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Robust Proofs of NP-Hardness for Protein Folding:
General Lattices and Energy Potentials
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ABSTRACT

This paper addresses the robustness of intractability arguments for simplified models of
protein folding that use lattices to discretize the space of conformations that a protein can

assume. We present two generalized NP-hardness results. The first concerns the intractabil-
ity of protein folding independent of the lattice used to define the discrete protein-folding
model. We consider a previously studied model and prove that for any reasonable lattice
the protein-structure prediction problem is NP-hard. The second hardness result concerns

the intractability of protein folding for a class of energy formulas that contains a broad
range of mean force potentials whose form is similar to commonly used pair potentials
(e.g., the Lennard-Jones potential). We prove that protein-structure prediction is NP-hard
for any energy formula in this class. These are the first robust intractability results that
identify sources of computational complexity of protein-structure prediction that transcend
particular problem formulations.
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1. INTRODUCTION

Aprotein is a chain of AMINO acid residues that folds into a unique native three-dimensional structure
under physiological conditions. The problem of protein-structure prediction is a notoriously difficult

problem in biochemistry. Proteins unfold when folding conditions provided by the environment are dis-
rupted, and many proteins spontaneously refold to their native structures when physiological conditions
are restored. This is the basis for the belief that prediction of the native structure of a protein can be done
computationally from the information contained in the amino acid sequence.

Exhaustive search of a protein's conformational space is clearly not a feasible algorithmic strategy.
The number of possible conformations is exponential in the length of the protein sequence, and powerful
computational hardware would not be capable of searching this space for even moderately large proteins.
This observation led Levinthal (Ngo et al, 1994) to raise a question about the paradoxical discrepancy
between the enormous number of possible conformations and the fact that most proteins fold within
seconds to minutes, independent of their size. While these observations appear contradictory, they can be
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2 HART AND ISTRAIL

reconciled by noting that they simply point to the lack of knowledge of a possible algorithmic structure
that could guide an efficient search algorithm (see Ngo et al, 1994 for further discussion of this issue).
Consequently, computational analyses of the protein folding process can provide insight into the inherent
algorithmic difficulty of folding proteins.

Following the therrnodynamic hypothesis (Epstein et al, 1963), computational models of protein folding
are typically formulated to find the global minimum of a potential energy function. Many simple protein-
folding models use lattices to describe the space of conformations that proteins can assume. Lattices are

infinite periodic graphs that are generated by translations of a "unit graph" that fill a two- or three-
dimensional space. Lattices provide a natural discretization of the space of protein conformations since the
dihedral angles along the protein's backbone are indeed constrained to specific domains. The conformation
of a protein is often viewed as a self-avoiding path in the lattice in which the vertices are labeled by the
amino acids (Dill et al, 1995). An energy value is associated with every conformation taking into account
neighborhood relationships of the amino acids on the lattice.

In this paper we explore the possible computational intractability of the problem of protein-structure
prediction using techniques from computational complexity theory. Specifically, we use the theory of
NP-completeness (Garey and Johnson, 1979). No polynomial algorithm has been constructed for any
NP-complete problem. In fact, it is widely believed that no such polynomial-time algorithm exists.

Several lattice models of protein folding have been proven to be NP-hard (Ngo and Marks, 1992;
Fraenkel, 1993; Unger and Moult, 1993; Patterson and Przytycka, 1995; Hart and Istrail, 1996), which
means that they are at least as hard to solve as NP-complete problems. While these results support an

algorithmic interpretation Levinthal's paradox, an important criticism of these results can be articulated as

follows: ' 'What is the biological relevance of a complexity analysis of structure prediction in one lattice
model?" The relationship between previous complexity analyses is unclear because they consider different
abstractions of the protein-folding problem. For example, authors have previously examined the complexity
of lattice models on the three-dimensional cubic lattice (Fraenkel, 1993; Hart and Istrail, 1996; Patterson
and Przytycka, 1995), on a "nearly-cubic" lattice (Unger and Moult, 1993), and on a diamond lattice
(Ngo and Marks, 1992). The question we raise addresses the extent to which these complexity analyses
might be specific to the particular details of these lattice models.

Results that transcend specific problem formulations are of significant interest because they may say
something about the general biological problem with a higher degree of confidence. In fact, it is reasonable
to expect that there will exist sources of computational complexity across lattice models that fundamentally
relate to the protein-folding problem, since different lattice models provide discretizations of the same

physical phenomenon. However, the identification of these sources of complexity has not been previously
addressed.

In computational terms, the independence of algorithmic results from particular settings is called com-

putational robustness. Robust algorithmic results are particularly important in computational models of
protein folding, since complexity results for this class of optimization problems should be interpreted with
caution. Accurate formulas for potential energy functions are not known; various analytic formulations use

empirical potentials that attempt to represent the dominant physical forces (Creighton, 1993; van Gunsteren
et al, 1993). Learning from the computational complexity analysis of other optimization problems, we

know that altering the problem objective even slightly (e.g., adding a one to the objective function) could
change the status of a problem from NP-complete to tractable. Therefore, a robust analysis has a better
chance of identifying sources of computational difficulty.

This paper presents robust complexity analyses for two lattice models that are related to the model
described by Unger and Moult (1993). First, we analyze the computational complexity of Unger and
Moult's model on an arbitrary three-dimensional lattice. Our analysis shows that the protein structure
prediction problem is NP-hard for any reasonable lattice. Second, we analyze a restricted version of this
problem on a cubic lattice. Our analysis examines the complexity of protein folding for a broad class of
energy formula that are similar to commonly used pair potentials. We prove that protein-structure prediction
is NP-hard for a class of energy formula for which the energy monotonically increases to zero with the
distance between amino acids.

Definitions: Let Z be the set of integers, Q the set of rationals, R the set of reals. Let Z+ be the set
of positive integers and Z-° be the set of nonnegative integers. A vector v by convention has components
(Vx,...,Vn).  
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2. LATTICE PROTEIN-FOLDING MODELS

A lattice protein-folding model represents conformations of proteins as vertex-independent embeddings
of the protein structure in a lattice (i.e., no two amino acids are mapped to the same vertex). Lattice models
can be classified based on the following properties:

1. The physical structure, which specifies the level of detail at which the protein's conformation is rep-
resented. The structure of the protein is treated as a graph whose vertices represent components of the
protein. For example, we can represent a protein with a linear-chain structure (Dill et al, 1995) that
uses a chain of beads to represent the amino acids. Similarly, we can represent a protein with a simple
side-chain structure (Bromberg and Dill, 1994) that uses a chain of beads to represent the backbone;
amino acids are represented by edges to beads that connect to the backbone.

2. The alphabet of types of amino acids that are modeled by the problem. For example, we could use
the 20 naturally occurring types of amino acids, or a binary alphabet that categorizes amino acids as

hydrophobic (nonpolar) or hydrophilic (polar).
3. The energy formula used, which specifies how pairs of amino acid residues are used to compute the

energy of a conformation. For example, this includes contact potentials that only have energy between
amino acids that are adjacent on the lattice, and distance-based potential that use a function of the
distance between points on the lattice. Many energy formulas have energy parameters that can be set
to different values to capture different aspects of the protein folding process.

4. The lattice, in which protein conformations are expressed; this determines the space of possible con-

formations for a given protein. For example, the cubic and diamond lattices have been used to describe
protein conformations (see Fig. 1).

