
Practical Algorithms and Fixed-Parameter
Tractability for the Single Individual SNP

Haplotyping Problem

Romeo Rizzi1,�, Vineet Bafna2, Sorin Istrail2, and Giuseppe Lancia3

1 Math. Dept., Università di Trento, 38050 Povo (Tn), Italy
rrizzi@science.unitn.it

2 Celera Genomics, Rockville MD, USA,
{Vineet.Bafna,Sorin.Istrail}@celera.com

3 D.E.I., Università di Padova, 35100 Padova, Italy
lancia@dei.unipd.it

Abstract. Single nucleotide polymorphisms (SNPs) are the most fre-
quent form of human genetic variation, of foremost importance for a va-
riety of applications including medical diagnostic, phylogenies and drug
design.
The complete SNPs sequence information from each of the two copies
of a given chromosome in a diploid genome is called a haplotype. The
Haplotyping Problem for a single individual is as follows: Given a set of
fragments from one individual’s DNA, find a maximally consistent pair of
SNPs haplotypes (one per chromosome copy) by removing data “errors”
related to sequencing errors, repeats, and paralogous recruitment. Two
versions of the problem, i.e. the Minimum Fragment Removal (MFR)
and the Minimum SNP Removal (MSR), are considered.
The Haplotyping Problem was introduced in [8], where it was proved
that both MSR and MFR are polynomially solvable when each fragment
covers a set of consecutive SNPs (i.e., it is a gapless fragment), and NP-
hard in general. The original algorithms of [8] are of theoretical interest,
but by no means practical. In fact, one relies on finding the maximum
stable set in a perfect graph, and the other is a reduction to a network
flow problem. Furthermore, the reduction does not work when there are
fragments completely included in others, and neither algorithm can be
generalized to deal with a bounded total number of holes in the data.
In this paper, we give the first practical algorithms for the Haplotyping
Problem, based on Dynamic Programming. Our algorithms do not re-
quire the fragments to not include each other, and are polynomial for
each constant k bounding the total number of holes in the data.
For m SNPs and n fragments, we give an O(mn2k+2) algorithm for the
MSR problem, and an O(22km2n+23km3) algorithm for the MFR prob-
lem, when each fragment has at most k holes. In particular, we obtain
an O(mn2) algorithm for MSR and an O(m2n+m3) algorithm for MFR
on gapless fragments.
Finally, we prove that both MFR and MSR are APX-hard in general.

� Research partially done while enjoying hospitality at BRICS, Department of Com-
puter Science, University of Aarhus, Denmark.

R. Guigó and D. Gusfield (Eds.): WABI 2002, LNCS 2452, pp. 29–43, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

30 R. Rizzi et al.

1 Introduction

With the sequencing of the human genome [12,7] has come the confirmation that
all humans are almost identical at DNA level (99% and greater identity). Hence,
small regions of differences must be responsible for the observed diversities at
phenotype level. The smallest possible variation is at a single nucleotide, and is
called Single Nucleotide Polymorphism, or SNP (pronounced “snip”). Broadly
speaking, a polymorphism is a trait, common to everybody, whose value can be
different but drawn in a limited range of possibilities, called alleles. A SNP is
a specific nucleotide, placed in the middle of a DNA region which is otherwise
identical for all of us, whose value varies within a population. In particular, each
SNP shows a variability of only two alleles. These alleles can be different for
different SNPs.

Recent studies have shown that SNPs are the predominant form of human
variation [2] occurring, on average, every thousand bases. Their importance can-
not be overestimated for therapeutic, diagnostic and forensic applications. Nowa-
days, there is a large amount of research going on in determining SNP sites in
humans as well as other species, with a SNP consortium founded with the aim
of designing a detailed SNP map for the human genome [11,6].

Since DNA of diploid organisms is organized in pairs of chromosomes, for
each SNP one can either be homozygous (same allele on both chromosomes)
or heterozygous (different alleles). The values of a set of SNPs on a particular
chromosome copy define a haplotype. Haplotyping an individual consists in de-
termining a pair of haplotypes, one for each copy of a given chromosome. The
pair provides full information of the SNP fingerprint for that individual at the
specific chromosome.

There exist different combinatorial versions of haplotyping problems. In par-
ticular, the problem of haplotyping a population (i.e., a set of individuals) has
been extensively studied, under many objective functions [4,5,3], while haplo-
typing for a single individual has been studied in [8] and in [9].

Given complete DNA sequence, haplotyping an individual would consist of
a trivial check of the value of some nucleotides. However, the complete DNA
sequence is obtained by the assembly of smaller fragments, each of which can
contain errors, and is very sensitive to repeats. Therefore, it is better to define
the haplotyping problem considering as input data the fragments instead of the
fully assembled sequence.

