') + n(P ') + l(F)

w(P) = w(P ') + w(G) + n (P ') l (F) +

n (F) l (P ') + n (P ')n (F) .

5.2 A Fast Enumerat ive Algorithm
In this section, we present a general method for

inverse problems based on shortest-paths topological
indices. We also present results from our software
package O C O T I L L O on actual combinatorial libraries.

THEOREM 5.2. The Wiener index of a linear-scaffold
peptoid constructed with fragments (Figure 1) is

N N N

W = Z Z [ndj + (j - i)ninj + nflil + Z wi
i=l j=i+l i=i

where ni is the number of nodes in fragment i, wi is the
Wiener index of the fragment and li is the sum of the
distance from each node to the anchor.

Proof. Consider the compound in Figure 1. When we
compute the shortest path between any two atoms,
there are two cases: either the two atoms are in the
same fragment, or they are not. For all pairs of atoms
that are in the same fragment we ~e -compu te the sum
of the distance between each pair and denote this value
w - - it is just the Wiener index of the fragment.

For pairs of a toms tha t are in different fragments,
the shortest pa th between the two atoms is always
through the two anchors associated with the fragments.
We break this pa th into three components:

1. The shortest pa th from atom i to its anchor.

2. The shortest pa th along the scaffold.

3. the shortest pa th from a tom j to its anchor.

282

The sum of distances between all pairs of a toms in
two different fragments is:

= E
iEF. jEF~

= nb E d(i, Va) + nanbd(Va,Vb) +
iEF,,

jEF~

= nbl~ + nanbd(va,Vb) + nalb

where Va is the anchor atom of fragment a and na is the
number of a toms in fragment a.

The Wiener index is now the sum of P over all pairs
of fragments, plus the sum of the Wiener index of the
individual fragments.

N N N

i = l j : i + l i=1

N N N

: E E [nilj + ninjd(vi ,v j)+nj l i] + E w i
i : 1 j : i + l i----1

4 7r,. i - - - - i " ~ ' ~ - ! T - - - ' T T ' - - 7 - - - - ~ "

. I .~ \ ! ! ! i ! !

3~" ~ - - r-"" i' i i I I \ ! ~ i
3~-,. i / \] i i i i

l I / \ i i i i i i
.~ z s o ~ ! , - - ~ _ ~ _ _ ~ . . . _ . ~ _ ~ _ _ . _ . _ ~

I I / ~ ' \ i i ! i i i i
~ 9 ~ . - - - - - . ~ - - - - / - - . ' - 4 - . - - - - ~ - . - - . ~ , A ~ i ~ . - - - . - . ~ ~

o95*, ! i \ :: i
' ! [] ~ : ~ : i !

O'O0~" ~S ~ ' . ~ 72'2 11 ~ 1 ~ 7 9 9 f f ~ 6 2S804 29 !4T3 33il 42 £IO

W i e n e r Index

Figure 2: The percent of constructed flower-
configuration peptoids that need to be examined in de-
tail. A histogram of the number of peptoids with a spe-
cific Wiener index follows almost the same curve, which
explains why the pruning algorithm does not prune uni-
formly for all Wiener index - - there are just more pep-
toids that match.

If, as in our case, the scaffold is a linear chain, then the
distance from the anchor of fragment i to the anchor of
fragment j is IJ - i], and,

N N N

W .~- E E [nilj Jr (j - i) n i n j --t- njl'il "Jr" E wi
i=1 j = i + l i=1

We can rewrite the Wiener index equation as

N N N N N

The proof closely follows that for Theorem 5.2 and is
omitted.

We let D be the difference between F on a set
of fragments and W on a set of fragments given the
ordering ~r:

N N

D(Tr) = W - F = Z E (J - i)n~(i)n,,(j).
i ~ l j = i + l

For a given set of fragments, the ordering, 7rmi~, with
the smallest Wiener index is also the ordering with the

W = E ni E li + E E (j - i)nrnj + E (wi - n i l i) smallest value of D. This forms our pruning search.
i=1 ~=z i=1 j=~+l i=1 If the Wiener index we are looking for is smaller than

Suppose tha t we treat the entire scaffold as a
single vertex, fort~xample, in Figure 1, we would
compress vl, v2 and v3 to a single vertex. In effect,
we have constructed a peptoid with an unordered set
of fragments, ra ther than an ordered list of fragments.
This is called the flower compression, and is at the heart
of our fast search method.

THEOREM 5.3. The Wiener index of a flower-
compressed peptoid is

N N N

i=l j=i+l i : l

minD + F we do not need to check any orderings for
the correct Wiener index.

for each set of N fragments do
i f m i n d + F < Wta~get 4_ maxD + F t h e n

examine all orderiugs of the set of fragments for
Wtarget.

e l s e

discard all orderings of the set of fragments.