A conformation of a protein sequence in an embedding of the protein's physical structure (i.e., the protein's
graph) into the lattice such that vertices are mapped one-to-one to lattice points, and edges in the structure
are mapped to corresponding lattice edges. We disallow a conformation to use two edges in a lattice that
intersect, even though these edges may be included in the lattice.

The following graph-theoretic definition of lattices captures properties that are needed in our analysis
[for a more conventional definition, see Wells (1979)]. Let B = {b\, b2, bj,} be a set of linearly independent
vectors in R3 (i.e., B spans R3). A translation of a point p = ip\, P2, P3) is a point defined by

Pibi + P2b2 + pih + p,

where ip\, p2, P3) G Q3. A primitive translation is a translation for which ip\, p2, p¡) e Z3.
We denote a unit cell by (V, rj), where V is a set of points and n : V -* R3 is an embedding of

these points in R3. We assume that V is finite. A lattice is generated by a unit cell (V, 77) if all points
on the lattice can be defined by a primitive translation of the points r/(v), v e V. A unit graph is a unit
cell (V, n) with two types of edges: (a) E ç V x V, and (b) E' ç V x V", where V" is a finite set of
vertices outside of the unit cell. Thus, a unit graph is defined by a graph G and an embedding n', where
(a) G = iV U V, E U E') and (b) Vu e V, n'iv) = r)iv). We call the vertices in V interior vertices and

(a) (b) (c)
FIG. 1. Examples of unit graphs for lattices: (a) three-dimensional cubic, (b) diamond, (c) three-dimensional square
with planar diagonal edges.
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the vertices in V exterior vertices. Examples of unit graphs are shown in Figure 1, using the conventional
representation of the unit cell as a cube for which points on the faces of the cube are "shared" among
neighboring unit cells.

Let ßbea basis and A a unit graph, A — (G, r¡), G = (V U V, E U £") We say that A is consistent
with B if there exists a primitive translation of A, A, with the following property: for all e e £", if
A = (G, rj), G = (V U V, E U £")> then there exists ë e E' such that n(e) = rj(e). Consistency guarantees
that connectivity between unit graphs is symmetric. If there is an edge in £" from A to A, then there must
be a complementary edge in E' from A to A.

Let <S be an infinite periodic graph generated by translations of a unit graph. 'S is connected if there
exists a path between any two vertices in it. Consider the graph H derived from ^ in which vertices
represent unit graphs and edges represent the fact that two unit graphs share an edge. We say that <S is
connected if H is connected, which is a property common to physical lattices. A lattice, L, is a connected
infinite periodic graph generated by primitive translations with a basis B of a unit graph that is consistent
with B. Note that the primitive translations of the unit graph "fill" all of R3 because B spans R3. We say
that a lattice L is finitely representable if b¡ € Q3 and the coordinates of all points in the unit graph that
defines L are vectors in Q3.

3. COMPUTATIONAL COMPLEXITY AND PROTEIN FOLDING

The native conformation of a protein is the conformation that has biological function. According to the
thermodynamic hypothesis, the native conformation of a protein is the conformation with the minimum
free energy among the set of all conformations. Consequently, given a lattice model (using lattice L) and
sequence s, the protein-folding structure-prediction problem (PFSP) is to find a native conformation of s

in L with minimal energy.
Computational intractability refers to our inability to construct efficient (i.e., polynomial time) algorithms

that can solve a given problem. Here, "inability" refers to both the present state-of-the-art of algorithmic
research as well as possible mathematical statement that no such algorithms exist. Customary statements
about the intractability of a problem are made by showing that the problem is NP-complete. The theory of
NP-completeness provides overwhelming evidence towards the inexistence of polynomial time algorithms
for NP-complete problems; the best known algorithm for any NP-complete problem takes an exponential
number of computational steps, which makes these problems "practically intractable."

The class of problems NP includes a wide variety of notoriously difficult combinatorial problems, such
as the traveling salesman problem, scheduling problems, and network design. Problems in NP have the
property that given an instance of the problem and a potential solution, one can efficiently test to determine
whether the potential solution actually solves the problem instance. A problem is NP-complete if it belongs
to NP, and if there is a polynomial algorithm that can solve this problem, then this algorithm can be adapted
to solve all of the other problems in NP. Hence, the problem is at least as hard as every other problem in
NP. For a thorough treatment of NP-completeness see Garey and Johnson (1979).

Formally, NP-complete problems are decisions problems, for which the answer is either yes or no.

Optimization problems like PFSP are not directly considered within the framework of NP-completeness.
However, optimization problems can be transformed into a decision problem by introducing a threshold B
and asking whether a solution with value less than or equal to B exists. The corresponding optimization
problem is at least as hard as the decision problem, since finding the optimal solution would answer

this decision problem for every value of B. Consequently, an optimization problem is NP-hard if its
corresponding decision problem is shown to be NP-complete.

3.1. Previous NP-hardness results
Several authors use this framework to prove that PFSP is NP-hard for various lattice protein-folding

models. Fraenkel (1993) examines a physical model in which each amino acid is represented as a bead in
a graph. The graph represents the contacts in the protein that must be held at a fixed distance, presumably
including the edges along the backbone of the protein. The alphabet consists of three types that represent
the charges associated with the amino acids: —1,0, 1. The model uses a distance-dependent energy formula
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that computes the product of the charges divided by distance. The energy is the sum over all edges in the
contact graph that is provided in the problem specification. A cubic lattice is used with this model.

Ngo and Marks (1992) present a hardness result for a molecular structure prediction problem that
encompasses protein folding. This model considers a chain molecule of atoms whose energy is based upon
a typical form of the empirical potential-energy function for organic molecules. Conformations of this
chain molecule are embedded in a diamond lattice.

Paterson and Przytycka (1995) examine a physical model in which each amino acid is represented as

a bead along a chain. Their model allows for an unbounded number of different types of amino acids. A
contact energy formula is used, which has contact energies of one for contacts between identical residues
and zero otherwise. The lattice used by this model is the cubic lattice.

Finally, Unger and Moult (1993) examine a protein-folding model that applies to the lattice defined by
the unit graph in Figure lc. Their model treats amino acids as beads along a chain. The energy formula is
a simple form of a free energy function that has the same form as empirically derived force fields (Unger
and Moult, 1993). Hart and Istrail (1996) generalize this NP-hardness result to Bravais lattices (which
includes the cubic lattice), as well as the diamond and fluorite lattices.

3.2. Robust notions of intractability
It is difficult to provide strong recommendations for particular protein-folding models because accurate

potential energy functions are not known. While various analytic formulations use potentials that capture
known features of "the" potential function, the most appropriate analytic formulation of the potential
energy for protein folding remains an area of active research (Creighton, 1993; Gunsteren et al, 1993).
Consequently, robust algorithmic results are particularly important for computational models of protein
folding.

Computational robustness refers to the independence of algorithmic results from particular settings. In
the context of NP-completeness, robustness refers to the fact that a class of closely related problems can be
described, all of which are NP-complete. The members of the class of problems are typically distinguished
by some parameter(s) that form a set of reasonable alternate formulations of the same basic problem. For
example, we can define robustness with respect to the lattice used in a particular lattice model. In this
case, each member of this class of problems is defined with respect to a particular lattice.

