A FIXED-POINP THEOREM FOR RECURSIVE-ENUMERABLE LANGUAGES AND SOME CONSTDERATIONS ABOUY FIXEDPOINT SEMANTICS OF MONADIC PROGRAMS

Sorin Istrail Computer Center, University "Al.I.Cuza"

Iasi 6600, Romania

ABSIRACT

This paper generalizes the ALGOI-like theorem showing that every λ-free context-sensitive (recursive-enumerable) language is a component of the minimal solution of a system of equation $X=F(X)$, where $X=\left(X_{1}, \ldots, X_{t}\right), F=\left(F_{1}, \ldots, F_{t}\right), t \geqslant 1$ and $F_{i}, 1 \leqslant i \leqslant t$ are regular expressions over the alphabet of operations:\{concatenation, reunion, kleene " + " closure, nonereasing finite substitution (arbitrary finite substitution), intersection\}.

In the second part is presented a method which constructs for a monadic program a system of equations (in the above form) so that one of the components of the minimal solution of the system gives the partial function f computed by the program in a language form:

$$
\left\{a^{n+1_{\#}} b^{f(n)+1} \mid n \in \operatorname{Dom} f\right\}
$$

1. PRELTMTNARIES

Let V be a finite set of symbols, V^{*} the free monoid generated by V, λ the unit of $V^{*}, V^{+}=V^{*}-\{\lambda\}$

The elements of V^{*} are called words and the subsets of V^{*} are called languages. We suppose the reader familiar with the basic facts about formal language theory [7] and developmental systems [2]. Let us denote by $\underline{R}, G F, C S, C S, B E$ the classes of regulax, context-free, context-sensitive, λ-free context-sensitive and recursive-enumerable languages.
DEFINITION. A OL-Syster is a triple $S=\langle V, P, w\rangle$ where F is a finite set of pairs, $P \subset V V^{*}$ with the property that for every $a \in V$, there exists $u \in V^{*}$ so that $(a, u) \in P$; the elements of F are called rules and are usually denoted by $p \rightarrow q$, for $(p, q) \in P$; w is a word from V^{*}, called the axiom. The set P is called table, and the pair $S^{\prime}=\langle V, P\rangle$ is sometimes called OI-scheme.

The binary relation $\Rightarrow \subset V^{*} \times V^{*}$ is defined by $w_{I} \Rightarrow w_{2}$ if $w_{1}=a_{1} \ldots a_{t}, w_{2}=u_{1} \ldots u_{t}, t \geqslant 0, a_{j} \in V, u_{j} \in V^{*}, 1 \leqslant j \leqslant t \quad$ and
for every $i, 1 \leqslant i \leqslant t, a_{i} \rightarrow u_{i} \in P$.
The relation $\xrightarrow[\mathrm{S}]{*}$ denotes the reflexive transitive closure of $\overrightarrow{\mathrm{S}}$.

A lngguage I is called oL language if there exists an OL-system S so that $L(S)=L$.

A generative device, which is a derivational restricted OL system is introduced in the following lines.
DEFIMTMTON. A perturbant configuration for the OL-scheme $S=\langle V, P\rangle$ is a family $\Pi=\left(\pi_{a}\right)_{a \in V}$ where for every $a \in V, \pi_{a}=\left\langle n(a), \mathbb{E}_{a}, F_{a}\right\rangle$ and
i) $n(a) \geqslant 1$
ii) $E_{a}=\left\{E_{a}^{(1)}, \ldots, E_{a}^{(n(a))}\right\}, \bigcup_{i=1}^{n} E_{a}(i)=V^{+}$,

$$
\mathbb{E}_{a}^{(i)} \bigcap E_{a}^{(j)}=\varnothing, i \neq j, 1 \leqslant i, \quad j \leqslant n(a)
$$

$$
F_{a}=\left\{F_{a}^{(1)}, \ldots, F_{a}^{(n(a))}\right\}, \phi \notin F_{a}^{(i)} \subset\left(P \cap\{a\} \times V^{*}\right)
$$

Let be \mathcal{L} a family of languages. A perturbant configuration is callea \mathscr{L}-perturbant configuration for an oL scheme S if $\Pi=\left(\pi_{a}\right)_{a \in V}$ and for every $a \in V$ and $i, l \leqslant i \leqslant n(a)$ we have $E_{a}^{(i)} \in \mathscr{L}$. DEFINTION. A SICK-OL system is a triple $\mathscr{\mathscr { O }}=(\mathrm{S}, \mathrm{T}, \mathrm{w})$ where:
i) $\mathrm{S}=\langle\mathrm{V}, \mathrm{P}, \mathrm{w}\rangle$ is an OL-system
ii) Π is a perturbant configuration for the scheme $S^{\prime}=\langle V, P\rangle$.
iii) w is the axiom of $\mathscr{\mathcal { Y }}, \mathrm{w}^{*}$.

We define now the following binary relation $\vec{\varphi}$, for $w=a_{1} \ldots a_{t}$, $u=u_{1}, \ldots, u_{t}$ with $a_{k} \in V, u_{k} \in V^{*}, 1 \leqslant k \leqslant t$ we put $w \overrightarrow{y^{\prime}} u$ iff for every $j, l \leqslant j \leqslant t, a_{j} \rightarrow u_{j} \in F_{j}^{(s)}$, where $" s$ is defined by $w \in E_{a_{j}}^{(s)}$. (In words, we can apply for a letter "a" occuring in a word w rules from those set in F_{a} corresponding to those set in E_{a} which contains w_{1}).

Let $\stackrel{*}{\varphi}$ be the reflexive trensitive closure of $\overrightarrow{\varphi^{\prime}}$.
The language generated by the SICK-OL systern $\mathscr{Y}=(\mathrm{S}, \Pi$, w $)$ is defined by $L(\mathscr{Y})=\left\{u \mid u \in V^{*}, w \overrightarrow{\mathcal{Y}^{\prime}} u\right\}$, where $S^{\prime}=\langle V, P\rangle$.

