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Abstract. The paper con- 
structs the first polynomial univer- 
sal traversing sequences for cycles, 
solving an open problem of S.Cook 
and d. Aleliunss, R. Karp, R. Lip- 
ton, L.Lovssz, C. Rackoff (1979) 
[2] in the case of l-regular graphs. 
The existence of universal travers- 
ing sequences of size O(&nSlogt2) 
for n-vertex &regular graphs was 
established in [Z] by a probabilis- 
tic argument, which was inherently 
non-constructive. For the cycles, 
the non-constructive upper bound 
was improved to O(nS) by Janowsky 
(1983) (131 and Cobham (1986) IS]. 
Previously, the best explicit con- 
structions for cycles were due to 
Bridgland (1986) and A. Bar-Noy, 
A. Borodin, M. Karchmer, N. Linial, 
and M. Werman (1986), and have 
size O(r+“), 

Our universal traversing se- 
quence has size O(n’.‘*), and can be 
constructed in log-space. 

1 Introduction 

m The study of n-universal se- 
quences is of the utmost importance 
for frequent museum goemn 
Michael Sipser (1985) [17] 

Permission to copy without fee all OT part of this material is granted 
provided that the copies are not made or distributed for direct 
commercial advantage, the ACM copyright notice and the title of 
the publication and its date appear, and notice is given that copying 
is hy permission of the Association for Computing Machinery. To 
copy otherwise, or to republish. requires a f’ce and/or specfic 
permission. 

Graph connectivity problems are funda- 
mental for complexity theory. One such 
problem is UNDIRECTED CONNECTIV- 
ITY, the ‘problem of determining if two ver- 
tices in an undirected graph are connected by 
a path. Its version for directed graphs is com- 
plete for NSPACE(fogn); however the undi- 
rected version is not known to be complete for 
NSPACE(logn). One approach to studying 
the problem was proposed by S.Cook, [2] who 
introduced the notion of universal traversing 
sequence. For a given n, such a sequence is 
n-universal for all graphs with n vertices, if, 
regardless of where you start in the graph, it 
is guaranteed that every vertex in the graph 
will be visited at least once. Because such a 
sequence must visit an exponential number of 
graphs, S.Cook [2] questioned the existence 
of short sequences of this type, i.e., having 
polynomial size in n. [2] gave a positive an- 
swer, establishing by probabilistic arguments 
that such sequences for d-regular graphs must 
exist. Their non-constructive upper-bound 
is O(d’nSfogn). As a corollary, universal 
sequences imply that UNDIRECTED CON- 
NECTIVITY is in RandomSPACE(logn). In 

the same way, an algorithm for construct- 
ing n-universal sequences for genera1 graphs, 
which needs only O(logn) space, will im- 
ply that UNDIRECTED CONNECTIVITY 
is in DSPACE(logn). Such a result will 
have strong consequences for complexity the- 
ory because in [I5], UNDIRECTED CON- 
NECTIVITY was found to be complete for 
the class SymSPACE(logn) of symmetric log 
space computation. As a consequence we 
would have the following collapsing : 

for every constructible function f(n) 2 
logn : 

DSPACE(f(n)) = SymSPACE(f(n)) = 
CO-SymSPACE(/(n)). 
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The relevance of UNDIRECTED CON- 
NECTIVITY is discussed in detail in [5] 
(where a recent re-classification of O(logn) 
space bounded complexity classes is given), 

(171, and [9]. 
Progress toward constructing universal se- 

quences was made by [S] and [4]. Explicit 
constructions were given for 2-regular graphs, 
providing universal sequences of size 0( n”fl”). 
[6] uses O(log’n) space. On the other hand, 
an R(nlogn) lower bound was obtained in [4]. 

We give the first polynomial construction 
in the literature for universal traversing se- 
quences for a-regular graphs in lolgn space 
having size O(n’.“). We consider our result 
a step towards establishing a similar result 
for 3-regular graphs, which by results of [lo] 
and [4] will imply the solution in the general 
d-regular case, and therefore the complexity 
class collapsing. 