In the next two sections, we describe robustness arguments for two different classes of protein-folding
models. First, we describe an intractability result that is robust to changes in the lattice. We examine
the model proposed by Unger and Moult (1993) and demonstrate that this model remains NP-hard for
any reasonable lattice. Next, we describe an intractability result that is robust to changes in the energy
formulas. We examine a class of energy formulas that captures a wide range of potentials of mean force
that monotonically increase to zero as the distance between amino acids increases.

4. A HARDNESS RESULT FOR GENERAL LATTICES

4.1. Model formulation
Consider the following lattice protein-folding model. The physical structure specifies that the protein

sequence S = s\,.. .,sn is treated as an n-vertex node-labeled path, where node i is labeled with s¡, i =

1,...,fi. Each node on the path represents a single amino acid in the protein. The alphabet of amino-acid
types are represented by integers, si = {1,..., m}. Here, m < n, but the value of m may depend upon n,
so the alphabet size is not bounded above by a constant value.

Let Fs = {/i,..., /„} represent a conformation of S, where f e Q3 is the position of the amino
acid s¡ in L. A conformation Fs is an embedding of 5 in L where every f is at a vertex of L and
between the vertices f and fi+\ there exists an edge in L. Furthermore, an embedding is not a valid
conformation if it contains two edges that cross. Suppose that f = (x¡, y¡,z¡). Then dx(f¡, f) = \x¡ —x¡\,
dyif, fj) = \y¡

—

yj\, and dz(f¡, f) = \z¡
—

Zj\. The energy formula for this model is

n i-\

E E CSi,Sjg(dx(fi, fj), dyif, fj), dzif, fj)),
i=2 j=\
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where C is an m by m matrix and and g : Q3 -> R-° is a symmetric function.2 Both C and g are

energy parameters that depend upon the particular instance of this model that is being considered. The
function g provides a simple form of a free energy function that is appropriate to the lattice approximation.
Furthermore, the form of this energy formula is similar to empirically derived force fields (Unger and Moult,
1993).

To analyze the computational complexity of this problem, we cast it into a decision problem, L-PF:

Instance: A sequence S = (sx,   

 

,s„),s¡ e {1,..., m] such that m < n; a symmetric nonnegative
function g : Q3 —> R-° with finite representation; a matrix C e zmxm; B e Z.

Question: Is there a conformation Fs embedded in L such that

n i-\

EECsi.sjgidÁfi, fj),dy(fi, fj), dz(fi, fj)) < B1

Note that this problem is lattice-specific, so we have defined a class of decision problems.

4.2. Results and discussion

Theorem 1 shows that L-PF is NP-complete for any finitely representable lattice L. This model is a slight
variant of the model proposed by Unger and Moult (1993). Specifically, we have restricted our analysis
to energy formulas for which the function g is symmetric. We believe that this restriction makes our
hardness argument more physical. Because g is a symmetric function, it captures some of the translational
invariance that is true of natural potential energy functions. Since instances of our model form a subset
of the instances of Unger and Moult's model, this hardness result implies that their model for PFSP is
NP-hard for any lattice.

Theorem 1. Let L be a finitely representable lattice. Then L-PF is NP-complete.

This hardness result provides the first evidence that the difficulty of protein folding is not simply an

artifact of the particular discretization used to formulate the PFSP problem. Such discretizations are a

natural step to enable the application of the tools of computational complexity to this problem. This result
suggests that arguments that use computational complexity to show that PFSP is difficult may be robust
to changes in the lattice formulation that they use.

Furthermore, this result temper's criticism of NP-hardness results for lattice models because they're not
continuous (Ngo et al, 1994). Because this result applies for every lattice, the precision required by the
user can be supplied through an arbitrarily refined lattice. Since all practical protein-folding algorithms
must work to a given precision, these lattice formulations reflect the type of algorithmic implementations
that would be applied by a practical algorithm.

4.3. Technical results

When a unit graph is translated in each dimension, each vertex v in the unit graph has corresponding
vertices in each of the translated copies of the unit graph. We distinguish these vertices by labelling them
with integral coordinates vB(i, j, k), where (i, /, k) denotes the primitive translation of v with respect to
B; we omit the reference to B when it is clear from context. We will also use these coordinates to refer
to the unit graphs themselves.

Before describing the proof of Theorem 1, we describe how a unit graph can be constructed for a lattice
such that the set of interior vertices in the unit cell are located within a cubic volume with integral extent
(i.e., a cube with integer-length edges). Recall that e¡ is the unit vector (0,..., 0, 1,0,..., 0), where the
1 is in the ¿th dimension.

2We say that a function is symmetric if its value does not change when its inputs are reordered (e.g., g(x, y, z) =

g(z,x,y)).
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Lemma 1. If L is a finitely representable lattice generated with a unit graph C and basis B, then
there exists a unit graph C that can generate L using the basis B = {Ke\, Ke2, Ke^\, K e Z+, such that
(a) the interior vertices of C lie strictly within a cubic volume with extent K in each dimension and (b)
the exterior vertices of C lie strictly outside this cubic volume.

Proof. Let B = {b\,b2, ¿3} be the basis used to define L. Let the unit graph for L be C = (G, n), G
—(V U V, E U E'), and let p = r>(u(0,0,0)) for some veV.

We begin by demonstrating that the standard Cartesian basis {e\, e2,ej,} can always be used to define
the primitive translations of points on the lattice. To do this, we show that there exists a k\ e Z-° such
that p + K\e\ is a vertex in L. Let p' be this new point. Because p' is generated via translations according
to B, we have

P = P + P\b\ + P2b2 + Pib3 = p + K\e\

If bi = Qh,u bi,2, bi¿), then we can expand this to get

Pl*l,l + P2¿>2,1 + P3¿>3,1
P\b\,2 + Plb2,2 + P3^3,2

_Pl&l,3 + P2¿>2,3 + P3¿>3,3
Consider the last two of these linear equations. There clearly exists a set of values p' = (pj, p2, p'3), p[ e Q,
that satisfies these linear equations such that p' is not the vector of all zeros. Let k' = p\b\, 1 +p'2b2,1 +P3&3,1 •

Note that k' ^ 0, since otherwise the bi would be linearly dependent. In general, k' may be a fractional
value. Suppose that k' = a/ß. Then the vector ißp[, ßp2, ßp'3) satisfies the last two of the linear equations
and K\ = ßp[bii + ßp'2b2,\ + ßp'^b^i is a nonzero integer.

A similar argument shows that there exist integers K2 and K3 that can be used to define primitive transla-
tions along e2 and ej,. These translations can be used to redefine L using the basis B' = {K\ei, ^2, #3^3}
and a unit graph C defined by the convex hull of the eight vertices vB(ic), ic e {0, l}3, where the interior
vertices of C are those contained within this volume as well as those contained on the "bottom," "front"
and "left" faces of the volume and the exterior vertices are all other vertices to which the interior vertices
are connected.

In general, k¡ ^ k¡ for / ^ j, so the volume that contains C is a parallelepiped. Let K = k\K2K3.
Now consider the basis B = {iK/K\)e\, ÍK/Ki)e2, {K/K-^e-f} and the volume defined by the eight vertices
Vgiw), w e {0, l}3. This unit volume is composed of repetitions of volume that contains C such that
C is repeated K/k¡ times along the ith dimension. Because the extent of C along the ¿th dimension is
K¡, the extent of this new volume along the ith dimension is K, which is integral. Now we can translate
this cubic volume along the vector (1,1,..., 1) by an arbitrarily small amount to ensure that there are no

vertices that lie on any of its faces. We use the translated cubic volume to define our final unit graph C".
Vertices within the translated cubic volume are the interior vertices of C and the exterior vertices are all
other vertices to which the interior vertices are connected.  

