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Abstract. Single nucleotide polymorphisms (SNPs) are the most fre-
quent form of human genetic variation. They are of fundamental impor-
tance for a variety of applications including medical diagnostic and drug
design. They also provide the highest–resolution genomic fingerprint for
tracking disease genes. This paper is devoted to algorithmic problems
related to computational SNPs validation based on genome assembly of
diploid organisms. In diploid genomes, there are two copies of each chro-
mosome. A description of the SNPs sequence information from one of the
two chromosomes is called SNPs haplotype. The basic problem addressed
here is the Haplotyping, i.e., given a set of SNPs prospects inferred from
the assembly alignment of a genomic region of a chromosome, find the
maximally consistent pair of SNPs haplotypes by removing data “errors”
related to DNA sequencing errors, repeats, and paralogous recruitment.
In this paper, we introduce several versions of the problem from a com-
putational point of view. We show that the general SNPs Haplotyping
Problem is NP–hard for mate–pairs assembly data, and design polyno-
mial time algorithms for fragment assembly data. We give a network–flow
based polynomial algorithm for the Minimum Fragment Removal Prob-
lem, and we show that the Minimum SNPs Removal problem amounts
to finding the largest independent set in a weakly triangulated graph.

1 Introduction

1.1 Motivation

The large–scale laboratory discovery and typing of genomic sequence variation
presents considerable challenges and it is not certain that the present technolo-
gies are sufficiently sensitive and scalable for the task. Computational methods
that are intertwined with the experimental technologies are emerging, leading
the way for this discovery process.

Single nucleotide polymorphisms (SNPs) are the most frequent form of hu-
man genetic variation and provide the highest–resolution genomic fingerprint for
tracking disease genes. The SNPs discovery process has several stages: sample
collection, DNA purification, amplification of loci, sequence analysis, and data
management. The “large–scale” dimension of the analysis refers to either the
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large number of loci or of individuals. Effective integration of these stages is
important for the strategies employed in the pipeline. The choice of method, for
any stage, could be influenced by the processes used in other stages.

The SNPs discovery involves the analysis of sequence differences and haplo-
type separation from several samples of a genomic locus from a given population.
The leading two methods are based on Shotgun Genome Assembly (SGA) and on
PCR amplification (PCR). The methods have complementary strengths and rec-
ognized computational bottlenecks associated with them. The SGA, in principle,
generates haploid genotyping, and does not require sequence information for the
loci, however, it needs good library coverage, and is computationally very chal-
lenging to distinguish paralogous repeats from polymorphism. The PCR method
requires the knowledge of the genomic region of the locus, and could be done
very effectively; however, it is expensive for large-scale projects.

There is need for powerful computational approaches that are sensitive
enough and scalable so that they can remove noisy data and provide effective
algorithmic strategies for these technologies. This paper is a first step towards
such “computational SNPology”. It is devoted to algorithmic problems related
to computational SNPs discovery and validation based on genome assembly. The
basic problem is to start from a set of SNPs prospects inferred from the assembly
alignment and to find out the maximal consistent subset of SNPs by removing
”errors” related to sequencing errors, repeats, and paralogous recruitment.

1.2 Preliminaries

Recent whole–genome sequencing efforts have confirmed that the genetical
makeup of humans is remarkably well–conserved, and small regions of differ-
ences are responsible for our diversities. The smallest possible region consists
of a single nucleotide, and is called Single Nucleotide Polymorphism, or SNP
(“snip”). This is a position in our genome at which we can have one of two
possible values (alleles), while in the neighborhood of this position we all have
identical DNA content. Since our DNA is organized in pairs of chromosomes, for
each SNP we can either be homozygous (same allele on both chromosomes) or
heterozygous (different alleles). Independently of what the actual different alleles
at a SNP are, in the sequel we will denote the two values that each SNP can
take by the letters A and B. A chromosome content projected on a set of SNPs
(or haplotype), is then simply a string over the alphabet {A, B}, while a genotype
is a pair of such strings, one for each haplotype.

