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ABSTRACT

Peptide-based vaccines, in which small peptides derived from
target proteins are used to provoke an immune reaction, have
attracted considerable attention recently as a potential means
both of treating infectious diseases and promoting the destruc-
tion of cancerous cells by a patient’s own immune system. With
the availability of large sequence databases and computers fast
enough for rapid processing of large numbers of peptides, com-
puter aided design of peptide-based vaccines has emerged as
a promising approach to screening among billions of possible
immune-active peptides to find those likely to provoke an im-
mune response to a particular cell type.
In this paper, we describe the development of three novel classes
of methods for the prediction of class | epitopes. Each one of the
three classes of methods gives a specific set of insights into the
epitope prediction problem. We present a quadratic program-
ming approach that can be trained on quantitative as well as
qualitative data. The second method uses linear programming
in a novel way to counteract the fact that our training data
contains mostly positive examples. The third class of methods
uses sequence profiles obtained by clustering known epitopes to
score candidate peptides. By integrating these methods, using a
simple voting heuristic, we achieve improved accuracy over the
state of the art.
Contact: Sorin Istrail, Celera/Applied Biosystems, 45 W. Gude
Dr., Rockville, MD, 20878, T: 240-453-3668, F: 240-453-3324,
sorin.istrail@celera.com.
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INTRODUCTION

The vertebrate class I immune system monitors
protein expression within cells and induces lysis in
those exhibiting aberrant expression. This immune
response is crucial to targeting virus-infected cells,
which must express non-self peptides during the
course of reproducing an infecting virus, and
provides one line of defense against cancer, as
proteins that are mis-spliced or over-expressed
due to genetic damage can trigger an immune
response that results in destruction of the damaged
cells. Tumor immunotherapy (Rosenberg, 1999) is
a recent therapeutic approach aimed at priming the

immune system to respond to malignant cells in
patients whose immune systems are not responding
on their own or to boost insufficient responses.
The human immune system detects antigens
produced in its own cells (i.e., foreign viral proteins
or over-expressed or mutated self-proteins) by
means of the MHC class I pathway. In a first
step, these antigens are cleaved in the cytosol of
the cell to produce individual peptides, which are
then transported into the endoplasmic reticulum
(ER) by the transporter associated with antigen
processing (TAP), where some of them bind to
proteins of the major histocompatibility complex
(MHC) and are presented at the cell surface.
Recognition of the MHC-peptide complex by the
T cell receptor (TCR) found on the surface of
cytotoxic T lymphocytes (CTLs) then triggers
cytolysis of the peptide-presenting cell (i.e. the
tumor cell). One way to boost the immune response
towards a specific antigen is thus the administration
of peptides derived from this antigen which are
recognized by MHC class I. These so-called class
I epitopes are usually peptides of 8-11 amino acids.
The pathway from protein sequence to vaccine
development is lengthy and cost-intensive (Buteau
et al., 2002), entailing the development of bind-
ing assays for testing the affinity of the selected
peptides to the MHC molecules, in vitro assays
for measuring the T-cell response, and ultimately
in vivo testing of immunogenicity. There is thus
considerable incentive to screen candidate peptides
computationally prior to assay development, lead-
ing to the development of computational methods
for detecting immunogenicity. Each of the steps in
the antigen-processing pathway adds some speci-
ficity to antigen selection. However, the primary
and most discriminating point at which sequence
specificity constrains antigen recognition appears
to be the incorporation of peptides in the MHC
complex (Lauemgller et al., 2001). Computational
methods have therefore concentrated on predicting
the MHC binding affinity of candidate peptides.
The MHC genes are highly variable among hu-




man populations, with different human leukocyte
antigen (HLA) groups (alleles) having different
binding specificities, which must be considered by
the prediction method.