The following lemma extends Lemma 1 to show that there not only exists a unit graph contained within
a cubic volume with integral extent, but that a unit graph exists for which each unit graph is connected
by an edge to each of its six neighboring unit graphs. This connectivity between neighboring unit graphs
enables us to consider paths through the lattice in a manner analogous to the paths constructed on the 3D
cubic lattice. The following assumption describes the conditions that Lemma 2 guarantees can be satisfied
by a unit graph of L.

Assumption 1. Consider a unit graph for which

1. the interior vertices of the unit graph are strictly within a cubic volume with length K e Z+ in all
dimensions,

2. there exists edges of the unit graph that are connected to each of the six neighboring unit graphs.

Lemma 2. If L is a finitely representable lattice generated with a unit graph C and basis B,
then there exists a unit graph C satisfying Assumption 1 that can generate L using the basis B =

{KeuKe2,Ke3},K eZ+.

0
0
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FIG. 2. Illustration of the edges connecting neighboring unit graphs. The edge Aß is guaranteed to exist because
the extent of the unit graph is scaled with Jy.

Proof. We know from Lemma 1 that the first condition of Assumption 1 can be satisfied. Suppose that
C is a unit graph that satisfies this condition. Consider the edges that connect the (0,0,0)th unit graphs
to other unit graphs. Let Jx be the largest integer (in absolute value) such that the (0,0,0)th unit graph
is connected to the (Jx,a,b)th unit graph (for some integers a and b). From the connectivity property
of lattices we know that there exists such an integer. We similarly define Jy and Jz to be the closest
connections in the y- and z-dimensions. Now consider a unit volume with extent JxJyJzK whose coiners
are the cubic volumes of the eight unit graphs with indeces in {0, JxJyJzK}3. This cubic volume can be
used to define a unit graph C that satisfies both conditions of Assumption 1. Because the unit graph has
been expanded by a factor that is at least as great as the length of any edge along each dimension, there
always exists an instance of C on the face of C that is connected to an instance of the neighbor of C.
Figure 2 illustrates this in two-dimensions.  

The following corollary simply notes that the unit graph that satisfies Assumption 1 can be quickly
constructed from a unit graph and a basis.

Corollary 1. Given a unit graph C and a basis B, a unit graph satisfying Assumption 1 can be
constructed in a number of steps that is polynomial in the size of C.

The proof of Theorem 1 uses a reduction from the Optimal Linear Arrangement problem (OLA) (Garey
and Johnson, 1979):

Instance: A graph G = (V, E); a positive integer B.

Question: Is there a one-to-one function f :V -* {1,2, ...,|V|} such that

E \f(u)-f(v)\<Bl
{u,v)eE

Proof of Theorem 1. From Corollary 1 we know that a unit cell for L that satisfies Assumption 1 can
be constructed in polynomial time. In the remainder of the proof we assume that such a unit cell has been
constructed.

Let v be a vertex within the unit cell. Let p'y be the shortest path from v(i, j, k) to v(i, j +1, k) in which
all vertices are either in the (/, /, k)th or (i, j + 1, k)th unit cell. We know from Assumption 1 that such a

path always exists. Now py and py+ may not be vertex disjoint, so we need to identify vertices between
which the shortest paths are vertex disjoint. Let the symmetric difference of py and py+l be defined by
the path whose edges are the symmetric difference of the edges in py and the edges in py+l. Consider
the intersection of py and py . This path intersects the symmetric difference of py and py+ at a single
vertex, vy (see Fig. 3). Let py be the shortest path between vy(i, j, k) and vy(i, j + 1, k). Now py and
py are vertex disjoint, so we can construct a path along the y dimension using the vy vertices. Let Dy
be the length of p'y. We define v{, v{, Dx and Dz similarly. Let D = DxDyDz.
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^ v(i,j+2,k)

v(i,j+l,k)

v(i,j,k)

FIG. 3. Illustration of the identification of the vertices v

Let a y+x~ turn be the symmetric difference of the shortest path from vyii, j, k) to v(i, j + 1, k) and
the shortest path from v(i, j + l,k) to vxii — 1, j + l,k). The y+x~ turn is a turn that goes through a unit
cell, entering from a path connected to a vertex vy along the y-axis and exiting along a path connected to
a vertex vx along the x-axis (see Fig. 4). In this fashion, we define the following types of turns: (1) y+x~,
(2) x~z~, (3) z~x+, (4) x+y~, (5) y~x+, (6) x+z~, (7) z~x~, and (8) x_y+. We will use these numbers
to refer to these turns.

Now consider a y+x~ turn from vyii, j, k) to vx(i — 1, / + 1, &)• The length of a y+x~ turn is approx-
imately equal to Dy + Dx. We define T\ such that the length of a y+jc" turn is Dy + Dx + T\ (T\ can be
either negative or positive). Here, the "1" refers to the index of the turn in the list above. The values T¡
are similarly defined for the other turns, i = 2,..., 8.

We are now prepared to describe how an instance of OLA can be transformed to L-PF. Let m
—

\ V \ + 1
and let a,; = í, i = 1,..., m

—

1, be the amino acids that correspond to the vertices in V. Let x = m be
the label for the remaining amino acid type. Consider

S = a\ xxx .. .xxa2xxx ...xx a-j xxx ...xx a\
..

-a„,

where k0 = D<%m)
-

(Ti + T2 + T3 + T4) and Ke = D(8m)
-

(7s + T6 + T7 + T8). The costs are

[\f(Si)-f(Sj)\ if si, Sj e{au...,am-i}
s"s' 1 0 otherwise

v(i-2,j+l,k) v(i-lj+l,k)

v(i,j+l,k)

v(ij,k)

FIG. 4. Illustration of a y+x turn.
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We use the same parameter B to bound the energy as in the OLA instance. Let £ = dx[v(i, j, k), v(i +
1, j, k)]. For any pair of vertices vi and v2, if there is a value v such that the distance between vx and v2
is 2£v along the x, y and z dimensions, then the function g is v. Otherwise, g takes a very large value.
This penalizes interactions between vertices that are not along a line parallel to the vector (1,1, 1) and
which are not spaced evenly apart along this line. Formally, if 3v such that

dx(vx, v2) = dy(vx, v2) = dz(vx, v2) =2Èv

then
g(dx(vx, v2),dy(vx, v2),dz(v\, v2))

-

v.

Otherwise,
g(dx(vx, v2), dy(vx, v2), dz(vx, v2)) = (B + V/C^,

where Cmu, is the smallest nonzero cost in C.
Small energies are only possible if the a, lie along a line in the three-dimensional lattice that is parallel

to the vector (1,1, 1). Furthermore, in the optimal conformation, the a, must be separated by an odd
number of unit cells along this line. If a conformation violates these constraints, its energy will be at least
B + \ and the solution will be rejected.

To show that the answer to L-PF is yes exactly when the answer to OLA is yes, we show that (1)
every possible conformation for the original OLA problem has a corresponding conformation in the L-PF
problem, and (2) the accepted solution to L-PF corresponds to an accepted solution to OLA. Figure 5
illustrates the type of conformations used to generate any ordering of a¡ via vertex disjoint paths. This
figure does not show the precise path taken on the lattice, but instead describes the unit cells within which
the path lies.