As a first approximation to the minimum and
maximum, we can replace each ni with the smallest or
largest value of n in the peptoid, for example,

N N N 3 - N n~ni~.
minD > E E (j - i)n~i~ = 6

i=l j=i+l

2 8 3

t l J ~ i i

~w 41___i__] : ! -o. i i i

, , ,~ > +. . /_~ & . _ . ~ . ~ .._~

il i '. '~! ! : ! ! ! !

a,, r- - 2 - - - @ ~ - v - -~- --{-- +-- --~

5401 ~2 24 28 32 36 10 41 CO

Wiener Index

Figure 3: The CPU time required to search.

However, this bound is very weak - - at Wiener index
9000, we need to examine 32.8% of the peptoids in
detail, compared to 4.7% when using the optimal values
for m i n D and m a x D .

CONJECTURE 5.1. Given nl < n2 < . . . < aN, the
ordering for the optimal min imum value of D is:

2 i - 1 i f i < N/2
7rmin(i) = 2 (g - i + l) if i > N / 2

CONJECTURE 5.2. An algorithm to compute the order-
ing for the optimal max imum value of D, given nl <_
n.2 < . . . < aN, is:

Lp := 1; L := 0;
Rp := N ; R := 0;
f o r i := N downto 1 do

i f R >_ L t h e n
7rma~(Lp) := i; Lp := Lp + 1; L := L + ni;

else
7rmax(Rp) := i; Rp := Rp - 1; R := R + ni;

For example,

i 1 2 3 4 5 6 7 8

ni

nTr,~i,~ (i)
n.=a= i z~i5 i O f l £ O I O I I l ~

Both conjectures have been extensively tested.
As seen in Figure 2, not many flower peptoids pass

the test.
C o m p u t a t i o n a l R e s u l t s . We tested the perfor-

mance of the pruning algorithm by searching for a five-
fragment peptoid using a fragment library with 350

amine fragments (resulting in 164 different w,l,n values)
for each position. This configuration results in 2.6e12
possible peptoids.

A brute force enumeration using the w, l, n compu-
tation explained earlier required 51,786 cpu-seconds, or
50.5e6 peptoids per second. For comparison, we can
estimate that without the w, l, n computation, the enu-
meration would be at least (350/165) 5 ~ 43 times as
long - - about one month of cpu time - - without even
considering that the Wiener index computation is also
more difficult. Applying the flower-compression prun-
ing algorithm achieves a significant speedup as can be
seen in Figure 3, requring anywhere from 540 seconds
(4,860e6 peptoids per second) to 3,500 seconds (750e6
peptoids per second).

6 A c k n o w l e d g e m e n t s

The authors would like to thank Jean-Loup Faulon
and Diana Roe for useful discussions regarding this
paper. This work was supported in part by Sandia
National Laboratories, operated by Lockheed Martin
for the U.S. Department of Energy under contract
No. DE-AC04-94AL85000 and by the Mathematics,
Information, and Computational Science Program of
the Office of Science of the U.S. Department of Energy.
D. Goldman was supported by an American Fellowship
from the American Association of University Women
Educational Foundation.

R e f e r e n c e s

[1] Fiftieth Anniversary of the Wiener Index, Discrete
Applied Mathematics Special Issue, Vol. 80, no. 1
Gutman, I., Klavzar, S. and Mohar, B. eds., 122 pages,
1997

[2] Wiener, H., Structural determination of paraffin boil-
ing points, J. Amer. Chem. Soc., 69 (1947) 17-20

[3] Sheridan, R., P. and Kearsley, S., K., Using a Ge-
netic Algorithm To Suggest Combinatorial Libraries,
J. Chem. Inf. Comput. Sci., 35 (1995) 310-320

[4] Venkatasubramanian, V., Chan, K. and Caruthers, J.
M., Evolutionary Design of Molecules with Desired
Properties Using the Genetic Algorithm, J. Chem. Inf.
Comput. Sci., 35 (1995) 188-195

[5] Gordon, Douglas J., Bellott, Emile M., and Tenen-
baum, Boris, Using a Genetic Algorithm to Select an
Optimum Combinatorial Library Using a Subset of
Available Input Materials, Exploiting Molecular Di-
versity: Refining Small Molecule Libraries, La Jolla,
California, February 1-5, 1999.

[6] Singh, Jasbir et. al., Application of Genetic Algorithms
to Combinatorial Synthesis: A Computatorial Synthe-
sis: A Computational Approach to Lead Identification
and Lead Optimization, J. Am Chem. Soc., Vol. 118,
(1996), 1669-1676

284

[7] Gallop, Mark A., Barrett, Ronald W., Dover, William
J., Fodor, Stephen P. A., Gordon, Eric M., Applica-
tions of Combinatorial Technologies to Drug Discov-
ery. Background and Peptide Combinatorial Libraries,
Journal of Medicinal Chemistry, Vol. 37, No. 9 (1994)
1233-1251

[8] Zheng, Weifaa, Cho, Sung Jin, and Tropsha, Alexan-
der, Rational Combinatorial Library Design. 1. Focus-
2D: A new Approach to the Design of Targeted Com-
binatorial Chemical Libraries, J. Chem. Inf. Comput.
Sci., Vol. 38, (1998) 251-258