A language L is called SICK-OL language if there exists a SICK-OL system $\mathscr{\mathcal { S }}$ so that $L(\mathscr{\mathscr { O }})=I$. DEFINITION. An extended SICK-OL system is a 4 -tuple $\mathscr{Y}^{\prime}=(S, \Pi, W, Z)$,
where $\mathscr{\mathcal { V }}^{\boldsymbol{Y}}=(S, \Pi, w)$ is a $S T C K-0 L$ system, $S^{\prime}=\langle V, P\rangle$ and $Z C V$.
The language genereted by the extended $\operatorname{SICK}-O L$ system $\mathscr{y}^{\prime}=(S, T$, $w, Z)$ is given by $L\left(\varphi^{\prime}\right)=L(S, \Pi, w) \cap Z^{*}$.

Let us denote by SICK-OL the class of SICK-OL languages. If \mathscr{L} is a family of languages, \mathscr{L} SICK-OL denotes the class of languages obtained from those SICK-OL system with \mathcal{L}-perturbent configurations.

If the rules of a certain bype of L systems do not erase, the L system is called propagating.

We add the letters P and E (or both) to the abreviation of $L-$ systems to denote the classes of corresponding Propagating and Extended L-systems.

2. TWO FIXED-POINT THEOREMS

In this section we present two fixed-point theorems, one for GS and another for RE. They are generalizations of the well known ALGOLlike theorem.

In the following we are interested in P SICK-OI systems with Rperturbant configurations.
MHEOREM 1. For every π-free centext-sensitive language L, there exists a propagating extended R SICK-OL system φ^{\prime} so that $L\left(\varphi^{\prime}\right)=I$. PROOF. Let $G=\left(I_{N}, I_{M}, X_{0}, F\right)$ be a context-sensitive grammar so that $L(G)=I$ and suppose that $\pi \notin L$. The rules of the gramars are in the form pxq \rightarrow puq where $p, q \in V^{*}, x \in I_{N}, u \in V^{+}$and $V=I_{N} \cup I_{T}$ Thus no rules in the form $x_{0} \rightarrow \lambda$, belongs to F.

Let us consider a new alphabet $I_{N}=\left\{\bar{a} \mid a \in I_{N}\right\}$. We need some preIIminary notations:

$$
P(x)=\left\{x \rightarrow u \mid p, q \in V^{*}, \quad u \in V^{+}, \operatorname{pxq} \rightarrow \operatorname{puq} \in F\right\}
$$

If t_{x} is the number of elements of $F(x)$ then:

$$
T_{x}=\left\{\left(p_{i}^{X}, r_{i}^{x}\right) \mid p_{i}^{X} \times r_{i}^{x} \rightarrow p_{i}^{x} u \quad r_{i}^{X} \in F, \quad 1 \leqslant i \leqslant t_{x}\right\}
$$

(the set of all contexts for x, used in the rules of G).

$$
\begin{aligned}
& Z(i, x)=\left\{\bar{x} \rightarrow u \mid p_{i}^{x} x r_{i}^{x} \rightarrow p_{i}^{X} u r_{i}^{X} \in F\right\} \cup\{\bar{x} \longrightarrow \bar{x}\} \\
& P(i, x)=\bigcup\left\{Z(j, x) \mid p_{i}^{x}=v p_{j}^{x}, r_{i}^{x}=r_{j}^{x} z, v, z \in V^{*}\right\} \\
& B(i, x)=V^{*} p_{i}^{x} x r_{i}^{x_{V}^{*}} \cup \cup\left\{V^{*} p^{X} X r_{j}^{X} V^{*} \mid p_{j}^{X}=V p_{i}^{X},\right. \\
& \left.r_{j}^{x}=r_{i}^{x}, \quad v, z \in V^{*}, \quad V z \neq \lambda\right\} .
\end{aligned}
$$

We notice that for $i \neq j, 1 \leqslant i, j \leqslant t_{x}, ~ H(i, x) \bigcap \operatorname{H}(j, x)=\varnothing$.

We intend to construct a propagating extended sICK-OL system $\varphi^{\prime}=$ $=\left(S, \Pi, x_{0}, I_{T}\right)$. So that $L\left(\varphi^{\prime}\right)=L(G)$.

We define $S=\left\langle V \cup \bar{I}_{N}, D\right\rangle$, where

$$
\begin{aligned}
D= & \left(\bigcup_{x \in I_{N}} Z(i, x)\right) \cup\left\{x \rightarrow x, \bar{x} \rightarrow \bar{x}, x \rightarrow \bar{x} \mid x \in I_{N}\right\} \cup \\
& i \leqslant i \leqslant t_{x} \quad\left\{a \rightarrow a \mid a \in I_{N}\right\}
\end{aligned}
$$

We define a R -perturbant configuration $\Pi=\left(\pi_{y}\right)_{Y} \in V \cup \bar{I}_{N}$ by

1) for $x \in I_{N}, \pi_{x}=\left\langle 2, E_{x}, F_{X}\right\rangle$, where
$\mathrm{F}_{\mathrm{X}}^{(1)}=\mathrm{V}^{+}, \mathrm{F}_{\mathrm{X}}^{(2)}=\left(\mathrm{V} \mathrm{U}_{\mathrm{N}}\right)^{+}-\mathrm{V}^{+}, \mathrm{F}_{\mathrm{X}}^{(1)}=\{\mathrm{x} \longrightarrow \mathrm{x}, \mathrm{x} \longrightarrow \overline{\mathrm{x}}\}$,
$F_{x}^{(2)}=\{x \rightarrow x\}$.
2) for $\overline{\mathrm{x}} \in \overline{\mathrm{I}}_{\mathrm{N}}, \pi_{\overline{\mathrm{x}}}=\left\langle\mathrm{t}_{\mathrm{x}}+1, \mathrm{E}_{\mathrm{x}}, \mathrm{F}_{\mathrm{x}}\right\rangle$, where
$E_{\bar{X}}^{(i)}=E(i, x), F_{\bar{X}}^{(i)}=F(i, x), \quad 1 \leqslant i \leqslant t_{X}$
$E_{\bar{x}}^{\left(t_{x}+1\right)}=V^{+} \bigcup_{i=1}^{t_{X}} E_{\bar{x}}^{(i)}, F_{\bar{x}}^{\left(t_{x}+1\right)}=\{\bar{x} \longrightarrow \bar{x}\}$
3) for $a \in I_{T}, \quad \pi_{a}=\left\langle 1,\left(V \cup \bar{I}_{N}\right)^{+},\{a \longrightarrow a\}\right\rangle$.