DNA sequencing techniques are restricted to small, overlapping fragments.
Such fragments can contain errors (e.g., due to low quality reads), and can
come from either one of the two chromosome copies. Further, e.g. in shotgun
sequencing, some pairs of these fragments (mate pairs) are known to come from
the same copy of a chromosome and to have a given distance between them. The
basic problem is then the following: “Given a set of fragments obtained by DNA
sequencing from the two copies of a chromosome, reconstruct the two haplotypes
from the SNPs values observed in the fragments.”
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Fig. 1. (a) M . (b) GF (M). (c) GS(M) (d) An odd cycle of fragments.

Note that it is possible, even in an error–free scenario, that the above problem
cannot be solved because the information is insufficient. For instance, if a set of
fragments does not share any SNPs with any of the remaining fragments, we may
only be able to reconstruct partial haplotypes, but then we wouldn’t know how
to merge them into only two (a problem known as phasing). It is better then to
relax the requirement from “reconstruct the two haplotypes” to “reconstruct two
haplotypes that would be compatible with all the fragments observed”. Stated
in this form, the problem becomes trivial for the error–free case (as we will see in
the sequel, it is simply the problem of determining the two shores of a bipartite
graph). However, experiments in molecular biology are never error–free, and,
under a general parsimony principle, we are led to reformulate the problem as
“Find the smallest number of errors in the data so that there exist two haplotypes
compatible with all the (corrected) fragments observed.”

Depending on the errors considered, we will define several different com-
binatorial problems. “Bad” fragments can be due either to contaminants (i.e.
DNA coming from a different organism than the actual target) or to read er-
rors (i.e. a false A, a false B, or a - inside a fragment, which represents a SNP
whose value was not determined). A dual point of view assigns the errors to the
SNPs, i.e. a “bad” SNP is a SNP for which some fragments contain read errors.
Correspondingly, we may define the following optimization problems: “Find the
minimum number of fragments to ignore”, or “Find the minimum number of
SNPs to ignore”, so that “the (corrected) data is consistent with the existence of
two haplotypes measured by error–free DNA sequencing. Find such haplotypes.”

1.3 Notation

The basic framework for SNPs problems is as follows. There is a set S =
{1, . . . , n} of snips and a set F = {1, . . . , m} of fragments. Each snip is cov-
ered by some of the fragments, and can take the values A or B. Hence, a snip
i is defined by a pair of disjoint subsets of fragments, Ai and Bi. There is a
natural (canonical) ordering of the snips, given by their physical location on the
chromosome, from left to right. Then, the data can also be thought of as an
m×n matrix over the alphabet {A, B,−}, which we call the SNP matrix, defined
in the obvious way.
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The Fragment– and Snip– conflict graphs. We say that two fragments
i and j are in conflict if there exists a snip k such that i ∈ Ak, j ∈ Bk or
i ∈ Bk, j ∈ Ak. Given a SNP matrix M , the fragment conflict graph is the
graph GF (M) = (F , EF ) with an edge for each pair of fragments in conflict.
Note that if M is error–free, GF (M) is a bipartite graph, since each haplotype
defines a shore of GF (M), made of all the fragments coming from that haplotype.
Conversely, if GF (M) is bipartite, with shores H1 and H2, all the fragments in
H1 can be merged into one haplotype and similarly for H2. We call a SNP
matrix M feasible (and infeasible otherwise) if GF (M) is bipartite, and we call
the haplotypes obtained by merging the fragments on each shore derived from
M . For K a set of rows (fragments), we denote by M [K] the submatrix of M
containing only the rows in K. The fundamental underlying problem in SNPs
haplotyping is determining an optimal set of changes to M (e.g., row– and/or
column– deletion) so that M becomes feasible. We remark that GF (M) is the
union of n complete bipartite graphs, one for each column j of M , with shores
Aj and Bj .