The MHC class I epitopes bind to a well-defined
binding groove on the MHC molecule. The binding
mode of the peptides is very specific at the N- and
C-termini and somewhat less specific in the middle
of the peptides. The main sources of this specificity
are the “anchor sites”, which are pockets in the
MHC molecule that accommodate certain peptide
side chains. Early methods for prediction focused
on characterizing likely epitopes by testing for
the presence of the appropriate primary anchors
(Hunt et al., 1992) and secondary anchor residues
(Ruppert et al., 1993). The first approach to
large-scale in silico epitope prediction based on
anchor identification was taken by (Rammensee
et al., 1999), yielding an algorithm for predicting
epitopes from protein sequences, and a database
(SYFPEITHI; http://syfpeithi.de/) of experimen-
tally identified and published motifs. More recently,
the pattern-matching algorithm EpiMer (De Groot
et al, 200la) was developed based on similar
principles, but identifying not just motifs for one
allele type, but also MHC ”promiscuous” ligands
containing patterns that allow binding to more
than one type of MHC molecule. Alternatives to
these pattern-based methods include statistical and
machine learning methods (Gulukota et al., 1997;
Dénnes and Elofsson, 2002) and structure-based
methods (Rognan et al., 1999).

One class of prediction methods particularly
relevant to the present work is that of matrix-based
methods, introduced in Parker et al. (1994a). These
methods assume that the strength of binding of an
epitope to the MHC allele is given by the sum of
independent binding contributions of each of the
peptide’s amino acids, i.e. the peptide’s binding
energy is just the sum of the binding energies of
its amino acids at their respective positions. The
binding strength of these peptides is experimentally
determined either as ICs, values (the concentration
of the peptide inhibiting the binding of a reference
peptide in half of the bindings sites) or as the
half-life of binding for the MHC complex. Both
quantities can be related to true binding energies.

A frequently made assumption is that each amino
acid a in each position % contributes to the overall
binding energy’ of the peptide independently of the

In fact, these energies are binding free energies, but we
will use the shorter term binding energy from here on.

other amino acids. The total binding energy AG is
thus the sum of the individual contributions g of
the amino acids. The binding energy of a peptide p
with nine amino acids p = a,a»a304a506a703a9 can
thus be modeled as

AG(p) = 39, (1)

To predict the binding strength of all peptides we
now only need to know the binding strength of
the 20 possible amino acids in each of the nine
binding positions, for a total of 180 values. These
180 values form a 9x20 binding matriz B. Using
a binary coding for the sequence, where ones in a
9x20 matrix S(p) represent the amino acid at the
respective position of peptide p, we can easily write

AG(p) as
AG(p) = Z B;;S;; (p)- (2)

Most experiments do not yield binding energies
directly, but rather binding constants K or the
related IC5o values. However, a similar relationship
holds for K, based on the individual contributions
ki of the amino acids:
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Parker et al. (1994a) showed how a combination
of linear regression and dimensionality reduction
(assuming some positions are unimportant or some
matrix values are equal) could be used to infer these
binding matrices from moderate-sized datasets. A
similar approach is taken by EpiMatrix (Schafer
et al., 1998).

In this work, we describe three novel classes of
methods for predicting MHC binding peptides,
and a voting scheme to integrate them into a
unified prediction framework that yields improved
results over each individual method. Each of the
three classes of methods leverages a unique set
of insights into the prediction problem. The first
two use quadratic programming (QP) and linear
programming (LP) techniques, respectively, to
derive values for a single weight matrix for each
allele. The QP method is akin to the regression
approach presented by Parker et al. (1994a), but
borrows from the literature on support vector
machines (SVMs) to incorporate semi-quantitative
as well as fully qualitative data in building an
optimal matrix. In the second method we for-
mulate a linear program in a novel way to take




advantage of the fact that we have more examples
of known epitopes than non-epitopes. The third
class of methods uses sequence profiles obtained
by clustering the known epitopes of a given HLA
allele to score candidate peptides. This clustering
approach, which assumes that the allele-specific
epitopes may belong to several, rather than one,
sequence motifs is novel in the epitope prediction
literature. The three classes of methods provide
complementary views of the rankings of peptides,
by exploring different facets of the training data.
To take advantage of their complementarity, while
at the same time compensate for their biases, we
combine several of these methods using a simple
voting scheme into a unified “consensus” method,
which has improved prediction accuracy and, in
particular, higher recognition rate for moderate
binders.