Since D is a multiple of Dx, Dy and Dz, a path can always be constructed that passes through vertices
vx, vy and vz. We use this observation as follows. Starting at a vertex vy, the a¡ are connected using paths
on different planes of unit cells. Residues a¡ and a¡+x are connected on plane (2m

—

3 + i)D for odd i
or plane

—

i D for even i. The chain alternately moves vertically up and down through the column of unit
cells containing the a¡, using the paths on the different planes to form loops between the a¡. These paths
are vertex disjoint because all vertical paths lie within different columns of unit cells, and the horizontal
paths forming the loops lie on different planes of unit cells.

FIG. 5. Illustration of the conformational invariant needed to transform OLA to L-PF. Gray cubes are unit cells that
contain only x amino acids and black cubes are unit cells that contain an a¡ amino acid. White cubes are used to
illustrate the diagonal line on which the black cubes are located. This conformation is an example of a transformation
used when D = \.
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The lengths of the sequences of xs are sufficient to allow any pair of a, to be connected in the optimal
conformation. In the worst case this conformation needs to connect vertices vy'i, j, k) and vy'i + 2(m

—2), j + 2<m -2),k + 2(m
-

2)) via a path on plane -(w
-

2)D or (im
-

5)D. If the path is via
the plane (3m

-

5)D, then its length is D(8m)
-

(7\ + T2 + T3 + T4). Otherwise, the path's length is
D(8m)

—

(7"5 + T6 + Tt + 7g). The differences between these lengths accounts for the different turns used
between pairs of a¡ when i is odd and when i is even.

For the sequence generated by the reduction, only the interactions between the a, contribute to the
conformational energy, which is the same as in the OLA problem. To see that any accepted solution for
L-PF corresponds to an accepting solution in OLA, simply observe that any L-PF solution that does
not have the a¡ lie along a line parallel to (1, 1,1) at even multiples has an energy of at least B + 1.
Consequently, such solutions are not accepted. Any other accepted solution must have the elements along
the line with an energy below B + 1, so it is an accepted solution of OLA.

Since the expansion of the original OLA problem is polynomial, it follows that L-PF is NP-hard.
Checking the energy of a conformation to verify that it is below B + 1 is polynomial, so L-PF is NP-
complete.  

5. A HARDNESS RESULT FOR GENERAL ENERGY FORMULAS

In this section, we examine the complexity of protein folding for a class of protein-folding models that
encompasses a broad range of energy formulas. The following assumption defines conditions on a function
that restrict it to be monotonically increasing towards zero. This class of functions represents the pairwise
potentials of mean force that we consider, where the domain of the function is the distance between two
amino acids. These functions do not include the repulsive component of the commonly used pair potentials.
However, the lattice implicitly enforces an excluded volume constraint that accounts for certain types of
repulsive forces.

Assumption 2. Consider a function g : Q -> R such that

1. Wx eQ,x > l,gix) <0
2. Vx, y € Q, if x > y then either gix) > giy) or gix) = giy) = 0.
3. 3Ci e Q+, 3C2 e Q-° and 3pu p2 e Q+,pi > l,p2 > L such that Vx e Q+,x > 1, -Cx/x^ <

g(x) < -C2/xK.

One of the most studied pairwise potential functions is the Lennard-Jones potential (Allen and Tildesley,
1987). This is a simple idealized pairwise potential commonly used in computer simulations. It reflects
the salient features of atomic interactions in a general, often empirical way. The so called Lennard-Jones
12-6 potential is:

It is easy to see that X(i„ belongs to our class of functions.

5.1. Model formulation
Consider the following lattice protein-folding model. The physical model specifies that the protein

sequence S = s\, ...,sn is treated as an n-vertex node-labeled path, where node i is labeled with s¡, i =

1,..., n. Each node on the path represents a single amino acid in the protein. The alphabet of amino-acid
types are represented by integers, si = {1,..., m}. Here, m <n, but it may depend upon n, so the alphabet
size is not bounded by a constant value.

Let Fs = {fi,..., fn] represent a conformation of S, where f e Q3. A conformation Fs is an embedding
of S in the cubic lattice if every f is in Z3 and for all i there exists an edge between the vertices f and
fi+i (i.e., they are neighbors on the lattice). The energy formula for this model is

n i-1

EE^SWm fi)),
¡=2 j=\

R is a function that satisfies Assumption 2, and d : Q3 x Q3 -* Rwhere C is an m by m matrix, g : Q
is a distance measure.
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This model can be viewed as a special case of the model examined by Unger and Moult (1993).
The restrictions that we place on the energy formula preclude criticisms of their work (Ngo et al, 1994)
concerning the lack of translational invariance that can occur in specific instances of their objective function.
An energy formula is translationally invariant if the energy of a protein is independent of its location and
orientation in space. The model we propose is translationally invariant because g uses only the value
returned by d, so the energy of a protein conformation remains the same in any orientation.

To analyze the computational complexity of this problem, we cast it into a decision problem, (g, d)-PE:

Instance: A sequence S = (sx,..., sn), s¡ e {1,..., m] such that m < n; a matrix C e Zmxm; B e Q.

Question: Is there a conformation Fs embedded in the cubic lattice such that
n (-1

J2J2C^jS(d(fi,fj))<B1
;=2 ;=i

Note that this problem depends upon the definitions of g and d, so we have defined a class of decision
problems; members of this class of problems correspond to particular choices of g and d.

5.2. Results and discussion
Theorem 2 shows that (g, d)-PF is NP-complete for any function g that satisfies Assumption 2 and for

d functions that are discretized versions of the p-norm. Recall that the Lx norm measures the length of a
vector v = (vi,..., v„) and |u|i = Yl!=x \v>\- Similarly, the L2 norm measures the length of a vector t; as

M2 = V £-<í=i *%' ^e define a ^2 norm to be the value of the L2 norm with i decimal values of precision:
L|w|2 * ltfj/io*.

Theorem 2. Let g be a function that satisfies Assumption 2 and let d be either the Lx norm or the L'2
norm, i > 1. Then (g, d)-PF is NP-complete.

This result can be generalized to a broader range of problems in two ways. First, Assumption 2 can be
weakened to include functions that are bounded by a function of the form —C/h(x)p, where h(x) > 0 for
all x e Q+, x > 1 and h is efficiently invertible. For example, Assumption 2 can be weakened to include
functions of the form -C/(log(x + l))p because logarithms are easily inverted.

Second, this result can be generalized to include a broader range of distance metrics. The Lx norm
and the L'2 norm (i > 1) both have the property that the distance from a point on the cubic lattice to
one of its six nearest neighbors is one, while the distances to all other points on the lattice is greater
than one. This property is used in our analysis to enforce the construction of particular conformational
structures. This property can also be true for LJP norms, which compute the Lp norm to j decimal values of
precision:

i/p
I * W£ /lev.

As p increases, the value of j needed to insure the property described above increases. However, for any
finite value of p, the requisite value of j value is finite and so there is a class of (g, d)-PF problems
defined by these Lp norms d that are NP-complete.
5.3. Technical details

We prove Theorem 2 using a reduction from HAMILTONIAN PATH (Garey and Johnson, 1979):

Instance: A graph G = (V, E).

Question: Does there exist a Hamiltonian path in G?

A Hamiltonian path is a path that passes through every vertex in the graph such that each vertex is traversed
exactly once.