As it was pointed out in [4], polynomial 
universal traversing seqences for cycles might 
also have applications for distributed algo- 
rithms for rings of processors (e.g. anony- 
mous rings). 

1.1 Informal description of the 
construction 

The O(t@‘) construction that was available 
to us was the one due to Bridgland [S]. Our 
method builds on his. Bridgland’s method 
is recursive, relating universal sequences for 
cycles of size ra to the ones for cycles of size 
n/2. Informally, the construction is described 
by an equation 

j(n) = cnf(z) + c’n. 

(A similar recurrence is accomplished in [4], 
except that cn is there c”nlogn.) Our method 
is also recursive, and is described by the equa- 
tion 

f(n) = 271(i) + 4n + 49. 

We proceed as follows. There are three steps, 
called contractions. We start with a cycle 
(called “wheel” in the paper) w that is subject 
to these contractions. Each contraction pro- 
vides us with a new wheel w’, of size smaller 
than or equal to the size of w, and a way to 
transform universal sequences of w into ones 
for w. The combined effect of the three con- 
tractions will “halve” the wheel, in the sense 

that a universal for a wheel of half the size of 
w can be transformed into one that is unive:r- 
sal for w. T:he success of the transformation is 
that it can only use a locally constant amount 
of replacemlent . 

The edges of the wheels are divided in two 
categories: .&Q.,.aand &.I.., .u, wl1ic.h 
was an idea used in IS]. One new idea we use 
classifies the regions of the wheel as multi- 
ples or singles for each of the above two catle- 
gories of edges. The first 2 contractions halve 
the multiples in each category, while the third 
contraction “halves”, in a different sense, the 
collection of singles from different categories 
by “marrying” two singles (from different cat- 
egories), and then providing a one edge con- 
traction. 

In the process of halving the multiples, 
some multiples can be transformed into sin- 
gles, and some singles can be transformed into 
multiples. The contractions are able to take 
care of the halving even in these cases. 

The three contractions, viewed as transfor- 
mations on sequences, say K1, Kz, KS, are de- 
fined as replacing a bit by 3 other bits, de- 
pending on the value of the bit and the par- 
ity of its position. They can be composed 
as functions, preserving their property. The 
universal sequence is constructed by applying 
K, o Kz 0 KS, exactly logn times, to an initial 
09010 sequence. 

The remaining portion of the paper is orga- 
nized as follows. Section 2 gives some defini- 
tions and an important first lemma. Section 
3 discusses multiples and singles. Sections 4 
and 5 give the first two contractions. The 
constructions are dual, so the development is 
similar. Section 5 contains the third contrac- 
tion, the difficult part of of the construction, 
while in section 6, we construct the universal 
traversing sequences of polynomial size. The 
last section contains conclusions. 

2 Definitions and Nota- 
t ions 

The first basic object of study in this paper 
is a wheel, which is an undirected graph be- 
ing a cycle that has at each vertex two edges 
sharing that vertex labeled 0 and 1. 
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Definition 1 A wheel is an undirected graph 
w = (VW,&), where 

l VW = {~1,...,Un) 

l E, = {(Vi7Vi+l) 1 1 5 i 5 n - 1) U 
{bJ”?dI 

l /or each vertex v E V,,, the two edges shar- 
ing v are labeled ( near v ) with 0 and 1 
arbitrarily. 

The size oj a wheel w, denoted ] w ] is the 
number oj vertices in V,, i.e. n. 

Example. A region on w might look like 

00110010101101 . . ..---.--.4--.. 

The second basic object is that of a se- 
quence u of O’s and 1’s. Let {O,l}+ be, as 
usual, the set of (non-empty) sequences over 0 
and 1. If u = u(l)u(Z)...u(m),u(i) E {O,l}+, 

for all i, 1 5 i < m then the size of u, denoted 
\ u 1, is m; u[i) for i 2 m denotes u(l)...u(i). 