We have tested the performance of our methods
for several high-quality benchmark sets of exper-
imentally determined epitopes, for the four HLA
alleles occurring most commonly in human popula-
tions (A2, A3, A24, B7). In each case, our combined
method outperformed Parker’s method. In partic-
ular, our approaches were better suited to detect
moderate-binding peptides, which tend to be the
most easily missed by all individual methods.

EPITOPE PREDICTION ALGORITHMS

In this section we present three classes of algorithms
for predicting epitopes based on the patterns
learned from examples of known epitopes. The first
part describes the Quadratic Programming (QP)
approach, the second the Linear Programming (LP)
approach, and the third the profile-based approach.
Finally, the fourth part describes the voting scheme
used to combine the different methods.

Quadratic Programming

The quadratic programming (QP) method was in-
spired by the literature on support vector machines
(Burgess, 1998) and in particular, a support vector
based method employed by Singh and Kim (Singh
and Kim, 2001) to predict coiled-coil interactions in
protein side chains. The method can be seen as an
extension to the linear regression approach taken
by Parker et al. (1994a), but allows us to incorpo-
rate information gained from sources alternate to
the binding half-life (IC5, value) measurements. In
their method, the input is a set of peptides z; and
a measurement of each peptide’s binding strengths
K;. We wish to find a vector w of predicted binding
constants and an offset ¢ from zero giving a pre-

dicted binding constant z]w — ¢ for each a peptide
so as to minimize > ;(z] w — ¢ — K;)?; the differ-
ence between the predicted and measured binding
strengths.

In practice, due to difficulties in calibrating
measurements from different experimenters, most
of the data available to us is not given in terms of
binding strength. We may be given only whether
the peptide is an epitope or not, or whether a
peptide is a “high,” “low,” or “medium” binder.
We can add this data to our model by insisting
that the model assigns epitopes a binding strength
greater than the minimum binding strength of
known epitopes, that non-epitopes are assigned
binding strength less than the minimum binding
strength of known epitopes, that the high binders
have a higher binding strength than the low and
medium binders, and that the medium binders have
a higher binding strength than the low binders. Let
TH, Ty, T be high, medium, and low binders; z,
be epitopes; z,. be non-epitopes; and ICH™ be the
minimum binding strength of an epitope. We can
then formulate our quadratic program as follows:

Iglgl Z(a:sz —c—K;)?
2

s.t. T w > wﬂjw Vi, 7,
Tpw > TLW5 Tyw > T w Vi, g,
zlw > ICH™; ol w < ICLH™ Vi

We note that the number of constraints in this
formulation grows quadratically with the number of
datapoints. To make the problem more manageable
we require that a high binder only be a stronger
binder than the average medium binder and the
average low binder. Similarly, a medium binder is
required to be a stronger binder than the average
low binder. Furthermore, the program may have a
set of constraints that are not feasible (i.e. no set of
parameters w and ¢ will satisfy all the constraints)
because of inaccuracies in the experiments and to
the inadequacy of the independent binding strength
assumption. We therefore penalize violations of the
constraints, seeking the set of parameters that are
in the least violation to our set of constraints.
Letting 77,7, be the average medium and low
binders and adding the appropriate error terms
yields the following final program:
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s.t. mgiw +emm > T wVi
:vgiw +em,L > TLlw; xﬂiw +emrn > Tl w Vi

T min, T min \J/;
Tow~+ €., > ICH™; z,, w+ e, < ICH™ Vi

Due to the small number of datapoints (relative
to the number of variables), we used several ap-
proaches to reduce the space dimensionality (num-
ber of variables). These approaches led to different
matrices and consequently different predictions. In
the first method, we use data reduction techniques
applied by Parker et al. (1994a) in obtaining their
matrices. From these matrices, we derived relations
regarding which amino acids are irrelevant for bind-
ing and which pairs of amino acids have an equiv-
alent effect on binding. For example, Asp and Glu
are assumed equivalent for binding in the first po-
sition of epitopes for the HLA-A2 allele. We then
incorporated these constraints into the quadratic
program. In the second method, instead of working
with the amino acids as variables, we use amino acid
properties to characterize them. Using two of these
properties (hydrophobicity and size) as descriptors,
we map the peptide into a 9*2 = 18 dimensional
space. Each amino acid is mapped to a point in
two dimensions, where the first coordinate is a mea-
surement of its hydrophobicity, and the second is a
measurement of its size. In our third method, we se-
lected five best-fit parameters from the 485 indices
reported in the AAindex repository (Kawashima et
al., 1999) to produce a reduced feature set.