We now turn to snip conflicts. We say that two snips i and j are in conflict if
Ai, Bi, Aj , Bj are all nonempty and there exist two fragments u and v such that
the submatrix defined by rows u and v and columns i and j has three symbols
of one type (A or B) and one of the opposite (B or A respectively). Given a SNP
matrix M , the snip conflict graph is the graph GS(M) = (S, ES), with an edge
for each pair of snips in conflict. In section 2.2 we will state the fundamental
theorem relating the two conflict graphs.

In this paper we are going to define the following optimization problems:

– MFR (Minimum Fragment Removal): Given a SNP matrix, remove the min-
imum number of fragments (rows) so that the resulting matrix is feasible.

– MSR (Minimum Snip Removal): Given a SNP matrix, remove the minimum
number of snips (columns) so that the resulting matrix is feasible.

– LHR (Longest Haplotype Reconstruction): Given a SNP matrix, remove a set
of fragments (rows) so that the resulting matrix is feasible, and the sum of
lengths of the derived haplotypes is maximized.

A gapless fragment is one covering a set of consecuitive SNPs. We say that
a fragment has k gaps if it covers k + 1 blocks of consecutive SNPs. Such a
fragment is equivalent to k + 1 gapless fragments with the constraint that they
must all be put in the same haplotype or all discarded. Particularly important is
the case k = 1, which is equivalent to 2 gapless fragments coming from the same
chromosome. This is the case of mate pairs, used for shotgun sequencing [7]. In
the remainder of the paper we show that the above problems are NP–hard in
general. Furthermore, we show that MFR is NP–hard if even a single gap per
fragment is allowed and MSR is NP–hard for fragments with two gaps. On the
positive side, we study the special case of gapless fragments, and show that in this
case the problems can be solved effectively. We provide polynomial algorithms
for MFR, MSR and LHR. Note that the gapless case arises often in practical
applications. For space limitations, some of the proofs are omitted in the sequel.
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2 Getting Started: The Gapless Case

The simplest scenario for the SNPs haplotype reconstruction problem is when
the fragments are consecutive, gapless genomic regions. This is not an unreal-
istic situation, since it arises, for example, in EST (Expressed Sequence Tags)
mapping. This is in fact the case without mate pairs and with no missed SNPs
inside a fragment because of thresholding or base–skipping read errors.

2.1 The Minimum Fragment Removal

In this section we show that in the gapless case, the minimum fragment removal
(MFR) problem can be solved in polynomial time. For this section, we assume
that there are no fragment inclusions, i.e., denoting by fi and li the first and
last snip of a fragment i, fi ≤ fj implies li ≤ lj . We define a directed graph
D = (F , A) as follows. Given two fragments i and j, with fi ≤ fj , there is an
arc (i, j) ∈ A if i and j can be aligned without any mismatch, i.e., they agree in
all their common snips (possibly none). Note that the common snips are a suffix
of i and a prefix of j.
Lemma 1. Let M be a SNP matrix, and P1, P2 be node–disjoint directed paths
in D such that |V (P1)| + |V (P2)| is maximum. Let R = F − (V (P1) ∪ V (P2)).
Then R is a minimum set of fragments to remove such that M [F −R] is feasible.
Theorem 1. There is a polynomial time algorithm for finding P1 and P2 in D
such that |V (P1)| + |V (P2)| is maximum.
Proof. We will use a reduction to a maximum cost flow problem. We turn D
into a network as follows. First, we introduce a dummy source s, a dummy sink
t, and an arc (t, s) of capacity 2 and cost 0. s is connected to each node i with an
arc (s, i) of cost 0, and each node i gets connected to t, at cost 0 and capacity 1.
Then, we replace each node i ∈ D, with two nodes i′ and i′′ connected by an arc
(i′, i′′) of cost 1 and capacity 1. All original arcs (u, v) of D are then replaced by
arcs of type (u′′, v′). A maximum cost circulation can be computed in polynomial
time, by, e.g., Linear Programming. Since D is acyclic, the solution is one cycle,
which uses the arc (t, s) and then splits into two s–t dipaths, saturating as many
arcs of type (i′, i′′) as possible, i.e. going through as many nodes as possible of
D. Since the capacity of arcs (i′, i′′) is 1, the paths are node–disjoint.