We prove Theorem 2 by showing that HAMILTONIAN PATH reduces to (g, d)-PF. In our reduction, it
is relatively easy to demonstrate that if there exists a Hamiltonian path then the protein sequence generated
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in our reduction can be configured into a low-energy state. To prove the converse we need to show that
lowest energy conformation of the protein sequence is a unique structure that can be interpreted to represent
a Hamiltonian path if one exists.

The following lemmas illustrate how subsequences of the protein generated in our reduction form lowest
energy structures. Lemma 3 shows how a parallelepiped structure can be constructed. Subsequent lemmas
show how the protein sequence used in Lemma 3 can be extended to form conformational structures that
build upon the parallelepiped.

Lemma 3. Let N e Z+, N > 3. Consider the sequence

P = rx...r^Stf ...Sxtx...ínTn ... TxSx... SnRn    Ri,

where the r¡, s¡, t¡, R¡, S¡, and T¡ are 6N distinct amino acid types. Let A < 0, and let the cost matrix C
be defined as follows:

• Crt,Si = A,i = l,...,N-l
• CS¡M = A,i =2,...,N
• Cs,,t, = A,i=2,...,N
• CRhSi = A,i = \,...,N-\
• Cn,Ri =A,i = l,...,N
• Cs,.,s,. =A,i = \,...,N
• C,Ti =A,i = l,...,N-l
• C¡, j = 0 otherwise

Then the unique lowest energy structure for this protein sequence is a 3 x N x 2 parallelepiped (see in
Fig. 6).

Proof. Note that the parallelepiped illustrated in Figure 6 has IN
—

5 contacts. Because each amino
acid has a distinct set of interactions with the other amino acids, this is exactly the maximal number of
contacts with energy A that a conformation of P can make. Except for obvious symmetries, this structure
is unique because of the constraints imposed by the contacts themselves. There is only one configuration
of the contacts between n, r2, Rx, R2, s\, s2, Sx, and 52. Given this, if we inductively consider additional
amino acids in P, there remains a single configuration with lowest energy.  

The following lemma extends the previous result to determine the location of other amino acids on the
surface of the parallelepiped. We assume for the moment that we can ignore the remainder of the protein
sequence that connects these amino acids together as well as the subsequence that connects them to the
parallelepiped. It will be convenient to let s¡ refer to the amino acid S2(¡-l)í+2 for some 8 e Z+.

Lemma 4. Let N
—

2(n
—

1)8 + 3 for some 8 e Z+. Consider the sequence P defined in Lemma 3. Let
a¡,i = \,... ,n, be n distinct amino acids. We extend the cost matrix C by adding interactions CajiSi = 1,
for i = 2,28 + 2,..., 2(n

—

1)8 + 2 and j = I,... ,n. If A is sufficiently negative and 8 is sufficiently
large, then the unique lowest energy structure for this protein sequence places the a¡ along the face of the
parallelepiped (see Fig. 7).

Proof. Since our main interest is in the configuration of the a, on the parallelepiped, we simply assume

that A is sufficiently negative that the energy for a single contact in the parallelepiped is more negative
than the total energy of the interactions between the s¡ and aj, regardless how the a¡ and s¡ are configured.
This ensures that the parallelepiped exists in the lowest energy configuration.

We will show that when a sufficiently large value of 8 is selected, the lowest energy configuration
contains n contacts between the aj and the s¡. We begin by showing that the contact energy between
amino acid a¡ and s¡ is more negative than the total sum of all of the interactions between a; and the other
sk, k ^ i, if aj and s¡ do not form a contact.

To force a contact between aj and s¡, we need to have

n

g(l)<min£g(d(/,/Jt)),
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N R,

i i

lili
! t„ ! ' T„ !

(a)

FIG. 6. I lustration of the lowest energy conformation^ configuration assumed by the protein sequence defined in
Lemma 3: (a) the two halves of the parallelepiped (dashed lines represent contacts, which have energy A) and (b) the
three-dimensional structure. Dark edges represent the conformation of the protein instance. Gray and dashed edges
represent contacts between the amino acids.

where H is the set of possible locations where a, could be placed that do not form a contact with a sk
and f¡k is the location of sk. Now suppose that there exists / e H such that

n

g(difaj, fa)) = gil) > £*(</(/, 4».
*=1

Let du.,. ,4, be the distances d(f, fh) sorted into ascending order. Clearly, dx > 2 since fa cannot
represent a contact with a sk. Now both d2 > S and d3 > S since otherwise d, > 5. Similarly, we have
d2k > o'2k - 1) and d2k+i >S(2k-l). Since g is monotonically increasingly, we have

L"/2J

k=\
zJ«(¿(/> 4)) ^ g(V + J2 28(&(2k

-

D)

-2C
á^(2it

-

1)p
L«/2J

> g(2) + J2
k=\

>gi2)-2\n/2\C/op,
since gix) > -C/xp.
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FIG. 7. Illustration of the lowest energy conformational configuration assumed by the protein sequence defined in
Lemma 3 along with the n amino acids a¡(S = 1). Dark edges represent the conformation of the protein instance.
Gray edges represent contacts between the amino acids.

To form a contradiction, it suffices to show that

gi\)<gi2)-2\_n/2\C/op.
This can be achieved by choosing 8 such that

8 > ( nC Y\g(2)-gH)J + 1.

Because we have forced a contradiction, we know that aj is forced to form a contact with s¡ for sufficiently
large 8, since violating this contact increases the energy more than the sum of the interactions of a¡ with
all of the sk. This argument applies to each of the a¡ independently. Consequently each of the a¡ must
form a contact with one of the sk.  

In the final lemma, we describe a protein sequence that has enough flexibility to form any permutation
of contacts of the a¡ amino acids with the sk.

Lemma 5. Let N = 2(n
—

1)5 + 3 for some 8 e Z+ and let ñ = 2(n + N) + l. Consider the sequence

S = r\... rNSN    siii • • • ínTn ...TiSi... SnRn    

Ri xxx ...xxa\ xxx ... xx ü2 xxx ... xx ... xxx ...xxan,

where x is an amino acid type that has zero for its contact interaction with all amino acids. If A is
sufficiently negative and 8 is a sufficiently large number, then the unique lowest energy structure for this
protein sequence forms some permutation of contacts between the a¡ and the sk along the face of the
parallelepiped (see Fig. 8).

Proof. Suppose that A and 8 are given as described by the proof of Lemma 4. The a¡ are connected
using paths on different planes. Residues a, and a¡+\ are connected on plane —i

—

2 for odd i or plane
j + 2 for even i. The chain alternately moves vertically up and down through the column containing the
a¡, using the paths on the different planes to form loops between the a¡. The lengths of the sequences of
xs are more than sufficient to allow any pair of a, to be connected. R\ and a\ are connected using plane 2.
Further, the number of xs between a¡ and a,+i is odd, which permits these two amino acids to be placed
at an even distance apart.  
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FIG. 8. Illustration of the lowest energy conformational configuration assumed by the protein sequence defined in
Lemma 5.

We now present the proof of Theorem 2.