Linear Programming

The linear programming formulation was motivated
by the fact that our input data consists almost
solely of positive examples or epitopes as opposed
to non-epitopes, which in nature far outnumber epi-
topes. To correct for this imbalance, we construct
artificial binding constants for each amino acid in
each position such that epitopes have a high bind-
ing strength but the overall sum of the binding con-
stants is minimum. Minimizing the sum of the bind-
ing constants can be considered a proxy for mini-
mizing the number of peptides considered epitopes.
In order to avoid artificially low objective values we
further require that all binding strengths be posi-
tive.

More specifically, we construct an artificial bind-
ing constants k? for each amino acid in each position
p and require each kP to be positive. We further
require that the sum of the binding constants for
each epitope be greater than 1, an arbitrarily cho-
sen constant. Let e; be the i-th epitope, e? be the
amino acid in position p of epitope e;. Then we can

- dimensionality reduction —

formulate the optimization as the following linear
program:

min Z Z kP

aa'sa pos.p

sit. Y kb, > 1Vi,
pos.p

k? > OVa,p

Profile-based Prediction

Profiles, previously introduced in the literature
in the context of motif detection in DNA and
protein sequences (Gribskov et al., 1987; Stormo,
2000, and references therein), are a natural way
to represent motifs in epitope sequences. Indeed,
epitope and MHC binding peptides are known to
contain allele-specific motifs, in which the sequence
composition and degree of sequence variation of
the various positions are dictated by the specificity
of the secondary structure pocket of the MHC.
A sequence profile is a representation of a set of
aligned sequences as a table of letter frequencies per
column in the alignment, together with a position-
specific weight matrix derived from the alignment
data. The score for a candidate sequence is then the
sum of matrix values for the individual ’letters’ in
that sequence. The higher the score, the better the
candidate sequence conforms to the motif pattern,
and the more likely it is that it belongs to that
motif class. Our profile-based approach to epitope
prediction relies on the following three principles:

Certain amino
acids have similar functions at a given position,
explained by the compatibility of their side
chains with the three-dimensional binding
pocket, and therefore can be deemed func-
tionally equivalent. For instance, Leu and Met
are both hydrophobic and preferred at the P2
anchor position in HLA-A2 ligands. We divided
the amino acids in four classes: hydrophobic=H
(Ala, Val, Phe, Pro, Met, Ile and Leu), po-
lar=P (Ser, Thr, Tyr, His, Cys, Asn, Gln, and
Trp), charged=C (Asp, Glu, Lys and Arg) and
glycine=G (Gly), following the classification of
(Branden and Tooze, 1991). This partitioning
assumes a uniform substitution model for amino
acids across the peptide and across the range of
HLA molecules. The biochemical signature of a
given peptide or protein sequence is then the
concatenation of the individual letter classes;
for instance, YLLPCITEV has the signature
PHHHPHPCH.




% P C G H

(1) uniform 40 20 5 35
(3) P3 32.2 134 114 43.0
(3) (PH)s-restricted P3 38.2 11.8 5.5 445
(4) (GC)s-restricted P3 154 17.9 282 385

Fig. 1. Distributions of amino acid types at P3 in the
sequences of HLA-A2 ligands and epitopes: (1) distribution
in a uniform distribution model; (2) distribution of residue
types at P3 in the original data set; (3) in the subset of
sequences that contained a hydrophobic (H) or polar (P)
residue at P5; (4) in the subset of sequences with a charged
(C) or glycine (G) residue at P5. Note that the amino
acid type distribution in the sample set is not random, by
comparing lines (1) and (2). Also, that significantly different
letter profiles are observed for the sequence subsets restricted
to contain PH and CG, respectively, at P5 (lines 3 and
4). Lastly, that C or G type residues at P5 strongly favor
glycine (G), and restrict polar (P) amino acids at P3. These
observations are based on a data set of 149 samples collected
from the SYFPEITHI database (see Results).