With a similar reduction, we can show that the problem LHP can also be
solved in polynomial time. The problem consists in finding two haplotypes of
maximum total length (where the length of an haplotype is the number of SNPs
it covers). We use a similar reduction as before, with the same capacities, but
different costs for the arcs. Now the arcs of type (i′, i′′) have cost 0, while an
arc (i′′, j′) has cost equal to the number of SNPs in j that are not also in i
(e.g., an arc (−ABB,− − BBABA) has cost 3). Arcs (s, i′) have cost equal to the
number of SNPs in i. An s–t unit flow in this network describes a path that goes
through some fragments, such that the total length of the SNPs spanned (i.e. of
the haplotype) is equal to the cost of the path. Hence, the max cost circulation
individues two haplotypes of max total length. This proves the following
Theorem 2. The LHP for gapless fragments is polynomial.
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2.2 The Minimum Snip Removal

Theorem 3. Let M be a gapless SNP matrix. Then GF (M) is a bipartite graph
if and only if GS(M) is an independent set.
Proof. (If) Consider a cycle of fragments in a SNP matrix (see Fig. 1d). Wlog,
assume the cycle involves fragments 0, 1, . . . , k. For each pair of consecutive
fragments i, i + 1 (mod (k + 1)) there is a position ui at which one has an A
and the other a B. We associate to a fragment cycle a directed cycle between
entries in the matrix, made of horizontal arcs from ui−1 to ui in fragment i, and
vertical arcs from ui in fragment i to ui in fragment i+1. We call a vertical line
a maximal run of vertical arcs in such a cycle. In a vertical line, the letters A
and B alternate. By definition, an infeasible SNP matrix contains an odd cycle of
fragments. Let us call weight of an infeasible SNP matrix the minimum number
of vertical lines of any odd cycles of fragments it contains.

Assume there exists an infeasible gapless SNP matrix M such that GS(M)
is an independent set, and pick M to have minimum weight among all such M .
Consider an odd cycle in M achieving this weight. Since an infeasible matrix
cannot have weight 1 there are at least two vertical lines, and hence a “right-
most” vertical line, say between fragments f and g. Since the line is rightmost,
uf−1, ug ≤ uf . Assume ug ≥ uf−1 (same argument if uf−1 ≥ ug). Since M
is gapless, there exists a symbol at row f , column ug. The symbols Mf,uf

and
Mg,uf

are the same if and only if Mf,ug
and Mg,ug

are the same (otherwise, the
rows f and g individue a snip conflict of columns ug, uf ). Now, consider the
SNP matrix M ′ obtained by M by first deleting (i.e., replacing with gaps) all
the symbols between rows f and g (excluded), and then inserting an alternating
chain of As and Bs, starting with M ′

g,ug
, between rows f and g in column ug.

M ′ is an infeasible gapless SNP matrix of weight at least one smaller than M .
Further, there are no snip conflicts in M ′ that were not already in M , so GS(M ′)
is an independent set. Hence, M was not minimal.

(Only if) We omit the simple proof.
Note that, in the presence of gaps, only the “only if” part of the theorem

holds. We now show that the Minimum SNP removal problem can be solved in
polynomial time on gapless SNP matrices. In particular, we prove that GS(M)
is a perfect graph. The basic tool to do this is the following: if I are the nodes
of a hole or a antihole in GS(M), and {i, j} is a conflict, with i, j ∈ I, then for
any k ∈ I such that column k is between columns i and j in M , some relations
of k with either i or j are forced. This will allow us to forbid long holes and
antiholes.
Lemma 2. Let M be a gapless SNP matrix and c1, c2, c3 be snips (columns of
M) with c1 ≤ c2 ≤ c3. If {c1, c3} is a snip conflict, then at least one of {c1, c2}
and {c2, c3} is also a snip conflict.
Proof. There are two rows r1 and r2 such that the 2 × 2 submatrix induced
by rows r1, r2 and columns c1, c3 has three symbols of one type and one of the
opposite. In this submatrix call a 2 × 1 column of identical symbols type I and
one of different symbols type D. Since M is gapless, c2 must be either I or D.
But one of c1 and c3 is I and the other D.
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Fig. 2. (a) A cycle without long jumps. (b) two jumps in a row. (c) a jump and a
shift. (d) The only possible holes.