The two objects, w and u, provide the ba- 
sis for defining universal traversing sequences 
for cycles. Fix w,u, and a vertex u of w. We 
say that we run the sequence u on w starting 
from v if we repeat the following step for every 
i,l < i <I u I: interpret u(i), the ith symbol 
of u, as the instruction of following the edge 
labeled u(i) at u; we end up after each step 
at a neighbour vertex. u visits all the vetices, 
or traverses w starting from u, if each vertex 
is visited at least once. If for every u on w, 
u traverses w starting from v, then u is said 
’ universal” for w. If u is universal for ev- 
ery w of size n (there are 2” such wheels ), 
then u is said to be n-universal. For techni- 
cal reasons, we will strengthen our notion of 
universal traversing sequence. 

Definition 2 Given a wheel w, a sequence u 
is universal for w if it satisfies the following 
condition: for each uertez v, u visits v in an 
in-vertex-not-back manner, i.e. the run of 
the sequence will visit v (in one of the pos- 
sible multiple visits of v ) coming from the 
one neighbor uertez of v, and continuing on 
to the other neighbor vertez of v. A sequence 
is n-universal ij it is unit -rsal for every wheel 
w oj size n. 

Definition 3 A D-arrangement jor wheels 
w, w’ is given by A = (D, L,, L,,) where 

l i) D = {dI,...,dk} is a set of labels; 

l ii) L, : D + VW, L,I : D + V,,,I are two 
injeetive functions, arranging dl, . . ..dk in 
this order on each wheel, w and wr, as 
labels to some vertices. d is the label as- 
signed to both vcrtez L, on w, and vertez 
L,I on w’. 

A D-arrangement defines on each wheel two 
types of sets of intervals : 

l Type 1: [h,di+l], 1 < i 5 n - l,\d,,&]. 

l Type 2: 

The type 1 set of intervals partitions the 
wheel into intervals such that consecutive in- 
tervals share an end point, while the type 2 
set of intervals partitions the wheel into inter- 
vals such that consecutive intervals share two 
vertices. 

Definition 4 Let [d,d’] be an interval and S 
a mapping, S : (0, l}+ + (0, l}+. 

S is said to be a synchronization function 
for [d, d’] if for every d E {d,d’} and eu- 
ery u’ E {O,l}+, a parallel run oj u’ on w’ 
and u = S(u’) on w starting both at d will 
syrmhronize at the end quints d,d’. ‘. . 
VsYd E {d, d’}, (u’[i] is at d implies S(u’[i]i :s 
at 2). S is said to be a synchronization func- 
tion for D ij it is a synchronization junction 
for every interval in D. 

The key notion to our construction of uni- 
versal sequences is that of contraction. In- 
tuitively, such a contraction is given by two 
parts: a mapping between wheels, and a map- 
ping between sequences. The first captures 
the actual way of “contracting” a generic 
wheel w into a new wheel w’, potentially hav- 
ing a smaller size. The second component, re- 
lates the universal sequences of the (possibly) 
smaller wheel w’ with the universal sequences 
of w. 

Definition 6 Let W, be the set of wheels of 
size n and W+, the set of wheels of size 5 n. 
A contraction is given by 

K = ({K I n Z i),K) 

, where 

. M,:W, -+ Ws,,nll 

. K : (0, I}+ --t {O,l}f 

such that for every n and every w of size n, 
if the sequence u’ is universal for w’, then the 
sequence K(u’) is universal for w. 
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Definition 6 The composition of two con- 

tractione K, and K,, denoted Klo,K2, is given 

bv ({M, 1 n L l),~c), where 

Lemma 1 Contractions are closed under 
composition. 

3 Multiples and Singles 

There are 4 types of edges :.M,, .JJ,, hav- 
ing identical bits, and .U, .uhaving dif- 
ferent bits. On the wheel, edges with identical 
bits can occur as singles, that is between two 
edges with different bits : a .M.single has 
an occurence in .QIJ 0.10, and a .JJ.single 
occurs in .l O-1 l-0 1. They can also occur in 
a region of multiples .Qj&o./ .&edges, that is 
(at least 2) consecutive edges with identical 
bits, e.g. . . . . QQ.u... . . 