Computationally, the haplotyping problem calls for determining the “best”
pair of haplotypes, which can be inferred from data which is possibly inconsistent
and contradictory. The problem was formally defined in [8], where conditions are
derived under which it results solvable in polynomial time and others for which
it is NP-hard. We remark that both situations are likely to occur in real-life
contexts, depending on the type of data available and the methodology used
for sequencing. In this paper we improve on both the polynomial and hardness
results of [8]. In particular, we describe practical effective algorithms based on
Dynamic Programming, which are low–degree polynomial in the number of SNPs
and fragments, and remain polynomial even if the fragments are allowed to skip

Practical Algorithms and Fixed-Parameter Tractability 31

Table 1. A chromosome and the two haplotypes

Chrom. c, paternal: ataggtccCtatttccaggcgcCgtatacttcgacgggActata
Chrom. c, maternal: ataggtccGtatttccaggcgcCgtatacttcgacgggTctata

Haplotype 1 → C C A
Haplotype 2 → G C T

some SNPs (up to a fixed maximum). As for the complexity results, we show
that the problems are not just NP-hard, but in fact APX-hard.

Despite the biological origin of the problem, the model turns out to be purely
combinatorial, and has many nice mathematical properties. The basic biological
motivations behind the problem are provided in Section 2. The mathematical
model of the problems, together with the notation and two useful reductions,
are described in Section 3. In Section 4, we introduce a suitable bipartite labeled
graph, used to characterize the problems and to give an APX-hardness result
for their general versions. In Section 5 we describe Dynamic Programming-based
polynomial algorithms for the gapless versions of the problem, while in Section 6
we extend these results to bounded-length gaps.

2 SNPs and Haplotypes

The process of passing from the sequence of nucleotides in a DNA molecule to
a string over the DNA alphabet is called sequencing. A sequencer is a machine
that is fed some DNA and whose output is a string of As, Ts, Cs and Gs. To
each letter, the sequencer attaches a value (confidence level) which represents,
essentially, the probability that the letter has been correctly read.

The main problem with sequencing is that the technology is not powerful
enough to sequence a long DNA molecule, which must therefore first be cloned
into many copies, and then be broken, at random, into several pieces (called
fragments), of a few hundred nucleotides each, that are individually fed to a se-
quencer. The cloning phase is necessary so that the fragments can have nonempty
overlap. From the overlap of two fragments one infers a longer fragment, and so
on, until the original DNA sequence has been reconstructed. This is, in essence,
the principle of Shotgun Sequencing [13], in which the fragments are assembled
back into the original sequence by using sophisticated algorithms. The assembly
phase is complicated from the fact that in a genome there exist many regions
with identical content (repeats) scattered all around, which may fool the as-
sembler into thinking that they are all copies of a same, unique, region. The
situation is complicated further from the fact that diploid genomes are orga-
nized into pairs of chromosomes (a paternal and a maternal copy) which may
have identical or nearly identical content, a situation that makes the assembly
process even harder.

To partly overcome these difficulties, the fragments used in shotgun sequenc-
ing sometimes have some extra information attached. In fact, they are obtained
via a process that generates pairs (called mate pairs) of fragments instead than

32 R. Rizzi et al.

individual ones, with a fairly precise estimate of the distance between them.
These pairs are guaranteed to come from the same copy of a chromosome, and
there is a good chance that, even if one of them comes from a repeat region, the
other does not.

A Single Nucleotide Polymorphism, or SNP, is a position in a genome at
which, within a population, some individuals have a certain base while the others
have a different one. In this sense, that nucleotide is polymorphic, from which
the name. For each SNP, an individual is homozygous if the SNP has the same
allele on both chromosome copies, and otherwise the individual is heterozygous.
The values of a set of SNPs on a particular chromosome copy define a haplotype.
In Figure 1 we give a simplistic example of a chromosome with three SNP sites.
The individual is heterozygous at SNPs 1 and 3 and homozygous at SNP 2. The
haplotypes are CCA and GCT.

The Haplotyping Problem consists in determining a pair of haplotypes, one
for each copy of a given chromosome, from some input genomic data. Given the
assembly output (i.e., a fully sequenced genome) haplotyping would simply con-
sist in checking the value of some specific sites. However, there are unavoidable
errors, some due to the assembler, some to the sequencer, that complicate the
problem and make it necessary to proceed in a different way. One problem is
due to repeat regions and “paralogous recruitment” [9]. In practice, fragments
with high similarity are merged together, even if they really come from different
chromosome copies, and the assembler tends to reconstruct a single copy of each
chromosome. Note that in these cases, heterozygous SNP sites could be used
to correct the assembly and segregate two distinct copies of the similar regions.
Another problem is related to the quality of the reads. For these reasons, the
haplotyping problem has been recently formalized as a combinatorial problem,
defined not over the assembly output, but over the original set of fragments.
The framework for this problem was introduced in [8]. The data consists of
small, overlapping fragments, which can come from either one of two chromo-
some copies. Further, e.g. in shotgun sequencing, there may be pairs of fragments
known to come from the same chromosome copy and to have a given distance be-
tween them. Because of unavoidable errors, under a general parsimony principle,
the basic problem is the following:

– Given a set of fragments obtained by DNA sequencing from the two copies
of a chromosome, find the smallest number of errors so that there exist two
haplotypes compatible with all the (corrected) fragments observed.