- multiple intra-allelic motifs — We hypothesize
that epitopes for any given HLA molecule can be
classified in one or more motif classes, suggested
by the observation among epitopes of a given
allele of position dependencies, which point
to groups of sequences with distinct features
(Figure 1). Two methods (Aln and Ki2) were
developed to divide the sets of biochemical
signatures of known epitopes for each HLA allele
into clusters corresponding to distinct sequence
motifs, each represented by a profile of the
aligned sequences.

- anchor selection — Anchor positions have a
lower degree of variation than the other posi-
tions in the peptide. This aspect could not be
captured with our amino acid encoding scheme.
For instance, a ’'hydrophobic’ label at P2 of
a predicted HLA-A2 epitope can encode any
of the seven amino acids Ala, Val, Phe, Pro,
Met, Ile, and Leu, all of which will produce
the same score, while only five (Ile, Leu, Val,
Met and Ala) have been observed in practice,
and with widely varying incidence rates. To
compensate for the loss of specificity, we use a
more differentiated scoring for the combination
of amino acids at anchor positions.

For our application, profiles were constructed
using the alignment of biochemical signatures of
experimentally validated epitopes and ligands. The

score of a candidate peptide was computed as the
sum of amino acid weights (Gelfand et al., 2001):

k
Score(aias ... ay) = ZWai

i=1
with:

. X 1 1 . 1
W,  =log(N,i + =) — =S log(N,? + =
b = log(IV, +2) 4% og(N, +2),

a,be {P,H,C,G}

where N,' is the number of occurrences of amino
acid type a in column i.

To compute a score, each candidate peptide of
length 9 (ninemer) is converted into its biochemical
signature, which is then aligned with each of the
profiles for this HLA allele, and a profile score is
computed. The final peptide score is the maximum
of individual profile scores. For peptides that are 10
residues long, the scores are computed by taking the
average of scores for the seven ninemers obtained by
removing exactly one of the non-anchor residues at
positions P3, P4, P5, P6, P7, P8 and P9.

We considered two clustering strategies for profile
construction: iterative multiple alignment (Aln)
and position dependencies reflected by x? tests
(Ki2). We also give a separate profile based method
for anchor scoring.

Clustering via iterative multiple sequence alignment
(Aln)

The Aln method uses a greedy strategy to start
and grow a multiple sequence alignment (profile),
starting from a ’seed’ pair and optimally choosing
the next sequence as the one that maximizes the
multiple alignment score. The publicly available
program CLUSTALW (Thompson et al., 1994)
was used to produce the multiple alignments. At
each iteration, sequences that do not improve
the current score are removed from the pool, to
ensure that the clusters converge towards a unique
signal. The procedure stops when no sequences
can be recruited. The current cluster is saved as
a new profile, and the procedure is repeated with
the remaining sequences and a new seed pair.
The resulting profiles may include gaps, which
are made explicit in the profile model. In the
end, some manual intervention may be necessary
to redistribute the sequences and constrain the
alignment of anchors.

Clustering based on position dependencies (Ki2)
The Ki2 method is based on the assumption




that the choice of amino acid at one position
in the peptide may influence the distribution of
amino acid types on the remaining motif positions
(Figure 1). To capture the dependencies between
pairs of columns, and between a column and the rest
of the alignment positions, we used y? statistical
significance tests between the consensus (majority)
variable for column 7 (1 if the amino acid type at
that position matches the consensus, 0 otherwise),
and the indicator variable for the same column
identifying the amino acid type at that position
(P, H, C, G). We use the most significant position
dependencies to gradually split the set of aligned
sequences into disjoint clusters each representing
a sequence motif, using a procedure akin to that
described in (Burge and Karlin, 1997).