Similarly, we have singles and multiples 
for the edges with different bits: .QQ.U.fl. 
has the .usingle, .LUl.QQ. hs Ihe 
&&single. I 0 1 . . ..A OJ.... is a region of multi- 
ples (at least two) .w(or .l.&) edges. ’ 

Notation. Let q(w) be the number of 
edges of the form .uor &&on ‘w; p(w) be 
the number of multiples of such edges, and 
u(w) the number of such singles. Similarly, 
when we consider edges of the form .mand 
.u, the same quantities are denoted by 
q’(w),p’(w),o’(w). Finally, singles(w), and 

multiples(w), represent the number of all sin- 
gles on w and, respectively, the number of all. 
multiples on w. 

We have 1 w I= q(w) + q’(w), 

q(w) = cc(w) + a(w), and 
q’(w) = /.4’(w) + u’(w). 

4 The first contraction 

4.1 The construction 

Define K, = ({M,,, 1 n 2 I},n,) as follows: 
Let w be a wheel of size rr. We construct 

l a new wheel w’ = Ml,,(w) 

l a synchronization function Si for w, w’ 

l the function tcl 

Constructing w’. Ml,, “contracts” regiorls on 
wheels. In order to construct w’ =: Ml,,,(w), 
we are going to contract regions of multiples 
.uand J&on the wheel w. Moreover, we 

intend to halve the number of such multiples. 
Such a region of multiples has the form 

.l+.LQ+....U~~ 

m 

or its reverse. Let m be the number of .u 
edges in the above region. This region will be 
transformed into a corresponding one, o:n the 
wheel w’, according to the value of m. See, 

fig.1. 
Now, we perform the transformation de- 

scribed in fig.1 for all the regions of the above 
form from w. If no such region exists for any 
m 2 0, then the wheel has only .QJ., edges 
and we take w’ = w. 

Defining S1 and ICY. 

Definition 7 The function S1 : {O,l}+ -+ 
{O,l}+ is defined by 

&(O) = 000, 
S,(I) = 111 
and S,(uiu;) = s,(u’Js,(u;), vu:,u’2 i 

0-A IIf. 

Definition 8 The function K~ : {O,l}+ -+ 
{O,l}+ is defined by 

q(d) = l~w’+lS1(U’),vU’ E {o,1}+. 

Properties of Si and nr 
The next Lemma shows that we can con- 

struct a D-arrangement of distinguished po- 
sitions on w and w’ such that Si synchronizes 
on D. 

Lemm;n 2 Let w be a wheel of size n with n 
even, and w’ = Ml,,(w). Then: 

1. I w 111 w’ I 

2. ( w’ ( is euen 

3. a D-arrangement can Ire constructed for 
w, w’ such that S1 is a synchro?ri-c[lio,r 

junction for D. 

Proof sketch. To construct the D- 

arrangement, we label with d’s all the end 
points of the .&Q+and .jJ.edges. The ar- 
rangement partitions the wheel into intervals 
of Type 2. 
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The lines connecting the two wheels in fig. I, 

keep track of the progress on u) as WC go on 

td. WC have two types or progress-rc!l)orl,iIlg 

lines: straight ones capturing 1.11~ position i1.s 

we go from the left end point to the right, 
and dashed ones indicating the position as we 
come from right to 1cft.m 

Lemma 3 KI is a contraction. 

Proof. Consider a sequence u’ which is uni- 
versal for w’. We have to prove that nl(u’) 
is universal for UJ. Consider an arbitrary po- 
sition p on w, and run I from p. nl (u’) 
starts with llwlfl, at the end of which the run 
will be at the endpoint of an edge .L, if such 
an edge exists on w: i.e., at an end point do 
of an interval. If no such egde .JJ. is on w, 
then we will traverse the wheel entirely. The 
” -i 1” assures that cvrry vertex on w is visited 
in the rc~cluirtd nmnnrr. 