Depending on the errors considered, different combinatorial problems have
been defined in the literature. “Bad” fragments can be due either to contami-
nants (i.e. DNA coming from a different organism than the actual target) or to
read errors. An alternative point of view assigns the errors to the SNPs, i.e. a
“bad” SNP is a SNP for which some fragments contain read errors. Correspond-
ingly, we have the following optimization problems: “Find the minimum number
of fragments to ignore” or “Find the minimum number of SNPs to ignore”, such
that “the (corrected) data is consistent with the existence of two haplotypes. Find
such haplotypes.”

Practical Algorithms and Fixed-Parameter Tractability 33

1 A B - A A B
2 B A - - B -
3 - A B A B A
4 - A B - B A
5 B - A B A -

(a)

4

 1 2 3 4 5 6

(d)(b) (c)

2

3

5

5

1 2 3

4

6

1

1

2

3

5

4

1

2

3

4

5

6

Fig. 1. (a) A SNP matrix. (b) The Fragment conflict graph GF (M). (c) The SNP
conflict graph GS(M). (d) The labeled bipartite graph (G, �)

3 Terminology and Notation

Let S = {1, . . . , n} be a set of SNPs and F = {1, . . . ,m} be a set of fragments
(where, for each fragment, only the nucleotides at positions corresponding to
some SNP are considered). Each SNP is covered by some of the fragments, and
can take only two values. The actual values (nucleotides) are irrelevant to the
combinatorics of the problem and hence we will denote, for each SNP, by A and
B the two values it can take. Given any ordering of the SNPs (e.g., the natural
one, induced by their physical location on the chromosome), the data can also
be represented by an m × n matrix over the alphabet {A, B,−}, which we call
the SNP matrix (read “snip matrix”), defined in the obvious way. The symbol
− appears in all cells M [f, s] for which a fragment f does not cover a SNP s,
and it is called a hole.

For a SNP s, two fragments f and g are said to conflict on s if M [f, s] = A
and M [g, s] = B or vice-versa. Two fragments f and g are said to conflict if there
exists a SNP s such that they conflict on s, otherwise f and g are said to agree.
A SNP matrix M is called error-free if we can partition the rows (fragments)
into two classes of non-conflicting fragments.

Given a SNP matrix M , the fragment conflict graph is the graph GF (M) =
(F , EF) with an edge for each pair of conflicting fragments (see Figure 1(a)
and (b)). Note that if M is error-free, GF (M) is a bipartite graph, since each
haplotype defines a shore of GF (M), made of all the fragments coming from
that haplotype. Conversely, if GF (M) is bipartite, with shores H1 and H2, all
the fragments in H1 can be merged into one haplotype and similarly for H2.
Hence, M is error-free if and only if GF (M) is bipartite.

The fundamental underlying problem in SNP haplotyping is determining
an optimal set of changes to M (e.g., row and/or column- deletion) so that M
becomes error-free. Given a matrix M , and where X is any set of rows or columns

34 R. Rizzi et al.

of M , we denote by M \X the matrix obtained from M by dropping the rows
or columns in X. In this work, we will consider the following problems.

MSR Minimum SNP Removal - Find a minimum number of columns
(SNPs) whose removal makes M error-free;
MFR Minimum Fragment Removal - Find a minimum number of rows
(fragments) whose removal makes M error-free.

For better readability, from now on we will refer to “a matrix M” instead
of “a SNP matrix M”, unless a possible confusion arises with another type of
matrix. For a problem Π ∈ {MSR,MFR} on input a matrix M , we will denote
by Π(M) the value of an optimal solution.

The following two reductions can be used to remove redundant data from
the input, and hence to clean the structure of the problems.

We start by considering the minimum number of columns (SNPs) whose
removal makes M error-free. We have the following proposition:

Proposition 1 (S-reduction) Let M ′ be the matrix obtained from M by drop-
ping those columns where no A’s or no B’s occur. Clearly, MSR(M ′) ≤ MSR(M).
Let X be any set of SNPs such that M ′ \ X is error-free. Then also M \ X is
error-free.

Essentially, Proposition 1 says that when solving the problem we can simply
concentrate our attention to M ′, the other columns being inessential. Matrix
M ′ so obtained is called S-reduced. When M is error-free, then we say that two
fragments f and g are allies (enemies) when they must be in the same class
(in separate classes) for every partition of the rows of M into two classes of
non-conflicting fragments.

Now, on an S-reduced M ′, we have the following structure for solutions.

Lemma 2 (“o con noi o contro di noi”)1 Let M be an S-reduced matrix.
Let X be any set of SNPs whose removal makes M error-free. Let f, g ∈ F be any
two fragments. Consider any SNP s ∈ S\X such that {M [f, s],M [g, s]} ⊆ {A, B}.
Then, if M [f, s] �= M [g, s] then f and g are enemies, otherwise, they are allies.

Proof: The first part is obvious. As for the second, assume, e.g., M [f, s] =
M [g, s] = A. Then , since M is S-reduced, there exists a third fragment h such
that M [h, s] = B. ��

We also have a similar reduction which applies to rows.