Given a data set of biochemical epitope signa-
tures, consisting of sequences of equal length, we
first assign a consensus amino acid type, or group
of types, at each position. For the HLA-A2 data
set, which has a pronounced proclivity towards hy-
drophobic and polar residues, the consensus vector
is C = [PH, PH, PH, *, PH, PH, PH, PH, H]. Then,
for each pair of positions (z,7) with i < j we com-
pute the Xzz,j statistics for C; versus X;. We further
attempt to select a column by which to divide the
set of sequences into two groups: those that contain
a consensus letter at that position, and those that
do not. Specifically, we choose the column [, if any,
with the largest overall association x; = Y, X5,
with the rest of the positions in the alignment, such
that x7 > K (K is a splitting constant that de-
pends on the number of degrees of freedom for the
current system), and such that each of the two re-
sulting subsets contains at least five sequences. The
procedure is repeated for each of the subsets.

We used the information content of the alignment

1= 2 f.llog(f.'/0.25)

i=1 a=P,H,C,G

(Schneider et al., 1986; Stormo and Hartzell, 1989)
to measure the quality of profiles, both before and
after a cluster division. In all cases, the information
content values of the profiles after the operation
were higher than that of the original, showing that
the profiles have improved.

Anchor scoring

To account for the increased specificity of amino
acid distribution at the anchor positions versus the
rest of the positions in the motif we computed
an additional profile-based anchor score. A single
column profile on the alphabet of all possible amino

acids pairs (20x20=400 letters) was constructed
from the frequencies of residue pairs at the two
designated anchor positions, P2 and C-terminal, in
class I epitopes (see Results). Candidate peptides
are scored after first stripping the non-anchor
positions. The profile score for an anchor is its
weight:

Wy, = log(N, +0.5) —0.25 )

o=H,P,C,G

log(N, + 0.5)

A residue-pair alphabet was chosen to correctly
reflect some non-independent pairings of residues at
anchors positions observed from the data. Indeed,
the fact that Thr at P2 was only found in
combination with Val at P9 among the A2 epitopes,
and not with Leu, the other strongly favored amino
acid at P9, cannot be expressed in a scoring
model in which each of the amino acids in a pair
contributes independently to the pair’s score.

Combining methods - Voting

We combine the predictions from these methods
using a simple voting heuristic. For the HLA
A2 allele, we use two versions of the quadratic
programming method, one using matrices obtained
based on the amino acid properties of size and
hydrophobicity and one using a dimensionality
reduction scheme similar to Parker’s; the linear pro-
gramming method; alignment profiles; and anchors.
For the other alleles we examined — A3, A24, and
B7 — we use Parker’s method in combination with
our LP, QP, alignment profile, and anchor methods.
Our implementation of Parker’s method uses the
most recent matrices maintained at the NIH Bioln-
formatics and Molecular Analysis Section (BIMAS)
site (http://bimas.dcrt.nih.gov/molbio/hla_bind/).
We combine the scores of disparate methods into
a single prediction by linearly scaling the score of
each method so that it ranges from 0 to 1, then
summing the scaled scores of all methods for each
candidate peptide.

RESULTS

We trained our algorithms on the four most com-
monly occurring HLA alleles — A2, A3, A24 and B7
— with A2 being by far the most common and best
studied. For this allele a total of 694 ninemer epi-
topes were extracted from the MHCPEP database
(http://wehih.wehi.edu.au/mhcpep/; Brusic et al.,
1998), of which 359 were annotated with their bind-
ing strength categories (high, medium or low). In
addition, a set of 101 HLA-A2 epitopes, together
with their ICyy values, was extracted from Parker




et al. (1994a). Due to the lack of experimentally
determined binding strength data, the QP method
could not be applied to the other HLA alleles con-
sidered. For the LP method, allele specific nine-
mer data were extracted from the same MHCPEP
database: 118 for A3, 23 for A24, and 56 for B7.
For both the QP and LP methods, initial predic-
tions were done for ninemers; tenmer scores were
then computed by ignoring the seventh position in
the sequence (Parker et al., 1994a).