Lemma 3. Let M be a gapless SNP matrix and c1, c2, c3, c4 be snips with
c1 ≤ c2 ≤ c3 ≤ c4. Assume {c1, c4} is a snip conflict. Then, if {c2, c3} is not a
conflict, one of c1 and c4 conflicts with both c2 and c3. If {c2, c3} is a conflict,
then the conflicts in {c1, c2, c3, c4} contain a length–4 cycle.

Lemma 4. If M is a gapless SNP matrix, GS(M) does not have a chordless
cycle of length > 4.

Proof. Assume C = (i1, . . . , ik, ik+1 = i1) is a chordless cycle, k ≥ 4, in GS(M)
(i.e. the columns of M , listed in the order defined by the cycle). For t = 1, . . . , k,
let B(t) be the set of nodes in C which lie between it and it+1 as columns of
M . We say that t hits it and it+1. We call t a long jump if |B(t)| > 1, a jump if
|B(t)| = 1 and a shift if |B(t)| = 0. For a jump, we denote by bt the node such
that B(t) = {bt}. The following facts are true: (i) If C has a long jump, it must
be k = 4. (ii) If C has no long jump, each jump t must be followed by a shift,
pointing to the node bt.

To prove (i), consider a long jump, and let B(t) = {a1, a2, . . .}. By lemma 3,
if {a1, a2} is not a conflict, that either it or it+1 would have degree ≥ 3 in C,
impossible. Hence it must be a conflict. So, by lemma 3, {i1, a1, a2, ik} must
contain a cycle, and hence k = 4, since C cannot contain other cycles.

To prove (ii), note that if t is a shift for t = 1, . . . , k − 1, then k must be a
long jump. Hence, if there are no long jumps, there must be jumps (see Fig. 2a
for an example of a generic such cycle). Now, assume that a jump t is followed
by another jump. Then (see Fig. 2b), since neither bt nor bt+1 can be hit by a
long jump, there must be a jump hitting bt and bt+1. But, then lemma 2 applies
to bt, it+1, bt+1, so that it+1 would have degree 3 in C. Hence, the jump t is
followed by a shift. If the shift points away from bt, then bt should be hit by a
long jump (see Fig. 2c), impossible. But then, the only possible hole is C4.

Note that C4 is actually achieved by some matrices (see Fig. 2d).

The following lemma generalizes lemma 3.
Lemma 5. Let M be a gapless SNP matrix and c1, c2 be snips, with c1 < c2
and {c1, c2} a snip conflict. Let (a1, a2, . . . , at) be a path in Gc

S(M), such that
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c1 < ai < c2 for all i = 1, . . . , t. If {c1, a1} is not a snip conflict, then {at, c2} is
a snip conflict. If {c2, a1} is not a snip conflict, then {at, c1} is a snip conflict.

Proof. Since M is gapless, in the 2 × n submatrix of M for which (wlog) c1 is
type I and c2 is type D, a1, . . . , at must be I or D. We prove the first part of the
lemma, the other being the same argument. Let a0 := c1. Then ai is type I for
all i = 1, . . . , t to avoid a conflict of ai−1 and ai. This forces the conflict {at, c2}.

Lemma 6. If M is a gapless SNP matrix, Gc
S(M) does not have a chordless

cycle of length > 4.