DEFINITION. A Self-controled Tabled on system (SC-iNOL) is a 5-tuple $\mathscr{C}=(\mathrm{V}, \mathrm{m}(\mathscr{C}), \mathrm{D}, \mathrm{C}, \mathrm{w})$ where
i) V is the alphabet of \mathscr{C};
ii) $m(\mathscr{G})$ is a positive integer;

iv) $c=\left\{c_{i}\right\}_{i=1}^{m(\mathscr{C})} \quad, \quad c_{i} \subset V \times V^{*}$, is a table, $1 \leqslant i \leqslant m \quad$ (C)

If \mathscr{G} is a $\mathrm{SC-TOL}$ system, the following binary relation is introduced: for $w=a_{1} \ldots a_{t}, u=u_{1} \ldots u_{t}$ with the property that $a_{k} \in V$ and $u_{k} \in V^{*} \quad 1 \leqslant k \leqslant t$ we put $w \vec{C} u$ iff for every $j, 1 \leqslant j \leqslant t$, $a_{j} \rightarrow u_{j} \in C_{s}$, where " s " is defined by $w \in D_{s}$. (In words, we can apply to w rules from a table C_{S} iff $w \in D_{s}$.

The definitions of $\stackrel{*}{\mathscr{C}}$, language generated by \mathscr{C}, SC-TOL language, E SC-TOL, \mathscr{L} SC-TOL can be obtained similarly.

Let us denote by \hat{T} the finite substitution generated by a table T . theorman 2. For every Sc-TOL system \mathscr{C} there is a sICK-OL system \mathscr{P} so
that $L(\mathscr{\varphi})=I(\mathscr{Y})$.
PROOF. Let us suppose that we have an $\operatorname{sc-TOL} \mathscr{C}=(V, m(\varphi), C, D, w)$. Then we define a perturbant configuration $\Pi=\left(\pi_{a}\right)_{a} \in V$ by

$$
\pi_{a}=\left(m(\mathscr{C}), D,\left\{c_{i} \cap\left(a \times \nabla^{*}\right)\right\}_{i=1}^{m(\mathscr{C})}\right)
$$

The SICK-OL system $\mathscr{Y}=(V, \Pi$, w) generates exactly $L(\mathscr{C})$. The converse of Theorem 2 is also true.

THEOREM 3. FOr every SICK-CL system $\varphi=(s, \Pi, w)$ there exists an equivalent scmoL system $\mathscr{C}=(V, m(\zeta), D, C, w)$, i.e. $L(\zeta)=I(\mathcal{Y})$. PROOF. Let be $V=\left\{a_{1}, \ldots, a_{s}\right\}$ and Mdetailed by

$$
\mathbb{E}_{a_{j}}^{(i)}, F_{a_{j}}^{(i)}, \quad 1 \leqslant i \leqslant n\left(a_{j}\right), \quad 1 \leqslant j \leqslant s .
$$

For k_{j} variyng in $\left\{1, \ldots, n\left(a_{j}\right)\right\}, 1 \leqslant j \leqslant s$, let us consider the sets:

$$
E_{a_{1}}^{\left(k_{1}\right)} \cap \mathbb{E}_{a_{2}}^{\left(k_{2}\right)} \cap \ldots \cap E_{a_{s}}^{\left(k_{s}\right)}=T\left(k_{1}, \ldots, k_{s}\right)
$$

Now we have a partition of V^{\ddagger} given by the collection

$$
\begin{aligned}
& \Delta=\left\{T\left(k_{1}, \ldots, k_{s}\right) \mid T\left(k_{1}, \ldots, k_{s}\right) \neq \varnothing,\right. \\
& \left.k_{j} \in\left\{1, \ldots, n\left(a_{j}\right)\right\}, \quad 1 \leqslant i \leqslant s\right\} .
\end{aligned}
$$

If m_{0} is the number of sets in Δ we define a SC-TOL

$$
\begin{aligned}
& \mathscr{C}=\left(V, m_{0},\left\{T\left(k_{k}, \ldots, k_{s}\right) \mid T\left(k_{1}, \ldots, k_{s}\right) \neq \varnothing\right\},\right. \\
& \left.\left\{Z\left(k_{1}, \ldots, k_{s}\right) \mid T\left(k_{1}, \ldots, k_{s}\right) \neq \varnothing\right\}, w\right), \text { where } \\
& Z\left(k_{1}, \ldots, k_{s}\right)=\bigcup_{i=1}^{S} F_{a_{i}}
\end{aligned}
$$

It is easy to see that

$$
L(\mathscr{\varphi})=L(\mathscr{C}) .
$$

CCROLLARY 1. SICK-OL $=$ SC-TOL
EP R $\operatorname{SICK}-O L=E P$ E SC-TOL $2 \frac{\mathrm{CS}}{\lambda}$
The inclusion presented in the Corollary 1 is in fact equality. THEOREM 4. Every propagating is SC-TOL system generates a contextsensitive language.
COROLLARY 2.

$$
\mathrm{EP} \underline{\mathrm{R}} \mathrm{SICR}-O L=E P \mathrm{R} S C-\mathrm{MOL}=\underline{\mathrm{OS}} \boldsymbol{\lambda}
$$