Proposition 3 (F-reduction) Let M ′ be the matrix obtained from M by drop-
ping those rows which conflict with at most one other row. Clearly, MSR(M ′) ≤
MSR(M). Let X be any set of SNPs whose removal makes M ′ error-free. Then
the removal of X makes also M error-free.
1 Literal translation: either with us or against us. Meaning: you have to choose, either

be friend or enemy

Practical Algorithms and Fixed-Parameter Tractability 35

We can hence assume that every row conflicts with at least two other rows,
simply by dropping those rows which conflict with at most one row. Matrix M ′

so obtained is called F-reduced.
We now proceed to check that the two reductions just introduced for MSR are

also valid for MFR (they are valid for MER as well). So, consider the minimum
number of rows (fragments) whose removal makes M error-free. The following
propositions are easy to prove

Proposition 4 (S-reduction, again) Let M ′ be the matrix obtained from M
by dropping those columns where only A’s or only B’s occur. Clearly, MFR(M ′) ≤
MFR(M). Let X be any set of rows whose removal makes M ′ error-free. Then
also M \X is error-free.

Proposition 5 (F-reduction, again) Let M ′ be the matrix obtained from M
by dropping those rows which conflict with at most one single other row. Clearly,
MFR(M ′) ≤ MFR(M). Let X be any set of rows whose removal makes M ′

error-free. Then also M \X is error-free.

3.1 Old and New Results

We define a gapless fragment i as one for which the As and Bs appear con-
secutively, with no - s between them, in row i of M . In general, a gap is a
maximal run of consecutive holes between two non-hole symbols. As an example,
--ABABBBA----, is a gapless fragment, while there are 2 gaps in --AB---B--AB-.
The length of a gap is the number of holes it contains (so, the above second exam-
ple, has a total gap length of 5 = 3+2). The body of a fragment extends from the
leftmost non-hole to the rightmost non-hole (e.g., the body of ---ABB-B--AB-
is ABB-B--AB).

In haplotyping, there can be gaps for mainly two reasons:

1. thresholding of low-quality reads. This happens if the sequencer cannot call
a SNP A or B with enough confidence; then, no call is made, and the position
is marked with -.

2. mate-pairing in shotgun sequencing. One pair of mates are two fragments
coming from the same chromosome copy, with a given distance between
them. Hence, they are logically equivalent to a single fragment with one gap.

We call a matrix gapless if all fragments are gapless. We say that a matrix
has the consecutive-1 property (is C1P) if the columns can be rearranged so
as to obtain a gapless matrix. Note that determining if such a rearrangement
exists is a well-known polynomial problem [1]. As a consequence, all polynomial
results for gapless matrices can be readily extended to polynomial results for
C1P matrices. We note also that the consecutive-1 property is conserved under
both S-reduction and F-reduction.

We now briefly recall the main results that were obtained in [8] for gapless
matrices and in Sections 5.1 and 5.2 we go on to improve them to more practical
and effective algorithms. In a nutshell, in [8] it is shown that for gapless matrices

36 R. Rizzi et al.

the problems are polynomial, while, in general, they are NP-hard. Note that
these cases are both likely to occur in real-life applications. For instance, an
EST (Expressed Tagged Sequence) is a short DNA fragment with no gaps, fully
sequenced. When the input consists only of ESTs, the matrix M is C1P (i.e.,
has the consecutive 1 property). On the other hand, when also mate pairs are
used, the matrix is not necessarily C1P.

Let M be an S-reduced matrix. Two SNPs s and t are said to be in conflict
if there exists fragments f and g such that M [f, a], M [g, a], M [f, c], M [g, c] �= −
and the boolean value (M [f, a] = M [g, a]) is the negation of (M [f, c] = M [g, c]).
In other words, the 2× 2 submatrix of M defined by rows f and g and columns
s and t has 3 symbols of one type (A or B) and one of the opposite (B or A
respectively). Given a matrix M , the SNP conflict graph is the graph GS(M) =
(S, ES), with an edge for each pair of SNPs in conflict (see Figure 1(c)).

The following theorems are proved in [8]

Theorem 6 Let M be a gapless matrix. Then M is error-free if and only if
GS(M) is a stable set.

Theorem 7 If M is a gapless matrix, then GS(M) is a weakly triangulated
graph.

From theorems 6 and 7 it followed that MSR is polynomial for a gapless
matrix, since it amounts to finding the largest stable set in a perfect graph. The
main result in [8] was to show that the problem is polynomial, and little attention
was paid to the fact that the running times of algorithms based on the perfectness
of graphs are bounded by too high-degree polynomials for practical applications
(let apart the problem of actually coding these algorithms). Similarly, in [8] a
point was made that, for gapless data, also MFR is polynomial, which was shown
via an expensive reduction to a network flow problem. Furthermore, the result
is only valid when no fragment is contained in another. In the next two sections,
we set up for quicker and much simpler algorithms for both MFR and MSR.
We also manage to get rid of the assumption that no fragment is contained in
another. The main results we establish in this paper are the following:

Theorem 8 There is an O(mn2k+2) polynomial time algorithm for MSR prob-
lem on matrices in which each fragment has total gap length at most k.

Corollary 9 There is an O(mn2) polynomial time algorithm for MSR problem
on matrices which have the consecutive-1 property.

Theorem 10 There is an O(22km2n + 23km3) polynomial time algorithm for
MFR problem on matrices in which each fragment has total gap length at most
k.

Corollary 11 There is an O(m2n + m3) polynomial time algorithm for MFR
problem on matrices which have the consecutive-1 property.