Proof. Let us call a path in Gc
S(M) an antipath and a cycle in Gc

S(M) an anticy-
cle. Assume (i1, i2, . . . , ik, ik+1 = 1) is a chordless anticycle of length k ≥ 5. Let
ix = min{i1, . . . , ik} and iy = max{i1, . . . , ik}. {ix, iy} cannot be a snip conflict,
or otherwise the part of the anticycle from ix to either iy−1 or iy+1, can be used in
lemma 5 to derive a contradiction. So, after possibly changing origin and orienta-
tion of the antihole, we can assume that x = 1 and y = 2. We will argue that the
only possible ordering of these columns in M is i1 < i3 < i5 < . . . < i6 < i4 < i2.
In fact, we can apply the same argument from left to right and from right to
left. Assume i3 is not successive to i1, but ip, p > 3, is. Then, the antipath
(i2, i3, . . . , ip−1) would be contained within ip and i2, and, by lemma 5, {ip−1, ip}
would be a conflict. Similarly, now assume that i4 is not the second–to–last, but
some ip, p > 4 is. Then the antipath (i3, . . . , ip−1) is contained within i3 and
ip and, by lemma 5, {ip−1, ip} would be a conflict. We can continue this way
to prove the only ordering possible, but the important part is that the order-
ing looks like i1 < . . . < i4 < i2. Then, the antipath (i1, ik, ik−1, . . . , i5) is all
contained within i1 and i4. By lemma 5, {i5, i4} must be a conflict, contradiction.

Theorem 4. If M is a gapless SNP matrix, then GS(M) is a perfect graph.

Proof. Because of lemma 4 and lemma 6, GS(M) is weakly triangulated, i.e.
neither GS(M) or its complement have a chordless cycle of length > 4. Since
weakly triangulated graphs are perfect (Hayward, [5]), the result follows.

The next corollary follows from Theorem 3, Theorem 4, and the fact that the
max independent set can be found in polynomial time on perfect graphs ([3,4]).

Corollary 1. The Minimum SNP Removal problem can be solved in polynomial
time on gapless SNP matrices.

3 Dealing with Gaps

If gaps in the fragments are allowed, SNP problems become considerably more
complex. Typically, a gap corresponds to a SNP whose value at a fragment which
in fact covers it was not determined (e.g., because of thresholding of low quality
reads, or for sequencing errors which missed some bases). Also, an important case
of gaps occurs when fragments are paired up in the so called mate pairs. These,
used in shotgun sequencing, are fragments taken from the same chromosome,
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with some fixed distance between them. A mate pair can be thought of as a
single fragment, with a large gap in the middle and SNPs reads at both ends.

A class of inputs in which the SNP matrix has gaps but that can still be
solved in polynomial time is the following. A 0-1 matrix is said to have the
consecutive ones property (C1P) if the columns can be rearranged so that in
each row the 1s appear consecutively. Analogously, we say that a SNP matrix is
C1P if there exists a permutation π of the SNPs such that each fragment covers
a consecutive (in π) subset of SNPs. Since finding such π is polynomial ([1]), it
follows from Theorem 1, 2 and Corollary 1 the

Corollary 2. The problems MFR, LSH and MSR can be solved in polynomial
time on SNP matrices that are C1P.

For those matrices that are not C1P, it is easy to show NP–hardness for many
problems, by using the following lemma, that shows how to code a graph into a
SNP matrix.

Lemma 7. Let G = (V, E) be a graph. Then there exists a SNP matrix M such
that GF (M) = G.

Proof. G can be made into a |V | × |E| SNP matrix by having a fragment for
each node in V and a SNP for each edge e = {i, j}, with value A in i and B in j.

We can now give a simple proof that MFR is NP–hard.

Theorem 5. MFR is NP-hard.

Proof. We use a reduction from the following NP-hard problem [6,8]: Given a
graph G = (V, E), remove the fewest number of nodes to make it bipartite. This
is exactly MFR when G is encoded into a SNP matrix as described in lemma 7.

In the following theorem, we show that it is the very presence of gaps in
fragments, and not their quantity, that makes the problem difficult.