MHEOREM 5. For every $\mathrm{SC-TOL}$ system $\mathscr{G}=(V, \mathrm{~m}(\mathscr{C}), \mathrm{P}, Q, w)$ there exists a system of equations
(*)

$$
\left\{\begin{array}{c}
x_{1}=F_{1}\left(x_{1}, \ldots, x_{t}\right) \\
\ldots \ldots, \ldots \ldots, \ldots \\
x_{t}=F_{t}\left(x_{1}, \ldots, x_{t}\right)
\end{array}\right.
$$

so that $L(\mathcal{C})=\bigcup_{n=1}^{t} X_{n}^{M I N} \quad \begin{aligned} & x_{t}=R_{t}\left(X_{1}, \ldots, X_{t}\right) \\ & \text { where }\left(X_{1}^{M I N}, \ldots, X_{t}^{M I N}\right) \text { is the minimal }\end{aligned}$ solution of ($*$).
FROOR. Let be the system of equations
(1)
with $t=m(\mathscr{\mathscr { Q }})$ and let us denote $F_{i}\left(X_{1}, \ldots, X_{t}\right)=\hat{Q}_{1}\left(P_{1} \cap\left(X_{1} \cup \ldots\right.\right.$
$\left.\ldots \cup x_{t} \cup\{w\}\right)$).
The minimal solution of the system (1) ($\mathrm{X}_{1}^{\mathrm{MIN}}, \ldots, \mathrm{X}_{\mathrm{t}}^{\mathrm{MIN}}$) is given by

$$
x_{1}^{\text {NIN }}=\bigcup_{n=0}^{\infty} x_{i}^{(n)}, \quad 1 \leqslant i \leqslant t
$$

and

$$
x_{i}^{(n+1)}=F_{i}\left(X_{1}^{(n)}, \ldots, x_{t}^{(n)}\right), \quad n \geqslant 0,
$$

We observe that $X_{i}^{(n)}$ is the set of all words from $L(\mathscr{C})$ with the property that are obtained in n steps of derivation in \mathscr{G}, and the last table used is Q_{i}. Of course X_{i}. is the set of all words in $L(\mathscr{C})$ with the property that the last table used is Q_{i}.

Now it is manifest that

$$
L(\varphi)=\bigcup_{i=1}^{t} X_{i}^{M I N}
$$

THECREM 6. Every E SC-TOL L is a component of the minimal solution of a system of equations in the form ($*$).
PROCF. Let us consider $\mathscr{C}^{\prime}=\left(V, m\left(\varphi^{\prime}\right), p, 6, w, 1 n\right)$ and a copy of φ^{\prime} with all letters a in V in the form $\bar{a}: \bar{\zeta}^{\prime}=\left(\bar{V}, m\left(\zeta^{\prime}\right), \vec{P}, \bar{Q}, \bar{w}, \bar{W}\right)$.

Let us define now a SC-TOL \bigodot_{1}.
We consider an alphabet $V:=\bar{V} \cup M \cup\{\sigma\}, \sigma$ a new symbol.
Let us define a finite substitution h on V^{\prime} by $h(a)=\{a, \bar{a}\}$,
$\bar{a} \in \bar{M} ; h(\bar{b})=\{b\}, b \in \bar{V}-\bar{W} ; h(c)=\{c\}, \quad c \in \mathbb{M} \cup\{\sigma\}$

1) Fo.s i, $1 \leqslant i \leqslant m(\mathscr{C})$ take

$$
R_{i}=h\left(\bar{P}_{i}\right) \backslash M^{+} \quad \text { and }
$$

$$
T_{i}=\left\{u \rightarrow v \mid u \in h(\bar{a}), v \in h(\bar{z}), \quad \bar{a} \rightarrow \bar{z} \in \bar{Q}_{i}\right\} \cup\{\sigma \rightarrow \sigma\}
$$

2) $R_{\text {m }\left(\varphi^{\prime}\right)+1}=M^{+}, T_{m}\left(\varphi^{\prime}\right)+1=\left\{x \rightarrow x \mid x \in V^{\prime}\right\}$
3) $R_{\text {m }}\left(\varphi^{\prime}\right)+2=\{\sigma\}, \quad \mathrm{m}_{\mathrm{m}\left(\varphi^{\prime}\right)+2}=\{\sigma \rightarrow u \mid$

$$
u \in h(\bar{w})\} \cup\left\{x \rightarrow x \mid \quad x \in V^{\prime}-\{\sigma\}\right\}
$$

$$
m\left(b^{\prime}\right)+2
$$

4)

$$
\left(V^{\prime}\right)^{+}-\bigcup_{i=1} \quad R_{i}=R_{m}\left(\zeta^{\prime}\right)+3
$$

$$
T_{\mathfrak{m}\left(\zeta^{\prime}\right)+3}=\left\{x \rightarrow x \mid x \in V^{\prime}\right\}
$$

We define the SC-HOL ζ_{1} by

$$
\mathscr{\zeta}_{I}=\left(V^{\prime}, m\left(\zeta^{\prime}\right)+3, \mathrm{R}, \mathrm{I}, \sigma\right)
$$

and we associate to G_{1} the system of equations:

$$
\left\{\begin{array}{l}
x_{1}=\hat{T}_{1}\left(R_{1} \cap\left(x_{1} \cup \ldots \cup x_{t} \cup\{\sigma\}\right)\right) \\
\dot{x}_{t}=\hat{T}_{t}\left(R_{t} \cap \hat{x}_{1} \cup \cdots \cup \cup x_{t} \cup\{\sigma\}\right)
\end{array}\right.
$$

where $t=m\left(\zeta^{\prime}\right)+3$.
We have

$$
X_{t-2}^{M I N}=X_{\text {II }}^{M I N}\left(C^{\prime}\right)+1=\left(\bigcup_{i=1} X_{t}^{M I N}\right) \cap R_{m}\left(\zeta^{\prime}\right)+1
$$

(because $\hat{T}_{m}\left(\zeta^{\prime}\right)+2$ is the identity) $=\left(\bigcup_{i=1} X_{i}^{M I N}\right) \cap n^{+}=L\left(\zeta_{1}\right) \cap n^{+}$. It is easy to see that $\bar{u} \in L\left(\bar{\zeta}^{\prime}\right)$ inf $u \in L\left(G^{\prime}\right)$ inf $u \in L\left(\mathcal{G}_{1}\right)$, M^{+}. THIOREM 7. Let us consider the following data:
i) V an alphabet;
ii) $T_{1}, \ldots, T_{p}, \lambda$-free tables on V;
iii) R_{1}, \ldots, R_{p}, a partition of V^{+}with each R_{i} regular;
iv) w a word over V.