Proof. Let Ci e Q+, C2 e Q-° and pu p2 e Q+,px > I, p2 > 1, such that V* e Q+,jc >

1, -Cx/xPi < g(x) < -C2/xK. Let

„2 \ '/(P1-P2)"
8 = max \ ( nC y ( Cxn2 \

\g(2)-g(l)J ' \C2w) + 1,

W = g(l), ¡mdN = (2n
-

1)8 + 3.
To transform an instance of HAMILTONIAN PATH to (g, d)-PF, we construct a protein instance as

follows. Let A be a set of amino acid types that includes

• a, that correspond to the vertices in V
• y¡ that are related to the vertices in V
• a "dummy" amino acid x

• 6A/ other amino acid types:

r\ ) • • •, i"n> S\ > • • • > sjVi *i>..., ín, Ri,..., Rn , Sx, ..., Sn,Tx, ... ,Tn-
Let ñ = 2(n + N) + 1. We construct a sequence

S = T\... rp/SN ... sxtx... ínTn ...T\S]...SnRn...
Rx xxx ... xx ax xxx ... xx a2 xxx ... xx ... xxx ... xx a„xx

h~ ñ ñ~ ñ

y„ xxx .. .xx y„-x xxx .. .xx ...xxx .. .xx yx.

Let

Q
' -n2W
g(2)-g(D

+ 1
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and
" -3n2i2W 1

A =
-

+1.g(2) -gil)
The cost matrix C is defined as follows:

• Cn,s¡ =A,i = l,...,N-l
• CShH =A,i=2,...,N
• CSi,Ti = A,i=2,...,N
• CRhSi = A,i = l.JV-1
• Cr¡,R¡ = A,i = l,...,'N
• Cíi,s<=A,¿ = l,...,.1V
• CthT¡ =A,i = l,...,Ar-l
• CSj,a¡ =Q,i = l,...,n;j = 2,2S + 2,...,2(n-l)S + 2
• CSj,yi = £2, i = 1.n; j = S + 2,3Ä + 2,..., (2* - 1)¿ -f- 2
• Cfl^yj =1,J = 1,...,B
• C„,,w =l,{/,i}€£
• C,,y = 0, otherwise

Let y = (7W-5)g(l) and let

// = £ £>(rf({2(<
-

1)5 + 2, 1,0}, {2(7
-

1)5 + 2,0,0})).
¿=l y=i

H represents the total interaction between the a¡ and sj when the a¡ form contacts at sj, j = 2,28 +
2,..., 2(n - 1)5 + 2. We define the threshold B = J A + 2HQ + '2n

-

l)gi8).
Given an instance of HAMILTONIAN PATH, the configuration shown in Figure 9 provides very low

energy for the first part of the protein sequence (up until the first jc). These contacts have a total energy
of JA. Furthermore, Figure 9 shows the locations where the a and y amino acids make contacts with this
configuration. If u,, i>,2... v,„ is the Hamiltonian path in the graph, then we can construct a conformation that
lays the a and y amino acids at these contact points in the order a^y^a^y^ .. .aíny¡n. This conformation
lays the xs in alternating planes as shown in Figure 10. This is similar to the conformation described by
Lemma 5. The basic idea is to fold the sequence up until a„ as is illustrated in Figure 8, and then thread the
remaining sequence in the reverse order, shifted along the parallelepiped and using unique planes to loop
the jcs. Each of the a¡ interact with each of the Sj,j = 2,28 + 2,..., 2(n

—

1)5 + 2. The energy of these

FIG. 9. Illustration of the conformational configuration assumed by the dominant energetic interactions in the trans-
formed protein instance. Dark edges represent the conformation of the first part of the protein instance. Gray edges
represent contacts between the amino acids in this configuration.
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FIG. 10. Illustration of a native conformation in the transformed protein instance. Gray planes highlight the different
planes on which the xs are looped. To clarify the total structure of the conformation, the conformation assumed by
the first part of the protein sequence (up until the first x) is placed in a light gray box.

interactions is HQ. Similarly, the interactions between y¡ and Sj is HÇI. Finally, each a¡ interacts with the
neighboring y¡ and each y, interacts with its neighboring aj. Thus the interactions between the y¡ and a;
have an energy less than (2n

—

l)g(8). Thus the total energy is less than J A + 2//Í2 + (2n
—

l)g(8) = B,
as desired.

Now suppose the protein sequence is in a conformation with energy less than or equal to B. We show
that the unique lowest energy conformation of the protein sequence is the structure shown in Figure 10
in three steps. First, we show that the r, s, t, R, S, and T amino acids must form the contacts shown in
Figure 9. There are n2 interactions between the a¡ and s¡, which have a total energy that is no smaller than
n2QW. Similarly, the interactions between the y, and s, have a total energy that is no smaller than n2QW.
There are at most n2 interactions between the a, and y¡, which have a total energy of n2W or more. Thus
the total energy of the interactions that are not interactions between the r, s, t, R, S, and T amino acids
is greater than or equal to

2n2S2W + n2W > 3n2SlW.
If a single contact amongst the r, s, t, R, S, and T amino acids is not made, then the total energy of the
protein's conformation is greater than

(IN
-

4)AW + Ag(2) + 3n2SlW.

Now
"

-3n2ÇlW H
A =

-

+ 1,g(2)-g(D
from which it follows that Ag(2) + 3n2£lW > Ag(l). Consequently, if a single contact amongst the r, s,
t, R, S, and T amino acids is not made, then the total energy is greater than B, which is a contraction.
Lemma 3 shows that if all of the contacts amongst the r, s, t, R, S, and T amino acids are made, then
the lowest energy conformation of this section of the protein sequence is the parallelepiped shown in
Figure 9.



ROBUST PROOFS OF NP-HARDNESS 19

Next, we demonstrate that the a, and yj form contacts with the sk, as shown in Figure 9. There are

two independent reasons why these contacts might not be formed: (1) violating a contact might lead to a

conformation with lower total energy between the a¡ or y, and sk, and (2) violating one or more contacts

might lead to a conformation with lower energy between the a, and y7. From Lemma 4 we know that
V/ r \Up~\because 5 > ( (2)"_ (1) 1 + 1 that the first case is not true. If a single contact between the a¡ or yj

and sk is violated, then the conformational energy is no less than

A J + 2HQ
-

Qgil) + Í2g(2) + n2W.

Since
-n2W

+ 1,ß =

g(2)-gH)
we know that —Qgil) + Qg(2) + n2W > 0. This implies that the conformational energy is greater than
B, which is a contradiction.

Finally, we need to show that the a, and yj form a sequence along the parallelepiped such that neighboring
a¡ and yy- add g(5) to the total energy. Suppose that there exists neighbors a¡ and y¡ such that Cahyj = 0.
Then the total energy of the interactions between the a, and y7 is greater than or equal to (2n

—

2)g(5) +

\C2ï»l)E"=2 E):! g((2(i
-

j) + 1)5). We have 5 + 1, from which we have

g(5) < g(35)n2 < £J>((2(¡
-

j) + 1)5).
;=2 j=\

This implies that the total energy of the interactions is greater than (2n
-

l)g(5), which contradicts the

assumption that the total energy of the protein's conformation is greater than B. Because the y, bridge
the gaps between subsequent a¡ only when the a¡ have an edge between them in G, the sequence of a¡
represents a Hamiltonian path in G.  