Theorem 6. MFR is NP-hard for SNP matrices in which each fragment has at
most 1 gap.

The proof is through a polynomial time reduction from Max2SAT [2]. Con-
sider an instance Φ(k, n) of Max2SAT with k clauses over n boolean variables.
Denote the clauses of Φ as C1, C2, . . . , Ck, and the variables as x1, x2, . . . xn. By
definition, each clause contains at most 2 literals. Without loss of generality, we
assume that a variable appears at most once in a clause.

We transform the instance Φ(n, k) into a SNP matrix MΦ with a set F of
n(nk+3k+1)+3k fragments (rows), and S of 2n+5k SNPs (columns). See Fig. 3.
Each variable x contributes nk + 3k + 1 fragments, which can be partitioned
into 3 sets with k, k, (nk + k + 1) fragments respectively. The fragments with
labels fx,1, . . . , fx,k form the set T (x)(true). Similarly, the set F (x)(False) is the
set containing fragments fx̄,1, . . . , fx̄,k, and the set S(x) (support) contains the
remaining nk + k + 1 fragments. No two fragments from different sets can be in
the same haplotype, and any number of fragments from the same set can be in
the same haplotype. Denote a literal of the variable x as xl ∈ {x, x̄}. If xl = x,
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Fig. 3. Gadget for the reduction.

then the fragment fxl,i corresponds to fx,i, and fx̄l,i = fx̄,i. Similarly, if xl = x̄,
fxl,i = fx̄,i, and fx̄l,i = fx,i.

Next, consider a clause Ci = (x + ȳ). There are three other fragments
Ci,1, Ci,2, Ci,3 for each clause. The clause fragments are located in between the
fragments for x and y, Ci,1 and Ci,2 conflict with each other. Extend fragment
fx̄,i with a mate-pair, so that it shares a SNP (and a conflict) with the clause
fragment Ci,1. Likewise, extend fy,i to conflict with Ci,2. Finally the fragment
Ci,3 is a mate-pair which conflict with both fx̄,i and fy,i. Denote the fragment
conflict graph on MΦ as G(MΦ) (for simplicity, we drop the subscript F).

Lemma 8. Given a clause Ci = (xl + yl) of a 2SAT instance Φ, the fragments
(Ci,1, Ci,2, fyl,i, Ci,3, fx̄l,i) form a chordless cycle in G(MΦ).

Lemma 9. Each fragment in MΦ has at most one gap.

Lemma 10. Let K be a set of fragments (rows) in MΦ. The following are suf-
ficient conditions for MΦ[K] to be feasible.

1. For every variable x, K ∩ F (x) = {}, or K ∩ T (x) = {}.
2. For every clause Ci = (xl + yl), K does not contain all the four fragments

fx̄l,i, fȳl,i, Ci,1, and Ci,2.

Proof. The proof is constructive. If G(MΦ[K]) is bipartite, its nodes can be par-
titioned into two independent sets (shores) K1, and K2. We employ the following
construction.

(1) For all x, add S(x) to K1, and T (x) (or, F (x)) to K2. (2) For all clauses
Ci = (xl +yl), add Ci,3 to K1. (3) For all clauses Ci = (xl +yl): (a) if (fx̄l,i 6∈ F ),
add Ci,1 to K2, and Ci,2 to K1. (b) else if (fȳl,i 6∈ F ), add Ci,2 to K2, and Ci,1
to K1. (c) else add Ci,2 (or, Ci,1) to K1.
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We need to show that the graphs induced by K1 and K2 are both independent
sets. Note that S(x) in K1 only has edges to T (x) and F (x) which are in K2.
Likewise for all i, Ci,3 in K1 only has edges to nodes in K2. If both Ci,1 and
Ci,2 are present, then the condition ensures that both fx̄l,i and fȳl,i are not in
K. Therefore, the construction in 3a, and 3b ensures that Ci,1 and Ci,2 are put
on different shores.