Now by I,t!lnma 2, S, is $1 sylictlrollixatiorl 

function on thr intervals of (1~. We IISC the 

fact that u’ is universal for w’. Start u’ at 
do on UJ’, and Sl(u’) at do on UJ continuing 

the run of K,(u’) from p. u’ will traverse w’, 
and therefore all the interval end points. By 
synchronization, SI(U’) will visit all the inter- 
val end points on w too. By our definition of 
universality, a vertex on w’ is visited by u’ at 
least once in such a way that it is not return- 
ing after visiting it. This means that not only 
every edge is visited, but moreover, every two 
consecutive edges are visited “straight” in at 
least one direction. This forces the interior of 
an interval on w to be traversed entirely when 
the corresponding interval is traversed on w’. 

It is easy to check in fig.1 that a traversal 
of the in-vertex-not-back type on the intervals 
of tu’ will imply the same kind of traversal on 

intervals from w. 0 

4.2 Evaluation and convergence 

The effect of the first transformation is that 
on UJ’ the number of multiples .u,and .lO.is 
no more than half the same number on w. 
Also, the quantity of .uand .uedges de- 
creases by a multiple of 2, from w to w’. 

Lemma 4 1. p(w’) < 9 

2. q(w) 1 q’(d) and q(w) E dw’)(mod2) 

5 The second contraction 

The construction in this section is similar to 

the one presented in the previous section. The 
purpose, this time, is to halve the .QQ.and 
.~multiplrs. 

5.1 The construction 

Define K2 = ({M,,, 1 n 1 l},nz) as follows. 
Let w be a wheel of size n. We construct 

l a new wheel w’ = Mz,n 

l a synchronization function S, for w, w’ 

. the function tc2 

Constructing w’. In order to construct w’ = 
Mz,,, we are going to contract regions of mul- 
tiples .Q&and J&on the wheel w. Morc- 
over, we intend to halve the number of such 
multiples. Such H region of multiples 11~33 onr: 

of the 4 forms 

10 1100 .-.A-..-. I 1 0 0 1 0 -.d - 

m 

or its reverse, or 

.LI1 11 00 .-A.... 00,11.01, 
-” 

m 

or its reverse. 
Fig.2 gives the set of rules for obtaining w’. 
Defining S, and tc2 

Definition 9 The function SZ : {O,l}+ -+ 
{O,l}+ is defined by 
S*(O) = 010, 
&(l) = 101 
and S, (uiu;) = s2(u;)s~(u;), vu;,u; E 

P,l)k. 

Definition 10 The junction 62 : {O,l}+ -+ 
{O,l}+ is defined by 

fc*(u’) = (lO)@+hsl(u’),vu’ E {o,l}+. 

Properties of & and nz 

Lemma 5 Let w be a wheel of size n with n 
even and w’ = Mz,,(w). Then : 

2. 1 w’ 1 is even 

3. a D-arrangement can be constructed for 
w,w’ such that S, is a synchronization 

function for D. 
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Lemma 6 ~2 is a contraction. 

5.2 Evaluation and convergence 

Lemma 7 1. p’(w’) 5 9 

2. q’(w) > q’(w’) and q’(w) s q’(u?)(modll) 

6 The third contraction 

The construction described in this section is 
different from the ones in the previously two 
sections. The purpose this time, is to “halve” 
all the singles of any type in the same trans- 
formation. It seems that .QJ,and J&singles 
need the other .Q&and .usingles in order 
to be able to “halve”. The process is not as 
before: instead of halving the total number of 
singles, we are only forcing a shrinking of the 
wheel w’ with at least half the number of sin- 
gles from w. We define intervals on w and w’, 
this time of Type 1 according to Definition 
2. As before, each interval on w corresponds 
with one on w’. 