[9] Zheng, Weifan, Cho, Sung Jin, and Tropsha, Alexan-
der, Rational Combinatorial Library Design. 2. Ra-
tional Design of Targeted Combinatorial Peptide Li-
braries using Chemical Similarity Probe and the In-
verse SAR Approaches, J. Chem. Inf. Comput. Sci.,
Vol. 38, (1998) 259-268

[10] Carhart, Raymond E., Smith, Dennis H., and
Venkataraghavan, R., Atom Pairs as Molecular Fea-
tures in Structure-Activity Studies: Definition and Ap-
plications, J. Chem. Inf. Comput. Sei., Vol. 25, No. 25
(1985) 64-73

[11] Bemis, Guy W. and Kuntz, Irwin D., A fast and ef-
ficient method for 2D and 3D molecular shape de-
scription, J. Computer-Aided Molecular Design, Vol.
6 (1992) 607-628

[12] Good, Andrew C. and Kuntz, Irwin D., Investigating
the extension of pairwise distance pharmacophore mea-
sures to triplet-based descriptors, J. Computer-Aided
Molecular Design, Vol. 9, (1995) 373-379

[13] Rouvray, D.H., The Search for Useful Topological
Indices in Chemistry, American Scientist, Vol. 61, No.
6, (1973), 729-735.

[14] Sabljid, Aleksandar and Trinajstid, Nenad, Quantita-
tive structure-activity relationships: the role of topo-
logical indices, Acta Pharm. Jugosl., Vol 31, (1981),
189-214.

[15] Trinajstic, N., Chemical Graph Theory, CRC Press,
1992.

[16] Gillet, V. J. and Willett, P. and Bradshaw, J. and
Green, D.V.S, Selecting Combinatorial Libraries to
Optimize Diversity and Physical Properties, J. Chem.
Inf. Comput. Sei., Vol. 39, No. 1 (1999) 169-177

[17] Lepovid, M. and Gutman, I., A Collective Property of
Trees and Chemical Trees, J. Chem. Inf. Comput. Sci.,
Vol. 38, No. 5 (1998) 823-826

[18] Bonchev, D., Gutman, I. and Polansky, O., Parity
of the Distance Numbers and Wiener Numbers of
Bipartite Graphs, Commun. Math. Chem., 22 (1987)
209-214

[19] Wilf~ H. S., The Uniform Selection of Free Trees,
Journal of Algorithms 2 (1981) 204-207

[20] Brown, Robert D. and Martin, Yvonne C., Use of
Structure-Activity Data to Compare Structure-Based
Clustering Methods and Descriptors for Use in Com-
pound Selection, J. Chem. Inf. Comput. Sci., Vol. 25,
(1985) 64-73

[21] Brown, Robert D. and Martin, Yvonne C., The Infor-

mation Content of 2D and 3D Structural Descriptors
Relevant to Ligand-Receptor Binding, J. Chem. Inf.
Comput. Sci., Vol. 37, (1997) 1-9

[22] Needham, Diane E., Wei, I-Chen, and Seybold, Paul
G., Molecular Modeling of the Physical Properties of
Alkanes, J. Am Chem. Soc., Vol. 110, (1998), 4186-
4194

[23] Plunkett, Matthew J. and Ellman, Jonathan A., Com-
binatorial Chemistry and New Drugs, Scientific Amer-
ican, April 1997, 69-73

[24] Mohar, Bojan, A Novel Definition of the Weiner index
for Trees, J. Chem. Inf. Comput. Sci, Vol. 33, (1993),
153-154

A A p p e n d i x : p s e u d o - c o d e fo r d y n a m i c
p r o g r a m m i n g a l g o r i t h m for t h e i n v e r s e
W i e n e r i n d e x p r o b l e m

In the pseudo-code description of the a lgori thm that fol-
lows, we assume tha t the mat r ix M has been initialized
to a value "undefined" but for M0,0,1 = 1.

tree (W,L,N)
i f N 3 - N < 6 W V (N - 1) ~ > W V L < N - 1 V L >
N (N - 1)/2 t h e n

return 0
i f MW, L,N ~£ u n d e f i n e d t h e n

return MW, L,N
i f N = 1 t h e n

return 0
f o r N 1 := N / 2 to N - l d o

N 2 : = N - N 1
f o r L 1 : = N I - l t o L - N 2 do

L2 := L - L1 - N2;
for WI := L1 to W - L1N2 - L2NI - N1N2 do

W2 := W - l ~ - L12~:2 - L2N1 - N1N2
i f tree(W1, L1, N1) = 1 A tree(VV½, L2, N2) =
1 t h e n

MW, L,N : : 1
return 1

f o r L 1 : - - N I - l t o L - N 1 do
L2 :-- L - L1 - J¥1
for W1 := L1 to W - L1N2 - L2N1 - N1N2 do

W2 := W - W1 - L1N2 - L2N1 - N I N 2
i f tree(W1, L1, N1) = 1 A tree(W:, L2, N2) =
1 t h e n

I~IW, L,N : : 1
return 1

MW, L,N := 0
return 0