For the profile-based methods, a total of 206
epitope and ligand sequences previously published
for the HLA-A2 allele were extracted from the
SYFPEITHI database (http://syfpeithi.de/; Ram-
mensee et al., 1999). In addition, data for the
HLA-A3 (253 sequences), A24 (148) and B7 (189)
alleles were extracted from the MHCPEP database.
After eliminating duplicates and sequences with
more or less than nine residues from the set of
ligands and epitopes for each allele, the remaining
distinct ninemers were selected for profile con-
struction. These sets consisted of 146 epitopes for
A2, 165 for A3, 104 for A24, and 138 for B7. For
anchor scoring, the entire pool of peptides for a
given allele, regardless of length, was analyzed to
determine the frequencies of amino-acid pairs at
the P2 and C-terminal positions.

We used sensitivity curves to measure and com-
pare the performance of the epitope prediction
methods. Consider a benchmark consisting of a
protein, or a set of peptide sequences, for which
all epitopes have been previously identified, and a
prediction method that ranks all peptides by their
scores. The sensitivity curve plots the sensitivity
Sn(x) = TP/(TP+FN) achieved by the method
when the top ranking z% of the peptides are
selected and classified as epitopes, where TP and
FN are the number of true positive, and false
negative examples in the reference set. In other
words, a sensitivity curve plots the percentage f
of epitopes that are found in the top ranking z%
of the peptides, and the values along the z-axis
indicate what percentage of the peptides needs to
be sequenced and tested in order to obtain some
fraction f% of the epitopes in the pool.

We benchmark our algorithms on three dif-
ferent publicly available reference sets of
known epitopes and MHC ligand sequences.
In all three cases, we compare our predic-
tion to those given at the NIH BIMAS site
(http://bimas.dcrt.nih.gov/molbio/hla_bind/,
Parker et al. 1994), and the associated prediction
methods, as a reference against which we compare

our results. We have focused on comparisons
with this method because of its wide acceptance
and frequent use as a reference method (e.g. in
(Mamitsuka, 1998; Doénnes and Elofsson, 2002))
and the availability of raw matrices suitable for use
in high-throughput analysis. According to a recent
survey by Lauemgller et al. (2001), prediction
methods based on simple motif searches can only
identify one out of four binders, while extended
motifs, which include the most important primary,
secondary and disfavored residues, identify three
out of four binders, albeit at the cost of sequenc-
ing 8% of the candidate peptides in the protein
(Rammensee et al., 1999).

The first reference set was a collection of epitopes
and MHC ligands for the HLA-A2 allele discovered
in Influenza proteins, reported in (Gianfrani et al.,
2000), consisting of 32 sequences from 10 proteins.
The A2 allele is the most common and best studied
allele. In addition, it is the only one of the alleles
examined for which sufficient quantitative binding
data were available to use our QP method.

The second benchmark was based on a set of B7
epitopes from the West Nile virus polyprotein (Gen-
Bank Accession: AF196835) previously character-
ized by De Groot et al. (De Groot et al., 2001b),
consisting of 12 experimentally verified sequences.

The third benchmark consisted of epitopes iso-
lated from human cancers. Cancer epitopes would
be expected to show some selective biases, since
they are generally expressed in self-proteins, and
therefore would have to escape immune tolerance
in addition to the other selectivity constraints
presented on epitopes from foreign antigens. We
began with a collection of epitopes reported by
Renkvist et al. (2001) that were isolated from
human tumor cells. We screened out those epitopes
that do not occur in the wild-type versions of
their respective proteins, by retaining only those
epitopes that could be found in the sequences of
the Celera predicted proteins (translations of the
Celera predicted gene sequences; Venter et al.,
2001), or in the Genbank (Benson et al., 2000),
SwissProt/TrEMBL (Bairoch and Apweiler, 2000),
or PIR (Wu et al., 2002) databases.