Then, each component of the minimal solution of the system
is a context-sensitive language.
PROCF. The system of equations defines a $\operatorname{sc-mot} G=\left(V, p,\left\{R_{1}, \ldots, R_{p}\right\}\right.$, $\left\{T_{1}, \ldots, T_{p}\right\}$, w) and we have that $L(\mathcal{C})=\bigcup_{i=1} X_{i}^{M i N}$, where $X^{M i N}=$ $=\left(X_{1}^{\text {MiN }}, \ldots, M_{t}^{\text {MiN }}\right)$ is the minimal solution of the system. It can be proved that $X_{i}=\hat{T}_{i}\left(\mathcal{L}(G) \cap R_{i}\right)$, for all $i, \quad 1 \leqslant i \leqslant p$. By theorem 4 it follows that $L(\mathbb{G})$ is in G_{λ}, and so is
$\widehat{T}_{i}\left(L(\boldsymbol{\varphi}) \cap R_{i}\right)=X_{i}^{M I N}, 1 \leqslant i \leqslant p$.
COROLTARY 3. A language $L \subseteq V^{+}$is in $C S$ if and only if it is a component of the minimal solution of a system of equations in the form fulfiling the conditions i) - iv) from Theorem 7.
CORCLLARY 4. Avery CS language $\mathrm{I} \subseteq \mathrm{V}^{+}$is a component of the minimel solution of a system of equations in the form:

$$
\left({ }_{*}^{*}\right) \quad\left\{\begin{array}{l}
x_{1}=F_{1}\left(x_{1}, \ldots, x_{t}\right) \\
\cdots \cdots \ldots \ldots, \ldots, \\
x_{t}=F_{t}\left(x_{1}, \ldots, x_{t}\right)
\end{array}\right.
$$

where H_{1}, \ldots, F_{t} are regular espressions over the alphabet $\{" \cdot ", " U "$, $\left."+",{ }^{\prime h} \lambda ", " \cap "\right\} \cup \vee \cup),(\} *(h \lambda$ dehotes the λ-free finite substitution).

CONJECMURE 1. The converse of the Corollary 4 is also true.
If the above conjecture holds, we have a fixed-point characterization of $\frac{C S}{\lambda}$ languages using the set of operations: $\left\{\cdot, U, h_{\lambda}, \cap,+\right\}$.

The essential point seems to be the use of intersection, because without " \cap " a system of equations of type ($\underset{*}{*}$) has CF languages as components oi the minimal solution.

CONJECTURE 2. A language is in GS λ iff it is a component of the minimal solution of a system (${ }_{*}^{*}$) using only $\{., \cup, \cap\}$.
THEOREM 8. A language $L \subseteq V^{*}$ is recursive-enumerable iff is a component of the minimal solution of a system of equations in the form

$$
\left\{\begin{array}{l}
x_{1}=F_{1}\left(x_{1}, \ldots, x_{t}\right) \\
\left.\ldots \ldots \ldots \ldots \ldots, \ldots, x_{t}\right) \\
x_{t}=F_{t}\left(x_{1}, \ldots, x_{t}\right)
\end{array}\right.
$$

where F_{1}, \ldots, F_{t} are regular expressions over the alphabet: $\{$ ".", $\left." \cup ", " * ", "_{h} ", " \cap "\right\} \cup),(\} \cup \vee \cup\{\wedge\}$ where \wedge stands for the empty word λ.
REMARK 1. The result of the Theorem 8 can be extended to the case when instead of letters of the alphabet V we consider a finite set of recursive-enumerable languages over V.

3. SOME CONSTDERARIOIS ABOUP FTXED-POINI SEMAMICS OF MONADIC PROGRAMS

We work in this section with programs in the formalism presented by J.A. Goguen in [1].

Speaking heuristically now, in this section we consider programs consistiag of operetion and tests, each performed directiy on values stored in memory. These tests and operetions will appear as (labels) of edges in a graph, with all of the partial functions representing the several alternatives of a test emanating from the same node. Thus a path in this graph represents an execution sequence for the instructions of the program. It should be noted thet these plow diagram programs are not purely syntactic entities: a specific interpretation is assumed to be alreedy given for each operavion and test instruction.

One of the question of greatest interest for such a program is semantic: What function does it compute?

We give now the formal definitions.
A (directed) graph is a pair, $G=(V, E)$ where V is a finite set of nodes, E is a set of edges $\mathrm{ECV} \times \mathrm{V}$.

An exit node V^{\prime} is a node with the property that there are no edges in G with source w^{\prime}.

We denote by \mathcal{N} the class of sets in the form $M^{r}, r \geqslant 0$, and $9 \mathcal{P} P$ the class of partial functions between sets in \mathcal{N}.

A program is a paiz (G, P) where $|P|: V \longrightarrow \mathcal{N}$,
$P: E \rightarrow$ PGFwith the property that for every $\left(v_{1}, v_{2}\right) \in E$,

$$
P\left(v_{1}, v_{2}\right):|P|\left(v_{1}\right) \rightarrow|P|\left(v_{2}\right)
$$

A program (G, P) is called deterministic if whenever e, e^{\prime} are odges with same source node, the partial functions $P e$, Pe* have disjoint sets of definition.