Theorem 12 The problems MFR and MSR are, in general, APX-hard.

Practical Algorithms and Fixed-Parameter Tractability 37

4 The Data as Labeled Bipartite Graph

We assume that we are working on an S-reduced matrix M . To M we associate a
labeled graph as follows. Let G = (F ,S;E) be a bipartite graph on color classes
F and S and with edge set E := {sf : s ∈ S, f ∈ F ,M [s, f] �= −}. When
M [s, f] = A we label sf even, and set �(sf) = 0. When M [s, f] = B we label sf
odd, and set �(sf) = 1 (see Figure 1(d), where even edges are dashed and odd
edges are thick). An edge set F ⊆ E is called �-odd if it contains an odd number
of odd edges, and �-even otherwise. Indeed, we can extend our labeling to edge
sets as �(F) :=

(∑
f∈F �(f)

)
mod 2

. We say that the pair (G, �) is �-bipartite if

and only if it contains no �-odd cycle (regard a cycle as an edge set). By the “o
con noi o contro di noi” Lemma 1, we have the following consequence:

Proposition 13 The matrix M is error-free if and only if (G, �) is �-bipartite.

We now give a formal proof of the above proposition in a more general form.

Lemma 14 Let X be a set of columns. If M is S-reduced and M \X is error-
free, then (G \X, �) is �-bipartite.

Proof: Indeed, let C = f1, s1, . . . , fk, sk be any cycle in G\X. Define �(δC(si)) =
�(fisi)+�(sifi+1), so that �(C) =

∑k
i=1 �(δC(si)). Consider a partition of F into

two haplotypes. By Lemma 1, whenever �(δC(si)) is even, fi and fi+1 are in in
the same haplotype, while when it is odd, they are in different haplotypes. But,
along the cycle f1, f2, . . . , fk, the number of haplotype switches must be even
(like jumping forth and back between the two sides of a river but eventually
returning to the starting side). ��

Now we go for the converse.

Lemma 15 If (G, �) is �-bipartite then M (not necessarily reduced) is error-free.

Proof: By definition, the fragment conflict graph GF (M) = (F , EF) is such that
uv ∈ EF if there is an s such that us and sv are in (G, �) and �(us) + �(sv) = 1.
Hence, to each cycle C in GF (M) corresponds a cycle C ′ in (G, �), and C has
an even number of edges if and only if C ′ is �-even. So, GF (M) is bipartite and
hence M is error-free. ��

We finally prove Theorem 12 of Section 3.1.

Theorem 16 The problems MFR and MSR are APX-hard.

Proof: Given a graph G, the problem (minEdgeBipartizer) of finding a min-
imum cardinality set of edges F such that G \ F is bipartite, and the problem
(minNodeBipartizer) of finding a minimum cardinality set of nodes Z such
that G \ Z is bipartite, are known to be APX-hard [10]. Moreover, the same
problems are not known to be in APX. We give simple L-reductions from these
two problems to MFR and MSR, hence showing the APX-hardness of MFR and

38 R. Rizzi et al.

MSR, but also that finding a constant ratio approximation algorithm for any of
these problems in general is somewhat of a challenge.

Given an input graphG as instance for either minEdgeBipartizer or minN-
odeBipartizer, we subdivide each edge into two edges in series. (The resulting
graph G′ is clearly bipartite, we call SNPs the new nodes and fragments the
old ones). Now, of the two edges incident with every SNP, we declare one to
be odd and one to be even. Clearly, solving or approximating MSR on (G′, �)
amount to solving or approximating (within exactly the same approximation)
minEdgeBipartizer on G. Moreover, solving or approximating MFR on (G′, �)
amounts to solving or approximating (within exactly the same approximation)
minNodeBipartizer on G. ��

5 Polynomial Algorithms for the Gapless Case

In this section we prove Corollaries 9 and 11 of Section 3.1. Although they would
follow from the more general theorems for matrices with bounded length gaps
(described in Section 6) we prove them here directly because it is didactically
better to do so. In fact, the results of Section 6 will be obtained as generalizations
of the ideas described in this section.

5.1 MSR: A Dynamic Programming O(mn2) Algorithm

In this section we propose a dynamic programming approach for the solution
of MSR. The resulting algorithm can be coded as to take O(mn2) time. In the
following, we assume M to be S-reduced.

It is easier to understand our dynamic program if we state it for the comple-
mentary problem of MSR, i.e., find the maximum number of SNPs that can be
kept so that M becomes error-free. Clearly, if k is the largest number of SNPs
that we can keep, then n− k is the smallest number of SNPs to remove.

For j ≤ n (with j ≥ 0), we define K[j] as the maximum number of columns
that can be kept to makeM error-free, under the condition that j is the rightmost
column kept (if all columns are removed then j = 0, and K[0] = 0).

Once all the K[j] are known, the solution to the problem is given by

max
j∈{0,...,n}

K[j].

For every j, we define OK(j) as the set of those i with i < j such that
columns i and j do not conflict. We assume that 0 belongs to OK(j) for every
j. Now, for every j,

K[j] := 1 + max
i∈OK(j)

K[i] (1)

where Equation (1) is correct by the following easily proven fact.