6.1 The construction 

Define KS = ({MS,,, 1 n L l},ns) as follows. 
Let w be a wheel of size n. We construct 

l a new wheel w’ = A&,(w) 

l a synchronization function Sa for w, w’ 

l the function ICY 

Defining Ss and n3 

Definition 11 The function Se : {O,l)+ -P 
{O,l}+ is defined by 
S3(odd - 0) = 000 
S3(odd - 1) = 100 
Ss(even - 0) = 011 
S3(even - 1) = 111 
and &(u’) is defined on u’ E {O.,l)+ by re- 
placing each bit in u’, depending on the parity 
of its occurence with the corresponding triple. 

Example. 
s.@o1011) = 000011100011100111. 

D&&ion 12 The junction ~3 : (0, I} ’ )r 
{O,l}+ is defined by 

KS(U’) = 00111s&I’),vu’f” {O,l}+. 

Constructing w’: We partition w into inter- 
vals, each of which shares only one end point. 
That is, we are constructing a D-arrangement 
of Type 1. 

Algorithm for Interval Construction 
for w. 

let u = oo,u,’ = 011,u; = 111. 
fix an arbitra.ry vertex and an order on UJ. 
mark the vertices in w with positions 
1, 2, . . . . ( w ( following the 
wheel order starting 

from the fixed vertex. 
forp=1,3,6 ,..., (~1-1 do 

begin 
run u at p; let p’ be the resulting 

position. 
let . zq’z 4 be the bits at p’ on w. 
run u;’ = zll at p’; let pi be the 

resulting position. 
run u;’ := 011; let pk be the resulting 

position. 
end. 

Let [pL,pk] be the interval defined as that 
portion of the wheel containing the vertices 
visited by (one or some of) u,u;‘,u;‘. It in- 
cludes the end points. p’ is called the center. 
Note that the center of an interval can be in- 
side or outside the interval: 

I.1 1po 1.0 q’1 l] 

or 

Let Intervals(w) be the set of intervals gen- 
erated by the algorithm. 

Lemma 8 Zntervuls(w) partitions w. 

Proof sketch. The Lemma will follow by es- 
tablishing the following 3 facts: 

l i) Intervals do not overlap (except. for one 
end point). 

l ii) For consecutive intervals, two end 
points meet. Moreover, the bits of the 
centers give the inverses (i.e. ~0’. UT’) 
that meet. That is, if pi and pk are con- 
secutive centers. and 

then sll from p; and zll from pi will 
meet. 
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l iii) Intervals are non-empty. 

To give a sample of the proof trchniquc~ usrtl, 
we prove only i). Intervals are defined by a 
p’. From there you run 011 and 111 to find 
the end points. i) Look at two consecutive p’ 
points, say p;,p;. They are on odd positions. 
Suppose we run ~11 on pi and yll on pi in 
parallel. After Z, respectively y, we are at 
even positions, and we have left 11 to run on 
both. It follows that they cannot cross. In- 
deed, if they approach each other they will be 
at even distance from each other. If they are 
at distance 0, the two runs will continue to- 
gether because they use the same bit. Thus, 
intervals cannot 0verlap.r:I 

Corollnry 1 7%~ “iiynnniic.s”-!lrtrphs ojji!l..Y 
holds for every intcrvul, regardless o/ whelhcr 

the center is inside or not. 
That is, Jrom pi we reach p by running x00, 

/ram p we end up at pk by running ~11, and 
similarly jar the other two arrows. 

Definition 13 We define M3,n as follows. 

For a given w of size n, the wheel w’ = 

M3,n( )‘dfi d fu w is e ne as 0 ows. 
For each interval on w, we replace it on 

w’ by following the transformation given in 
Fig.9. 

Properties of Ss and ~3 

Lemma 9 Let D be the D-arrangement ob- 
tained by placing a d at the interval end points 
on both wheels. Then S,, given in Def. 10, is 
a sytrchroni-ation /unction on 11. 