If we denote by $\mathrm{Pa}(G)=\left\{\left(v, V^{\prime}\right) \mid\right.$ there exists a path in G from v to $\left.v^{\sharp}\right\}$ we can define the behavior of a program. We can extend the functions $P: B \rightarrow \rho \mathcal{F} \mathcal{P}$ to $\hat{P}: \operatorname{Pa}(G) \rightarrow \rho \mathcal{F} \mathcal{N}^{2}$. In fact, if $\left(v_{0}, v_{1}\right.$, ..., v_{t}) is the sequence of nodes which describes a path in G from v_{0} to v_{t} we have

$$
\hat{P}\left(v_{0}, \ldots, v_{t}\right)=P\left(v_{0}, v_{1}\right) 0 \ldots 0 P\left(v_{t-1}, v_{t}\right) .
$$

Also we have the following result stated as Froposition 5 in [1]: If (G, F) is a deterministic program and if f, f^{\prime} are path in G with same source, such that neither is an initiel segment for the other, then $P(f)$ and $P\left(f^{\prime}\right)$ have disjoint sets of definition.
DEFINITION. The behavior or complete partial function computed by the program (G, P) with entry at v and exit at v^{\prime} is

$$
\hat{F}\left(v, v^{*}\right)=U\{\hat{\mathrm{P}}(\hat{\mathrm{f}}) \mid
$$

f a path from v to v, in $G\}$.

It is easy to see that if (G, P) is detemministic and V is an exit node, then $P\left(V, v^{\prime}\right)$ is also a partial function (Corollary $6[1]$).

Let us consider EelN the class of relations over N. We use three symbols "a": "b", "\#" in order to define the function S : Rel $\mathbb{N} \longrightarrow$ $\mathscr{P}\left(a^{+} \# b^{+}\right)$given $b y S(R)=\left\{a^{n+1} \# b^{m+1} \mid(n, m) \in R\right\}$. (Note that $\mathscr{P}(A)$ is the power-set of $A)$.

For a partial function $f: N \rightarrow \mathbb{N}$, if Dom f is the definition domain of f, we have

$$
S(f)=\left\{a^{n+1} \# b^{f(n)+1} \mid n \in \operatorname{Domf}\right\}
$$

We notice that the language $S(1)$ encodes the association realized by f .

Our intention is to work with cuch type of lancuages instead of functions, in the definition of monadic programs, i.e. programs which use only one-variable functions.

In fact, if (G, P) is a monadic deterministic program we can concider the diagram

$$
\mathrm{E} \xrightarrow{\mathrm{P}} \mathrm{~N} \xrightarrow{S} P\left(a^{+} \# b^{+}\right)
$$

We observe that the function S is bijective, and its reverse F: $P^{+}\left(a^{+} \# b^{+}\right) \longrightarrow \operatorname{Rel} N$ can be interpreted as a "forgetful" operator, i.e. forgets the language encoding of relations over \mathbb{N}. If "o" stands for the relation composition, we have:

$$
S\left(R_{1} \circ R_{2}\right)=S\left(\operatorname{PS}\left(R_{1}\right) \text { o } \operatorname{FS}\left(R_{2}\right)\right)
$$

The ebove equelity defines an operator which beginning with two languages $S\left(R_{1}\right)$ and $S\left(R_{2}\right)$ gives a new languages $S\left(R_{1} \circ R_{2}\right)$.

Wore formally, the operation can be expressed with classical. operators.

Let be c, \# ${ }_{1}$ new symbols, and the langueges:
$L_{1}=\left\{a^{m} \# b^{n} \mid(m-1, n-1) \in R_{1}\right\} \quad L_{2}=\left\{b^{k} \neq t_{1} c^{s} \mid(k-1, s-1) \in R_{2}\right\}$.
We consider the language $L_{3}=L_{2} \#_{1} 0^{+} \cap a^{*} \# L_{2}$ 。
We have:

$$
L_{3}=\left\{a^{m} \not \operatorname{b}^{n} \#_{1} c^{t} \mid(m-1, n-1) \in R_{1}, \quad(n-1, t-1) \in R_{2}\right\}
$$

The homomorphism h, defined by $h(b)=h\left(\#_{1}\right)=\lambda, h(a)=a, h(c)=b$ meps I_{3} into $\mathrm{S}\left(\mathrm{R}_{1} \circ \mathrm{R}_{2}\right)$, i.e.

$$
h\left(L_{3}\right)=\left\{a^{m} \# b^{n} \mid(m-1, n-1) \in R_{1} \circ R_{2}\right\}=S\left(R_{1} \circ R_{2}\right)
$$

Therefore, if h^{\prime} is a new homomorphism given by $h^{\prime}(a)=b, h^{\prime}(\#)=\# 1$, $h^{*}(b)=c$ we have the following representation
(1)

$$
\begin{aligned}
& S\left(R_{1} \circ R_{2}\right)=h\left(L_{1} \#_{1} c^{+} \cap a^{+} \# L_{2}\right) \\
& =h\left(S\left(R_{1}\right) \#_{1} c^{+} \cap a^{+} \# h^{\prime}\left(S\left(R_{2}\right)\right)\right.
\end{aligned}
$$

We denote by φ this new operator, ie.

$$
\varphi: \mathscr{P}\left(a^{+} \# b^{+}\right) \times \mathscr{P}\left(a^{+} \# b^{+}\right) \longrightarrow P\left(a^{+} \# b^{+}\right)
$$

given by

$$
\varphi\left(E_{1}, E_{2}\right)=S\left(P\left(E_{1}\right) \circ F\left(E_{2}\right)\right)
$$

The operator can be extended for any $t \geqslant 2$ to

$$
\mathscr{V}_{\left.\left(a^{+} \# b^{+}\right) \times \ldots \times \mathscr{Y}_{\left(a^{+}\right.} b^{+}\right)}^{t}
$$

Suppose that we have already defined the operator for s; now the extension to sol is defined by

$$
\varphi\left(E_{1}, \ldots, E_{s+1}\right)=\varphi\left(\varphi\left(E_{1}, \ldots, E_{s}\right), E_{S+1}\right)
$$

In the rest of this section we consider monadic deterministic programs with one memory location only.

The extension to monadic nondeterministic programs with a finite number of locations requires a little bit more complicated notational apparatus.