For all of the benchmarks, the sensitivity curves
(Figure 2A, B and C) show that the differences in
performance between our method and the Parker
method are small, with each method performing
better on certain sections of the epitope range.
Parker’s method appears to be more selective in
predicting the top ranking epitopes, while our
combined method performs consistently better
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Fig. 2. Sensitivity curves for our voting method and for
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when more complete sets are sought. This im-
plies that while the Parker method is better at
locating the strongest binders, our method is
superior at identifying those binders that are
placed towards the mid and lower ranges of the
binding affinity scale. This property is particularly
desirable for developing cancer vaccines, in which
high-binding self-peptides may lead to host toler-
ance, and therefore be less effective in inducing
an immune response. Furthermore, the ability to
efficiently predict a range of peptides containing
as complete a set of epitopes as possible given
reasonable sequencing costs would strongly benefit
high-throughput vaccine development efforts.

DISCUSSION

We present several novel methods for MHC epitope
prediction. We describe one class of methods
based on quadratic programming, one based on
linear programming, and several based on profile
methods for motif detection. These methods are
then combined using a voting scheme to improve
performance. Benchmarks developed from litera-
ture datasets show that our combined prediction
method is competitive with the leading prediction
methods reported in the literature. Improved
separation of true epitopes from non-immunogenic
peptides is achieved both for a dataset of proteins
from a foreign pathogen and for a dataset of
human proteins known to have triggered immune
responses to cancerous tumors. Furthermore, while
our methods achieve results overall comparable to
Parker’s reference method, our method appears
better at finding the true MHC binders that are
farthest from the established sequence patterns and
thus are hardest to detect by any sequence-based
method. These are presumably the weakest binders
among the true epitopes, and therefore the least
likely to promote immune tolerance, and thus the
best candidates for cancer vaccine development.
The major limitation on the accuracy of the
prediction methods applied in the present work is
the lack of available training data. The amount
of data available to researchers can be expected
to grow as time passes. For the foreseeable future
better computational modeling of the problem can
be considered to be important for success. One
computational strategy that can be pursued is
to attempt to incorporate additional biological
constraints into the computational learning models,
such as those gained from looking at structure, in
order to reduce the space of models being examined
and thus reduce data dependence. Conversely,
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better results might be achieved by relaxing existing
constraints, such as the assumption of independent
residue contributions.

Rapid and accurate high-throughput screening
of epitopes can be instrumental for accelerated
development of vaccines against novel strains of
known pathogens or, in conjunction with high-
throughput sequencing, for rapid development of
vaccines against previously unknown pathogens.
The results of high-throughput scans may also have
relevance to whole-genome scans of potential causes
of autoimmune diseases.

Peptide-based vaccine design and cancer im-
munotherapy offer a number of interesting algo-
rithmic challenges besides the problems addressed
in this work. First, we focus on a single step, MHC
binding, in the antigen processing pathway only.
More sophisticated approaches address the other
relevant steps as well, i.e. proteasomal cleavage or
TAP transport. Second, the identification of ade-
quate epitopes is only the initial step in the design
of a peptide vaccine. Due to the high variability
in the MHC genes, good epitopes will vary from
patient to patient. Furthermore, the number of
different peptides one can reasonably include in a
vaccine is very limited (see e.g. the discussion in
the review by (Buteau et al., 2002)). Hence, an
economically interesting peptide vaccine should
contain a minimal number of epitopes covering the
majority of the alleles encountered in the whole
population. One way to reduce the number of
peptides required to cover most MHC alleles is the
use of promiscuous epitopes, i.e. peptides which
are epitopes for multiple alleles.

The identification of such an optimal set can be
formulated as an optimization problem where the
“average immunogenicity” of the vaccine is max-
imized. This average immunogenicity can be com-
puted from the distribution of the alleles for a given
population and the relative immunogenicity (esti-
mated through the binding strength) of each pep-
tide for a specific allele. In the context of personal-
ized medicine, a variant of this optimization prob-
lem is to identify the optimal set of peptides for a
patient’s immunotype.

Even more complex optimization problems arise
through the possible optimization of the proposed
peptides (either in the anchor residues or in the
region recognized by the T-cell receptor). Due to
the combinatorial complexity of this problem, it
can be addressed using sophisticated optimization
techniques only. It thus represents another exciting
challenge for future work.
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