Lemma 17 Let M be a gapless S-reduced matrix. Consider columns a < b <
c ∈ S. If a is not in conflict with b and b is not in conflict with c, then a is not
in conflict with c.

Practical Algorithms and Fixed-Parameter Tractability 39

Proof: Assume SNPs a and c to be conflicting, that is, there exist fragments f
and g such that M [f, a], M [g, a], M [f, c], M [g, c] �= − and the boolean value
(M [f, a] = M [g, a]) is the negation of (M [f, c] = M [g, c]). Since a < b < c, then
M [f, b],M [g, b] �= − since M is gapless. Therefore, (M [f, b] = M [g, b]) is either
the negation of (M [f, a] = M [g, a]) or the negation of (M [f, c] = M [g, c]). That
is, b is either conflicting with a or with c. ��

Note that for computing the entries K[j] we only need to know the sets
OK(j). Note that OK(j) is the set of those i < j which are neighbors of j in the
SNP-conflict graph GS(M). Since determining if two SNPs are in conflict can be
done in time O(m), the cost of creating the OK(j) is O(mn2). This dominates
the cost O(n2) of solving all equations (1).

5.2 MFR: A Dynamic Programming O(m2n+m3) Algorithm

In this section we propose a dynamic programming approach for the solution
of MFR. We remark that, contrary to the approach suggested in [8], nested
fragments will not be a problem. The resulting algorithm can be coded as to
take O(m2n+m3) time.

Given a row f of M we denote by l(f) the index of the leftmost SNP s
such that M [f, s] �= − and by r(f) the index of the rightmost SNP s such
that M [f, s] �= −. In other words, the body of the fragment f is all contained
between the SNPs l(f) and r(f). We assume that the rows of M are ordered
so that l(i) ≤ l(j) whenever i < j. For every i ∈ {1, . . . ,m}, let Mi be the
matrix made up by the first i rows of M . For h, k ≤ i (with h, k ≥ −1) such that
r(h) ≤ r(k), we define D[h, k; i] as the minimum number of rows to remove to
make Mi error-free, under the condition that

– row k is not removed, and among the non-removed rows maximizes r(k);
– row h is not removed and goes into the opposite haplotype as k, and among

such rows maximizes r(h).

(If all rows are removed then h = −1, k = 0, and D[−1, 0; i] := i. Rows −1
and 0 are all −, that is, empty).

Once all the D[h, k; i] are known, the solution to the MSR problem is given
by

min
h,k : r(h)≤ r(k)

D[h, k;m].

Clearly, for every i, and for every h, k < i with r(h) ≤ r(k),

D[h, k; i] :=

D[h, k; i− 1] if r(i) ≤ r(k) and rows i and k agree
D[h, k; i− 1] if r(i) ≤ r(h) and rows i and h agree
D[h, k; i− 1] + 1 otherwise,

(2)

where Equation (2), as well as Equation (3) and Equation (4), finds expla-
nation into the following easily proven fact.

40 R. Rizzi et al.

Lemma 18 Consider rows a, b, c ∈ F . Assume a, b < c and r(a) ≤ r(b). If a
agrees with b and b agrees with c, then a agrees with c.

For every i, we define OK(i) as the set of those j with j < i such that rows
i and j agree. We assume that 0,−1 belong to OK(i) for every i. (Just think to
append a pair of all “−” rows at the top of M).

Now, for every i, and for every h < i with r(h) ≤ r(i),

D[h, i; i] := min
j∈OK(i), j �=h, r(j)≤ r(i)

{
D[j, h; i− 1] if r(h) ≥ r(j)
D[h, j; i− 1] if r(h) < r(j) (3)

Finally, for every i, and for every k < i with r(k) ≥ r(i),

D[i, k; i] := min
j∈OK(i), j �=k, r(j)≤ r(i)

D[j, k; i− 1]. (4)

Note that for computing the entries D[h, k; i] we only need to know the sets
OK(i). The cost of creating the OK(i) data structure (done in a first phase) is
O(m2n). The cost of computing the entries D[h, k; i] (done in a second phase). is
O(m3), since it can be seen as the cost of computing the O(m3) entries D[h, k; i]
by using Equation (2) (costs O(1) each) plus the cost of computing the O(m2)
entries D[h, i; i] and D[i, k; i] by using Equations (3) and (4) (costs O(m) each).

6 Dealing with Gaps

In this section we propose a practical approach to deal with any number of gaps,
when the body of each fragment does not contain many holes. For the remainder
of this section, let k be a constant such that the body of each fragment in the
input instance contains at most k holes. We will derive dynamic programming-
based polynomial (for a constant k) algorithms for both MFR and MSR, proving
Theorems 8 and 10 of Section 3.

6.1 MSR: An O(mn2k+2) Algorithm

We modify the basic dynamic programming approach for MSR introduced in
Section 5.1. More precisely, the new dynamic programming algorithm for MSR
will now consider 2k columns of history. We remind the reader that we show how
to determine the largest number of SNPs that can be kept to make M error-free,
which is equivalent to solving MSR. The resulting algorithm can be coded as to
take O(mn2k+2) time. In the following, we assume M to be S-reduced.