6. GENERALIZATIONS

In this section we describe how the intractability analysis in the previous section can be extended to

apply to a protein-folding model that explicitly represents side chains. It is possible that our intractability
results depend upon the fact that the protein is represented as a linear chain. Our intractability analysis for
the side-chain model demonstrates that the robustness argument for generalized energy potentials is not

limited by this simplification.
The side-chain model that we consider was proposed by Bromberg and Dill (1994). In this model, the

backbone is represented by a linear chain and the side chains are represented by vertices that are connected
to each of the backbone vertices. We assume that the only energetic interactions are between the side-chain
vertices. The formal description of this model is analogous to the description of (g, if)-PF, and we call this

problem ig, ¿0-SCPF. Let

S = r\U\T2U2   .tnUnXXxRnSn ... RiSiXxxt\S\.. .¡nSnXxxTnu,, ... T\U\
xxx ...xxa\ xxx ...xxü2 xxx ... xx ... xxx ...xx a„xx
1-v-' '-,-' *-v-' '-v-'

ñ ñ ñ ñ

ynxxx .. .xx y„_i xxx .. .xx .. .xxx .. ,xxy\,
ñ ñ ñ

where N = n8 + I and ñ is much larger than N and n. Contact energies can be defined between r

and R,s and 5, t and T and u and Í7 such that first part of 5 forms a parallelepiped as shown in

Figure 11. The remainder of the sequence can permute the y, and a¡ just like the linear chain, to form a

sequence along the face of the parallelepiped that represents a hamiltonean path in the graph is one exists.

Consequently, the proof of NP-completeness for (g, d)-SCPF is analogous to the proof of NP-completeness
for ig, rf)-PF.
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FIG. 11. Illustration of the parallelepiped constructed for the reduction to (g, d)-SCPF.

7. CONCLUSIONS

Several authors have provided detailed discussions of the relevance of intractability arguments to pro-
tein folding in natural systems (Fraenkel, 1993; Ngo and Marks, 1992; Ngo et al, 1994; Unger and
Moult, 1993). We review the major points raised by these authors and discuss the contribution of robust
computational complexity arguments to our understanding of the biological protein-folding process.

A major factor that affects the interpretation of NP-hardness results is the extent to which the protein-
folding model captures features of the protein-folding process that are fundamentally related to the time
needed to perform protein folding. If the protein-folding models that have been analyzed do capture these
features, then their associated NP-hardness results rule out the possibility that every amino acid sequence
can be quickly folded to its native conformation (unless all NP-complete problems can be solved in
polynomial time, which is highly unlikely). There are several interpretations that could reconcile this result
with the fact that proteins reliably fold to their native state very quickly:

• Nature has selected only proteins for which the native conformation is attainable in polynomial time.
Because NP-hardness is a worst-case concept, there may be a subset of amino acid sequences that can

be folded in polynomial time by an algorithm. The NP-hardness simply rules out the possibility of this
algorithm folding all proteins.

• The native conformation is not necessarily at a global minimum (Unger and Moult, 1993). This implies
that the problem formulation does not accurately reflect the dynamics of protein folding, so there may be
proteins that can only be quickly folded to native, low energy states that are not at the global minimum
of the free energy formula.

• Nature can solve NP-hard problems in polynomial time. Fraenkel (1993) raises this possibility, though
he does not propose an interpretation of the physical process that would indicate how this could be
done for protein folding. One interpretation of this would be that the massive parallelism inherent in
the relatively independent folding of solutions of proteins amounts to a brute force method of solving
otherwise intractable problems. While this may be possible, it is unclear whether the length of proteins
is within the range at which such a brute force folding to native states is possible.

These issues raise important questions about the nature of protein folding that need to be addressed,
since they fundamentally relate to the nature of the process that we wish to analyze with the tools of
computational complexity. Even if an NP-hardness result is constructed for a model that truly captures the
difficulty of protein folding, we still need to determine whether our assumptions about the protein-folding
process are well-modeled as a global energy minimization of all amino acid sequences.

If our models do not capture features of the protein-folding process that are fundamentally related
to the time needed to perform protein folding, then NP-hardness results may simply reflect this fact.
If the protein-folding model is too general, then the PFSP problem may be NP-hard simply because it
contains instances that are not biologically plausible. An instance of the computational formulation of
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the problem may contain parameters that vary both the protein sequence and energy formula. So for
example, the model may contain instances where the free energy formula is not reasonable.

Because good models of protein folding have been difficult to construct (i.e., models whose free energy
formula can accurately predict the structure of biologically relevant native conformations), this is an

important consideration when evaluating complexity arguments. In fact, we argue that all protein-folding
models for which PFSP has been proven NP-hard are too general in both of the ways that we have just
described:

• Fraenkel's model (Fraenkel, 1993) permits constraint graphs that may not force subsequent amino acids
to lie in close proximity on the lattice, thereby leading to biologically implausible native states for
certain amino-acid sequences.

• Ngo and Marks' model (Ngo and Marks, 1992) is the most specific model that has been considered, since
it contains the energy formulas commonly used to determine the shape of organic molecules. However,
this formulation has a large number of parameters that are not constrained to lie within biologically
plausible ranges. Furthermore, this energy formula does not incorporate compactness requirements that
account for the effects of attractive Van der Waals forces and hydrophobicity (solvent entropy) (Ngo
and Marks, 1992).

• Patterson and Przytycka's model (Patterson and Przytycka, 1995), while similar to other lattice protein-
folding models (e.g., see Dill et al, (1995)), does not restrict the number of different types of amino
acids, thereby permitting an unbounded number of amino-acid types.

• The model examined by Unger and Moult (1993) and Hart and Istrail (1996) contains a very general
energy formula. While the form of this free energy function is similar to that used for empirically derived
mean force functions, its lack of specificity and potential for artificial energy instances is certainly a
factor that makes PFSP difficult.3

This survey clearly shows that complexity arguments need to be developed for more specific models that
are of particular interest. The robust intractability arguments that we have described represent an important
step towards understanding the complexity of more interesting models. We have examined generalizations
of models that include both general lattice formulations as well as general energy functions. The later
analysis includes a class of energy formula that are commonly used to represent energy potentials, so this
result shows that the computational complexity is not limited to specific energy formulations.

Because we have focused on a class of protein-folding problems instead of a specific problem, our

results provide stronger evidence for the intractability of protein folding. However, our results do suffer
from a weakness common to most of the protein-folding models discussed above. Specifically, the set of
amino-acid types used to construct protein sequences is not bounded in size; there exist problem instances
in the problems that we have analyzed for which no two amino acids can be categorized in the same class
based upon their interactions with all of the other amino acids.

The consequence of this feature of our models is that the protein sequences do not have the property
of correlation between amino acids (Chan and Dill, 1996). Chan and Dill (1996) argue that correlation
is an important property of accurate physical models. At present, the model analyzed by Fraenkel (1993)
is the only model with a finite number of amino-acid types whose complexity has been analyzed. This
model is unsatisfactory, however, because it allows amino acids that are adjacent along the chain to
lie arbitrarily far away on the lattice. An open problem raised by this work is whether PFSP is NP-
hard for any model with a finite number of amino-acid types that embeds chains in a lattice in the
manner that we have defined. For example, does there exist a lattice model using contact energies and
a finite number of amino acids whose complexity is NP-hard? Since this type of model has been well
studied (Dill et al, 1995), this type of result could provide valuable insight into the computational aspects
of PFSP.

3Unger and Moult (1993) argue that because their simple model is hard, solving more realistic models is even

harder. However, this argument fails to recognize that more realistic models undoubtably contain constraints that could
in principle make them easier to solve. In general, subclasses of NP-hard problems are not necessarily NP-hard.
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