Next, consider the fragments in T (x), and F (x) for all x. Condition 1 ensures
that they can be all placed in K2 without conflicting edges between different
literals of x. Next, from 3a, Ci,1 is placed in K2 only if fx̄l,i is not in K. From
3b, Ci,2 is placed in K2 only if fȳl,i is not in K. Thus, K1 and K2 induce
independent sets, and MΦ[K] is feasible.

Lemma 11. An optimal solution to the MFR problem on MΦ has at most nk+k
fragments.

Proof. Consider a set of fragments R with F (x) for all x, and Ci,1, for all clauses
Ci. Removing R satisfies the conditions of lemma 10, implying that R is a solu-
tion to the MFR problem on MΦ with nk + k fragments.

Lemma 12. Let R be an optimal solution to the MFR problem on MΦ. Then,
R ∩ S(x) = φ for all x.

Proof. Consider an optimal solution R that contains a fragment f from S(x),
for an arbitrary variable x. Let K = F − R. As R is optimal, adding f to
G(MΦ[K]) must create an odd-cycle C. Consider any other fragment f ′ ∈ S(x).
By construction, C − {f} + {f ′} is also an odd-cycle. This implies that all
fragments in S(x) are in R. Therefore, |R| ≥ |S(x)| = nk + k + 1 > nk + k, a
contradiction to lemma 11!

Lemma 13. Let R be an optimal solution to the MFR problem for MΦ. Then,
for all x, either T (x) ⊆ R, or F (x) ⊆ R.

Proof. Consider an optimal solution R with a variable x, and fragments f1 ∈
T (x) − R, and f2 ∈ F (x) − R. By lemma 12, there is a fragment f ∈ S(x) − R.
By construction, f, f1, and f2 form an odd cycle, a contradiction!

Theorem 7. Consider a Max2SAT instance Φ with n variables and k clauses,
and the associated SNP matrix MΦ. k′ ≤ k clauses of Φ are satisfiable if and only
if there exists a solution to the MFR problem for MΦ with nk+k−k′ fragments.

Proof. Consider an assignment of variables satisfying k′ clauses. For each vari-
able x set to TRUE, add all the fragments in F (x) to R, and for every fragment
set to FALSE, add all the fragments in T (x) to R. Next, consider all the clauses
that are satisfied. If Ci = (xl + yl) is satisfied, at least one of fx̄l,i, and fȳl,i is in
R, breaking the odd cycle, and we do nothing. If Ci is not satisfied, we add Ci,1
to R. The number of fragments in R due to variables is nk, and the number of
fragments in R due to clauses is k − k′. By lemma 10, MΦ[F − R] is feasible.

Next, consider an optimal solution R of the MFR problem on MΦ with nk +
k − k′ fragments. For every x, by lemma 13, either F (x) ⊆ R or T (x) ⊆ R.
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If F (x) ⊆ R set x to TRUE. Otherwise set x to FALSE. We need to show
that exactly k′ clauses are satisfied. Note that a set D of nk nodes must be in
any optimal solution R to the MFR problem (lemma 13). Further, each clause
is associated with 5 fragments that induce an odd cycle in the conflict graph
(lemma 8). At least one of these fragments must be in R. If a clause Ci = (xl+yl)
is satisfied, then this fragment can be attributed to the set D. If however, Ci is
not satisfied, the number of fragments in R increases by at least one. Thus if the
total number of clauses satified is k′′, then |R| ≥ nk + k − k′′. If k′′ < k′, then
|R| > nk + k − k′, a contradiction. On the other hand, if k′′ > k, then by earlier
argument, there is a solution to the MFR problem with nk+k−k′′ < nk+k−k′

fragments, which is a contradiction to optimality.

We close this section with a complexity result for the snip removal problem,
which follows using lemma 7 and the fact that MAXCUT is NP–hard for 3–
regular graphs.

Theorem 8. The MSR problem is NP-hard for SNP matrices with at most 2
gaps per fragment.
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