Proof. By the above Corollary, S, is dcfinrd 
as a simulator of the dynamics grapfl of at1 
interval. Thus, synchronization is achieved. 

Lemma 10 KS is a eontraction. 

Proof. Let U’ be a universal sequence for w’, 
and vo be an arbitrary vertex on w on which 
we start running rcs(u’). We label the vertices 
with positions starting from ug. The initial 
fragment 00111 of ICQ(U’) has the role of posi- 
tioning the sequence at an interval end point, 
say d, before &(u’) starts. Consider the cor- 
responding d on w’, and start running u’ from 
it. Because u’ is universal for w’, by lemma 9 
it follows that Ss(u’) will visit all the d’s on w. 

It also follows from our notion of universality 
that we also visit the interiors of the intervals. 
Moreover, it is easy to check in fig.4 that each 
vertex is visited in the required manner. As 
a result, Ss(u’) is universal for w. 0 

6.2 Evaluation 
Convergence 

and 

Evaluating the size of w’, we want to show 
that the singles on w are “halfed” on w’, i.e., 
w’ is smaller in size than w by at, least ( 
singles(w)/2). 

Lemma 11 ) w’ I< (singles(w) / t?) f- 
multiples(w). 

Proof. 
Where can a single (edge) bc on w ? It can 

be in a contracting interval, i.e. any interval 
of size 4 or 6, or in a non-contracting interval, 
i.e. any interval of size 2. 

Let us call an interval jull of singles when 
all the egdes of the interval are singles. 

l Case 1: A contracting interval. A full 
interval of this type can have 4 or 6 sin- 
gles. The same interval on w’ has size 2. 
Because 2 5 :, 2 5 p, it follows that w’ 
decreases by an amount that is at least 

half the number of such singles. Hence, 
all the singles in a contracting interval 
are “halfed”. 

l Case 2: A non-contracting interval. 

The analysis of this case involves several 
steps: 

- i) Only 4 non-contracting intervals 
_- ii) The Domino Graph of fig.5 

- iii) Halving 

There are 4 such intervals of size 2. 

1. .Ll[.UU] 

2. [.UQL]UU. 

3. 11[0100]11 .- .-4 -. 

4. [.LU]UU. 

ii) The “domino”-graph from fig.5 gives 
all the sequences of consecutive non- 
contracting intervals. The 4 vertices rep- 
resent, the above 4 types of size 2 inter- 
vals. Any sequence of consecutive size 
2 intervals can be obtained as a path in 
the graph. Going along the path forces 
intervals to have size 2. Going out from 
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a vertex, that is, not following any edge 
emerging from that vertex, implies the 
continuation on the wheel with an inter- 
val of size 1 2. The domino-graphs is 
used in analyzing the contraction. q 

The next Lemma shows that the quantity 
of .Q&urd .Udecreases by a multiple 
of 2. The same holds far the JO,and 
&Ledges. 

Lemma 12 1. q(w) > q(w’) and 
q(w) = q(w’) (mod2) 

2. q’(w) 2 q’(z.9’) and q’(w) = 
q’(w’)(mod2) 

7 Constructing the 
Universal Sequence 

We have three contractions Kl,Kz, KS. 
By Lemma 1, we know that any compo- 
sition of them will still be a contraction. 

Definition 14 Let Klz3 = Kl o KS o KS. 

The sequence U,., is defined by 

U, = K-$e’“‘(OOO1o). 

Theorem 1 For any n, n-universal 
traversing sequences for cycles can be 
constructed in log n space. The sequence 
U,, is such an n-uniuersal sequence, and 
has size O(n’.“). 

Proof. We are going to establish the r* 
suit in several steps. 

- i) (n $ I)-universal implies n- 
universal 

- ii) the recursive construction 

- iii) tetmmation 

- iv) evaluating the size 

- v) constructing the sequence in log 
space 

i) let u be a (n + I)-universal, and w a 
wheel of size n. Run u on UI from an 
initial vertex ~0. If u is not visiting all 
the vertices in w, then consider one such 
vertex u. Replace u by a new edge in the 
graph and add bits to it. We have now 
a new wheel of size n + 1 which is not 
traversed by u from u”. This contradicts 
the (n t I)-universality of u. 