Let (G, P) be a monadic deterministic program with one location. If $G=(V, E)$, for every $e \in E$, by the way of P and S we have associate a language, ie.

$$
P(e):|P|\left(v_{1}\right) \longrightarrow|P|\left(v_{2}\right), \quad e=\left(v_{1}, v_{2}\right)
$$

and $\left.S(P(e)) \in S^{\left(a^{+} \#\right.} b^{+}\right)$.
To a path from $\mathrm{Pa}(\mathrm{G})$, say μ : $\left(\mathrm{v}_{\mathrm{i}_{1}}, \mathrm{v}_{\mathrm{i}_{2}}, \ldots, \mathrm{v}_{\mathrm{i}_{k}}\right)$ we associate the language

EXAMPLE:

$$
\begin{aligned}
& S(\mu)=S\left(P\left(v_{i_{1}}, v_{i_{2}}\right) \circ P\left(v_{i_{2}}, v_{i_{3}}\right) 0 \ldots \circ P\left(v_{i_{k-1}}, v_{i_{k}}\right)\right) \\
& =\varphi\left(P\left(v_{i_{1}}, v_{i_{2}}\right), \ldots, P\left(v_{i_{k-1}}, v_{i_{k}}\right)\right)
\end{aligned}
$$

We have

$$
\begin{aligned}
& S(x \leftarrow 2 x)=\left\{a^{n+1} \# b^{2 n+1} \mid n \geqslant 0\right\} \\
& S\left(x \leftarrow x^{2}\right)=\left\{a^{n+1} \# b^{n^{2}+1} \mid n \geqslant 0\right\} \\
& S(x \leqslant 100)=\left\{a^{n+1} \# b^{n+1} \mid n \leqslant 100\right\} \\
& S(x>100)=\left\{a^{n+1} \# b^{n+1} \mid n>100\right\}
\end{aligned}
$$

Let us consider the path $\mu:(A, B, A)$.
We have

$$
\begin{aligned}
& S(\mu)=S\left(\left(x \leftarrow x^{2}\right) \circ \quad(x \leqslant 100)\right)= \\
= & S\left(F\left(\left\{a^{n+1} \# b^{n^{2}+1} \mid n \geqslant 0\right\}\right) \circ \quad F\left(\left\{a^{n+1} \# b^{n+1} \mid n \leq 100\right\}\right)\right) \\
= & \left\{a^{n+1} \# b^{n^{2}+1} \mid n^{2}+1 \leqslant 100\right\} .
\end{aligned}
$$

Now, for such a program we intend to construct a system of equations with variables in the power-set of a finite generated free monoid so that one of the components of its minimal solution gives its behavior as a function encoded with 5 .

Let be (G, P) a program with the location x, and $G=(V, E)$.Suppose that v_{I} and v_{F} are the entry and the exit nodes.

If $V=\left\{v_{I}=v_{0}, v_{1}, \ldots, v_{t}=v_{E}\right\}$ then we associate a variable X_{i} (varying in $\mathscr{P}\left(a^{+} \# b^{+}\right)$) to each node $v_{i}, o \leqslant i \leqslant t$.

For a node v_{i}, let be $\left(v_{j_{1}}, 1, v_{1}\right), \ldots,\left(v_{j_{k(i)}}, i, v_{i}\right)$ the collection of all edges in G which enter in v_{i}, and $f_{i}^{(i)}, \ldots, f_{k(i)}^{(i)}$ the corresponding partial functions associated by P.

For every $i, l \leqslant i \leqslant t$ we consider the equation

$$
\begin{aligned}
& x_{i}=\bigcup_{s=1}^{k(i)} s\left(\mathbb{F}\left(X_{j_{s}, i}\right) \circ f_{s}^{(i)}\right)= \\
& \bigcup_{s=i}^{k(i)} \varphi\left(X_{j_{s}, i}, S\left(f_{s}^{(i)}\right)\right)
\end{aligned}
$$

To the node $v_{I}=v_{0}$ we associate a constant equation

$$
x_{0}=\left\{a^{n+1} \# b^{n+1} \mid a \geqslant 0\right\}
$$

Putting together, we obtain the system
$(+)$

$$
\left\{\begin{array}{l}
x_{0}=\left\{a^{n+1} \# b^{n+1} \mid n \geqslant 0\right\} \\
x_{i}=\bigcup_{s=1}^{k(i)} \varphi\left(x_{i_{s}}, i, s\left(p_{s}^{(i)}\right)\right), 1 \leqslant i \leqslant t
\end{array}\right.
$$

which plays a major role in the sequel.

Because of the representation of φ given in the formula (!), the equations of $X_{i}, 1 \leqslant i \leqslant t$ have the form presented in the Theorem 9 with the addition of Remark 1.

So, at this moment, such a system has a minimal solution, with all components recursive - enumerable languages: $X^{M i N}=\left(X_{0}^{M i N}, \ldots, X_{t}^{M i N}\right)$.

We intend to show the following
THEORED 9.

$$
S\left(\hat{P}\left(v_{I}, v_{W}\right)\right)=X_{t}^{M i N}
$$

I.e., for every monadic deterministic program with one location, there exists a system of equations in the form (+) so thet its semantics in some encoded form - is a component of the minimal solution of the system.
FROOF. We have $\hat{\mathrm{F}}\left(\mathrm{v}_{\mathrm{I}}, \mathrm{v}_{\mathrm{F}}\right)=U\left\{\left.\hat{\mathrm{P}}(\mu)\right|_{\mu}\right.$ path in G from v_{I} to $\left.v_{F}\right\}$ and

$$
S\left(\hat{P}\left(v_{I}, v_{F}\right)\right)=U\left\{\hat{S}(\hat{F}(\mu)) \mid \mu \text { path in } G \text { from } v_{I} \text { to } v_{F}\right\} .
$$

On the other side, $X_{t}^{M i N}=\bigcup_{n=0}^{\infty} X_{t}^{(n)}$, where $X_{t}^{(n+1)}=E_{t}^{\left(X_{0}^{(n)}, \ldots\right.}$ $\cdots X_{t}^{(n)}$) and

$$
E_{t}\left(X_{0}, \ldots, X_{t}\right)=\bigcup_{s=1}^{k(i)} \varphi\left(X_{j, i}, S\left(f_{s}^{(i)}\right)\right)
$$

We intend to show that for every i and p, with $1 \leqslant i \leqslant t, p \geqslant 1$ we have (A) $\quad X_{i}^{(P)}=U\left\{S(\hat{P}(\mu)) \mid \mu\right.$ path in G of length p from v_{I} to $\left.v_{i}\right\}$.