We say that SNPs s1, . . . , st are consistent when no two of them conflict.
For consistent j1 < . . . < j2k+1 ≤ i (with j1 ≥ −2k), we define K[j1, . . . , j2k+1]
as the maximum number of columns to keep to make M error-free, under the
condition that j1, . . . , j2k+1 are the 2k+1 rightmost columns kept (if all columns
are removed then j2k+1 = 0, and K[−2k, . . . ,−1, 0] = 0).

Once all the K[. . .] are known the solution to the problem is given by

max
−2k<j1<...<j2k+1≤n

K[j1, . . . , j2k+1].

Practical Algorithms and Fixed-Parameter Tractability 41

For i ≤ n and consistent j1 < . . . < j2k < i we define OK(j1, . . . , j2k, i) as
the set of those j < j1 such that columns j, j1 < . . . < j2k, i are consistent.

Now, for every consistent j1 < . . . < j2k < i,

K[j1, . . . , j2k, i] := 1 + max
j∈OK(j1,...,j2k,i)

K[j, j1, . . . , j2k] (5)

where Equation (5) is correct by the following easily proven fact.

Lemma 19 Let M be an S-reduced matrix where each fragment contains at
most k holes. Consider columns a < j1, . . . , j2k < c ∈ S. Assume columns
a, j1, . . . , j2k are consistent. Assume further columns j1, . . . , j2k, c are consistent.
Then, columns a, j1, . . . , j2k, c are consistent.

Proof: Assume on the contrary that a and c conflict. Let f and g be fragments
such that M [f, a], M [g, a], M [f, c], M [g, c] �= − and the boolean value (M [f, a] =
M [g, a]) is the negation of (M [f, c] = M [g, c]).

Since each row has at most k holes, as a consequence, on 2k+1 columns, any
two rows must have a common non-hole or one of the considered columns is out
of the body of one of the two rows. Since a and c are both in the body of f then
j1, . . . , j2k are all in the body of f . Similarly, j1, . . . , j2k are all in the body of g.
Hence, let b ∈ {j1, . . . , j2k} such that M [f, b],M [g, b] �= −. Since a < b < c, then
M [f, b],M [g, b] �= − since M is gapless. Therefore, (M [f, b] = M [g, b]) is either
the negation of (M [f, a] = M [g, a]) or the negation of (M [f, c] = M [g, c]). That
is, b is either conflicting with a or with c. ��

Note that for computing the entries K[. . . ; i] we only need to know the
sets OK(j1, . . . , j2k, i). The cost of creating the OK(j1, . . . , j2k, i) (done in a
first phase) is O(mn2k+2), which dominates the cost O(n2k+2) of solving all
equations (5).

6.2 MFR: An O(22knm2 + 23km3) Algorithm

We show how to extend the dynamic programming approach given in Section 5.2
to solve gapless problem instances with holes in O(22knm2 + 23km3) time. We
point out that the form of the necessarily-exponential dependence on k is a very
good one, i.e., it shows the fixed-parameter tractability of the problem. The
memory requirement is 22km3.

Let f be a fragment and let x ∈ {A,B}k. We denote by f [x] the fragment
obtained from f by filling in the holes one by one, using the first characters in x.
Since we assumed that the body of each fragment in our input instance contains
at most k holes, the characters in x will always suffice to fill in all the holes
of f . Given x1, x2 ∈ {A,B}k and two rows f1, f2 of matrix M , we denote by
M [f1[x1], f2[x2]] the matrix obtained from M by substituting f1 with f1[x1] and
f2 with f2[x2]. The following consideration suggests how to extend the dynamic
programming algorithm given in Section 5.2 to the case with holes:

Proposition 20 Let F1 = {f1
1 , . . . , f

p
1 }, F2 = {f1

2 , . . . , f
q
2 } be sets of fragments

in M such that any two fragments in Fi (i = 1, 2) agree. Then, for every i ≤ p

42 R. Rizzi et al.

and j ≤ q we can give xi1, x
j
2 ∈ {A,B}k such that F ′1 = {f1

1 , . . . , f
i
1[xi1], . . . , fp1 }

and F ′2 = {f1
2 , . . . , f

j
2 [xj2], . . . , fq2 } would still be both without conflicts.

We assume that the rows of M are ordered so that l(i) ≤ l(j) whenever i < j.
For every i ∈ {1, . . . ,m}, let Mi be the matrix made up by the first i rows of
M . For h, k ≤ i (with h, k ≥ −1) such that r(h) ≤ r(k), and for x, y ∈ {A,B}k
we define D[h, x; k, y; i] as the minimum number of rows to remove to make
Mi[h[x], k[y]] error-free, under the condition that

– row k[y] is not removed, and among the non-removed rows maximizes r(k);
– row h[x] is not removed and goes into the opposite haplotype as k[y], and

among such rows maximizes r(h).

(If all rows are removed then h = −1, k = 0, and D[−1, x; 0, y; i] = i for all
x, y ∈ {A,B}k.

Once all the D[h, x; k, y; i] are known, the solution to the problem is given
by

min
x,y∈{A,B}k;h,k :r(h)≤ r(k)

D[h, x; k, y; m].