It follows that if n-universal sequences 
are constructible for even n, then univer- 
sal sequences are constructible for every 
n. 

ii) Starbing with a wheel w of even length, 
let 

We can see that wg in the result of apply- 
ing all three contractions, one after the 
other, to w. 

Claim. 1 w3 )<I w 1 /2. Indeed, 

I w3 I== Q(%) -+ P’(W3) 

= CL(%) t u(w) + P’IY3) + u’(w) 

1. cl(wz) + CL’(%) + o(w2Y(w21 (By 
Lemma 11) 

= p(w2) + p’(wz) + o(w)+6+;‘(w)+6’ 

where 6,6’ are the number of 
singles 

introduced by Kl, Kr, not existing 
on w. 

We have I + 6 5 ,~(w);‘? and 
similarly 

for the “-once.. 

p!l$fE!p, y.+!t!l 

= q(w) t- q’(w) 

=) w ) J2. 

iii) For an cvcn wheel w, consider 
the “progress” as the pair x(w) -:: 
(q(w),q’(w)) composed of even num- 
bers. By the convergence Lemmas 

4.(b), 7.(b), and 12.(a,b), it follows 
that one or both component(s) of the 
“progress” will decrease after each con- 
traction. This fails to be true when 
the wheel is ws =&&..A&, with 

A(W) = (0, q’(w)), or the wheel 
wr =. QJI.U, ,... &&a, with z(w2) = 
(q(w),o). In these exceptional cases, the 
wheel is no longer modified by the con- 

tractions. So any wheel is eventually 
tranforrncd into a wc or WI. In o&r to 
set that these are the only two possibil- 

ities whcrn “progress” stops, WC remark 

498 



that the X(W) starts with two even num- 
bers, and progresses by decreasing one or 
both of the components by a multiple of 
2. As long as both of the componnents 
arc not 0, progress is still possible! 

iv) Let the size of U,, be f(n). Then 

f(n) = 3f(nl) + n + 1 (accounting for 

Kd 

= 3(3f(nz) + n-t- 1) + n + 1 (accounting 
for Kz) 

= 3(3(3j(f) + 5) + n + 1) + n + 1 (ac- 
counting for KS) 

= 27j(:) + 4n + 49 

Therefore, the recurrence relations are 

j(n) = 27/(i) + 4n -t 49 

f(l) = 1 

Then because log,(27) = 3log,(3) is 
about 4.76 we have 

f(n) = O(7PS) 

v) The above construction can be done 
in O(log n). We can reformulate our con- 
struction in such a way that an algorithm 
can be obtained for computing the ith bit 
of the sequence using only log n space. 
The details, relatively long, but straight- 
forward, are omitted in this abstract. •I 

8 Conclusions 
Open Problems 

and 

The paper presents the first log space 
construction of universal traversing se- 
quences for L-regular graphs. The size 
of the sequence is O(n’.“j). It seems that 
there is room for improving the exponent 
of the polynomial. We leave the task 
of reducing it to the full paper. Cer- 
tainly, the open problem is to obtain a 
result of the same nature for d-regular 
graphs. Previous attempts at reducing 
the general case to a particular value 
of d stopped at d = 3 ( see [IO], [&I). 

Therefore, the hope is to be able to ex- 
tend the method used in our construc- 
tion. Such a result will have outstanding 
consequences in Complexity Theory. We 
conjecture that universal traversing se- 
quences for J-regular graphs are log space 
constructible. 

It is the author’s belief, in the light of re- 
cent exciting results [ll], 151, that UNDI- 
RECTED CONNECTIVITY is com- 
plete for NSPACE(logn), and universal 
traversing sequences in some generalized 
form might help in that direction too. 
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