We denote by Path $\left(v_{i}, v_{j} ; m\right)$ the set of all paths of length m in G from v_{i} to v_{j}, and by Path $\left(v_{i}, v_{j} ;-\right)$ the set of all path in G from v_{i} to v_{j}.

For $p=0, X_{i}^{(p)}=\phi, \quad 1 \leqslant i \leqslant t$.
We take first $p=1$. If $a^{m} \# b^{n} \in X_{i}^{(1)}$, we have for

$$
\left.X_{i}^{(1)}=\bigcup_{s=1}^{K(1)} \varphi_{\left(X_{j}, i\right.}(0), S\left(f_{s}^{(i)}\right)\right)
$$

a number r, so that $X_{j_{r}, i}^{(0)}=X_{0}^{(0)}$ and $e^{m} \# b^{n} \in S\left(f_{r}^{(i)}\right)$.
Hence $\left(v_{j}, i, v_{i}\right)$ is the edge $\left(v_{I}, v_{i}\right)$, and it follows that $a^{m} \#^{n}$ $S\left(\hat{P}\left(v_{I}, v_{i}\right)\right.$ and so the inclusion $X_{i}{ }^{(1)} C \cup\left\{S(\hat{P}(\mu)) \mid \mu \in \operatorname{Path}\left(v_{I}, v_{i} ; 1\right)\right\}$ holds.

Conversely, $S\left(P\left(V_{I}, V_{i}\right)\right)=S\left(F\left(X_{0}^{(0)}\right) \circ F\left(S\left(P\left(V_{I}, V_{i}\right)\right)\right)=\varphi\left(X_{0}^{(0)}\right.\right.$, $S\left(P\left(v_{I}, V_{i}\right)\right) \subset X_{i}^{(1)}$, because $\left(v_{I}, v_{i}\right) \in E$ implies that in the equation of X_{i} there exists a r so thet $X_{j_{2}, I}=X_{0}$.

Now it is manifest that (A) holds for $p=1$. Suppose that it is true for $p \leqslant q$. Then we have

$$
\begin{aligned}
& X_{i}^{(q+1)}=\bigcup_{s=1}^{k(i)} S\left(F\left(X_{j}^{(q)}, i \quad \circ f_{s}^{(i)}\right)=\right. \\
& =\bigcup_{S=1}^{K(i)} S\left(F\left[\bigcup\left\{E(\hat{P}(\mu)) \mid \mu \in \operatorname{Path}\left(v_{I}, v_{j_{S}} ; i ; q\right)\right\}\right] \circ f_{s}^{(1)}\right) \\
& =\bigcup_{s=1}^{k(i)} S\left(\bigcup\left\{\operatorname{FS}(\hat{P}(\mu)) \mid \mu \in \operatorname{Path}\left(v_{I}, v_{j_{S}, i} ; q\right)\right\} \circ f_{s}^{(i)}\right) \\
& =\bigcup_{s=1}^{k(i)} S\left(U\left\{\hat{P}(\mu) \mid \mu \in \operatorname{Path}\left(v_{I}, v_{j_{s}}, i ; q\right)\right\} \circ f_{s}^{(i)}\right. \\
& =\bigcup_{s=1}^{k(i)} S\left(U\left\{\hat{P}(\mu) \circ \hat{f}_{s}^{(i)} \mid \mu \in \operatorname{Path}\left(v_{I}, v_{j_{s}, i} ; q\right)\right\}\right) \\
& =\bigcup_{s=1}^{k(i)} S\left(U\left\{\hat{P}\left(\mu^{\prime}\right) \mid \mu^{\prime} \in \operatorname{Path}\left(v_{I}, v_{i}: q+1\right)\right\}\right) \\
& \left.=\bigcup_{s=1}^{k(i)}\left(U S\left(\hat{P}\left(\mu^{\prime}\right)\right) \mid \mu^{\prime} \in \operatorname{rath}\left(v_{I}, v_{i}, q+1\right)\right\}\right) .
\end{aligned}
$$

Because of the simple observation that

$$
\begin{gathered}
\hat{P}\left(v_{I}, v_{F}\right)=\bigcup\left\{\hat{P}(\mu) \mid \mu \in \operatorname{Path}\left(v_{I}, v_{F}:-\right)\right\} \\
=\bigcup_{m=0}^{\infty}\left\{\hat{P}(\mu) \mid \mu \in \operatorname{Path}\left(v_{I}, v_{F} ; m\right)\right\} \\
\text { it follows that } S\left(\hat{P}\left(v_{I}, v_{F}\right)\right)=X_{t}^{M i N} .
\end{gathered}
$$

REFERENCES

1. J.A.GOguen - "On Homomorphism, Correctness, Termination, Unfoldments and Equivalence of Flow Diagram Programs". Journal of Comp. System Sci., vols, nr .3 (1974).
2. G.T. Herman, G.Rozenberg-"Developmental Systems and Languages" North-Holland (1975).
3. S.I strail-"Context-sensitive Languages: Recursivity, Fixedpoint theorems and applications to program semantics and number theory". Ph.D.Thesis, Univ. Bucharest, March 1979.
4. S.Istrail-"A fixed-point approach of context-sensitive languages using context-free grammars with choice" (submitted for publication).
5. S.I strail - "On the weak equivalence problem of SICK-OL systems with some generative devices". Annalles Univ.Iasi, T.XXIII, S.I.a, f.2 (1977).
6. S.I strail - "SICK OL systems and simulating ability" (submitted for publication).
7. A.s a 1 o ma a - "Formal Languages" Academic Pcess, New York and London (1973).