Clearly, for every i, and for every h, k < i with r(h) ≤ r(k), and for every
x, y ∈ {A,B}k,

D[h, x; k, y; i] :=

D[h, x; k, y; i− 1] if r(i) ≤ r(k) and rows i
and k[y] agree

D[h, x; k, y; i− 1] if r(i) ≤ r(h) and rows i
and h[x] agree

D[h, x; k, y; i− 1] + 1 otherwise

(6)

For every fragment i and for every x ∈ {A,B}k we define OK(i, x) as the
set of those pairs (j, y) such that j is a fragment with j < i and y ∈ {A,B}k
such that rows i[x] and j[y] agree. Now, for every i, and for every h < i with
r(h) ≤ r(i), and for every xi, xh ∈ {A,B}k,

D[h, xh; i, xi; i] := min
(j,xj)∈OK(i,xi),j �=h,r(j)≤r(i)

D[j, xj ; h, xh; i− 1]
if r(h) ≥ r(j)

D[h, xh; j, xj ; i− 1]
if r(h) < r(j)

(7)

Finally, for every i, and for every k < i with r(k) ≥ r(i), and for every
xi, xk ∈ {A,B}k,

D[i, xi; k, xk; i] := min
(j,xj)∈OK(i,xi),j �=k,r(j)≤r(i)

D[j, xj ; k, xk; i− 1]. (8)

Note that for computing the entries D[h, x; k, y; i] we only need to know
the sets OK(i). The cost of creating the OK(i, x) data structure (done in a first

Practical Algorithms and Fixed-Parameter Tractability 43

phase) is O(22knm2). The cost of computing the entries D[h, x; k, y; i] (done in
a second phase) is O(23km3), since it can be seen as the cost of computing the
O(22km3) entries D[h, x; k, y; i] with h < k < i by using Equation (6) (costs
O(1) each) plus the cost of computing the O(22km2) entries D[h, x; i, y; i] by
using Equations (7) and (8) (costs O(2km) each).

References

1. K. S. Booth and G. S. Lueker. Testing for the consecutive ones property, intervals
graphs and graph planarity testing using PQ-tree algorithms. J. Comput. System
Sci., 13:335–379, 1976.

2. A. Chakravarti. It’s raining SNP, hallelujah? Nature Genetics, 19:216–217, 1998.
3. A. Clark. Inference of haplotypes from PCR–amplified samples of diploid popula-

tions. Molecular Biology Evolution, 7:111–122, 1990.
4. D. Gusfield. A practical algorithm for optimal inference of haplotypes from diploid

populations. In R. Altman, T.L. Bailey, P. Bourne, M. Gribskov, T. Lengauer,
I.N. Shindyalov, L.F. Ten Eyck, and H. Weissig, editors, Proceedings of the Eighth
International Conference on Intelligent Systems for Molecular Biology, pages 183–
189, Menlo Park, CA, 2000. AAAI Press.

5. D. Gusfield. Haplotyping as perfect phylogeny: Conceptual framework and efficient
solutions. In G. Myers, S. Hannenhalli, S. Istrail, P. Pevzner, and M. Watermand,
editors, Proceedings of the Sixth Annual International Conference on Computa-
tional Biology, pages 166–175, New York, NY, 2002. ACM Press.

6. L. Helmuth. Genome research: Map of the human genome 3.0. Science,
293(5530):583–585, 2001.

7. International Human Genome Sequencing Consortium. Initial sequencing and anal-
ysis of the human genome. Nature, 409:860–921, 2001.

8. G. Lancia, V. Bafna, S. Istrail, R. Lippert, and R. Schwartz. SNPs problems,
complexity and algorithms. In Proceedings of Annual European Symposium on
Algorithms (ESA), volume 2161 of Lecture Notes in Computer Science, pages 182–
193. Springer, 2001.

9. R. Lippert, R. Schwartz, G. Lancia, and S. Istrail. Algorithmic strategies for the
SNPs haplotype assembly problem. Briefings in Bioinformatics, 3(1):23–31, 2002.

10. C. Lund and M. Yannakakis. The approximation of maximum subgraph problems.
In Proceedings of 20th Int. Colloqium on Automata, Languages and Programming,
pages 40–51. Springer-Verlag, 1994.

11. E. Marshall. Drug firms to create public database of genetic mutations. Science
Magazine, 284(5413):406–407, 1999.

12. J.C. Venter et al. The sequence of the human genome. Science, 291:1304–1351,
2001.

13. J. Weber and E. Myers. Human whole genome shotgun sequencing. Genome
Research, 7:401–409, 1997.

	1 Introduction
	2 SNPs and Haplotypes
	3 Terminology and Notation
	3.1 Old and New Results

	4 The Data as Labeled Bipartite Graph
	5 Polynomial Algorithms for the Gapless Case
	5.1 MSR: A Dynamic Programming $O(mn^2)$ Algorithm
	5.2 MFR: A Dynamic Programming $O(m^2 n + m^3)$ Algorithm

	6 Dealing with Gaps
	6.1 MSR: An $O(mn^{2k+2})$ Algorithm
	6.2 MFR: An $O(2^{2k}nm^2 + 2^{3k}m^3)$ Algorithm

	References

