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ABSTRACT 

This paper generalizes the ALGOL-like theorem showing that every 

~-free context-sensitive (recurslve-enmmerable) language is a 

component of the minimal solution of a system of equation X=F(X), 

where X=(Xl,...,~), F=(F1,...,Ft), t>ll and Fi, l~ i~<t are regular 

expressions over the alphabet of operations:{concatenation, reunion, 

kleene "+" closure, nonereasing finite substitution (arbitrary finite 

substitution), intersectlon~. 

In the second part is presented a method which constructs for a 

monadic program a system of equations (in the above form) so that 

one of the components ol the minimal solution of the system gives 

the partial function f computed by the program in a language form: 

an+l~;bf(n)+l I n~Dcm f~ ° 

1 • PRELIR~INAR~S 

Let V be a finite set of symbols, V ~ the free monoid generated 

by V,Yt the unit of V ~, V~= V*--~t} 

The elements of Vmare called words and the subsets of V'are cal- 

led languages. We suppose the reader familiar with the basic facts 

about formal language theory [ 7 ] and developmental systems [ 2 ~ . Let 

us denote by R, CF, CS, CS~t, R.EE the classes of regular, context-free, 

context-sensitive, ~-free context-sensitive and recursive-enumerable 

languages. 

DEFINITION. A OL-system is a triple S =<V,P,w>where P is a finite 

set of pairs, PCVxV~with the property that for every a eV, there 

exist~ ueV* so that (a,u)E P; the elements of P are called rules and 

are usually denoted by p >q, for (p,q)e P; w is a word from V* , 

called the axiom. The set P is called table, and the pair S'=<V,P> 

is sometimes called OL-scheme. 

The binary relation ~S cVmx V e is defined by w I ~ w  2 if 

w I = a I ... a t , w 2 = u I ... u t, t~zo, ajeV, uj~V ~, l~<j.<t and 
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for every i, l~<i~t, ai--~ ui&P. 
The relation ~ denotes the reflexive transitive closure of 

S 
. 

S 
A l~nguage L is called OL language if there exists an OL-system 

S so that L($) = L. 

A generative device, which is a derivational restricted OL system 

is introduced in the follo~wing lines. 

DEFINTTION. A ~erturbant configuration for the OL-scheme S =< V,P~ 

is a family ]-[= (~a)a~V where for every a6V, ~a =<n(a), Ea,F a > 

and 

i) n(a)>~ 1 n(a) 

=v+ 
i=l 

= . ) V~ iii) F a { F (I) F (n(a)) ,~ ~ F(~ )~ (P~[a} x ) 

l~< i~< =(a) 

Let be ~ a family of languages. A perturbant configuration is 

ca!leg ~-perturbant configuration for an OL scheme S if IK =( ~a)aeV 
. . . . .  

and for every aeV and i, l~<i~ n(a) we have E i 

DEFINITION. A SICK-OL system is a triple ~ =(S,]-K,w) where: 

i) S = < V,P,w > is an OL-system 

ii)~ is a perturbant configuration for the scheme S'=~V,P >. 

iii) w is the axiom of ~ , w~V~o 

We define now the following binary relation ~ , for w = a I ...a t , 

U=Ul,...,u t with akeV, Uk6V ~, l~<k~<t we put w ~ u iff for 

w EE (s) every J, I$ j ~<t aj ---> uj F (s) where "s" is defined by • aj " , e aj , 

(In words, we can apply for a letter "a" occaring in a word w I rules 

from those set in F a corresponding to those set in E a which contains 

w I) • 
Let ~ be the reflexive transitive closure of 

The language generated by the SICK-OL system ~=(S,U,w) is defined 

={uiu * "  . . . .  

A language L is called SICK-OL ' language if there exists a SICK-OL 

system F so that L(~) = L. 
DEFINITION. An extended SICK-OL system is a ~-tuple~ ~ =(S, VK, w,Z), 
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where ~= (S,~[,w) is a SICK-0L system, S' = <V,P> and ZcV. 

The language generated by the extended SICK-0L system ~t= (S,U, 

w~Z) is given by L(~') = L(S,SV,w) N Z*. 

Let us denote by SICK-0L the class of SICK-OL languages. If~ is 

a family of languages~ SICK-OL denotes the class of languages 

obtained from those SICK-0L system with ~-perturbant configurations. 

If the rules of a certain type of L systems do not erase, the L- 

system is called propagating. 

We add the letters P and E (or both) to the abreviation of L- 

systems to denote the classes of corresponding Propagating and Extended 

L-systems. 

2. TWO FIXED-POINT THEORE~:IS 

In this section we present two fixed-point theorems, one for C Syt 

and another for RE. They are generalizations of the well known ALGOL- 

like theorem. 

In the following we are interested in P S!CK-0L systems with R- 

perturbant configurations. 

THEORE&[ 1. For every 7b-free oentext-sensitive language L, there 

exists a propagating extended R SICK-0L system ~l so that L(~' )=L. 

PROOF. Let G=(IN, IT,Xo,F) be a context-sensitive grammar so that 

L(G)=L and suppose that 2b ~ L. The rules of the grammars are in the 

form pxq--~ puq where p,q ~ V ~, x6I N, u@V + and V = I N D I T • Thus 

no rules in the form Xo--> Yb , belongs to F. 

Let us consider a new alphabet I N =IT1 a6 IN}" We need some pre- 

liminary notations: 

I P,q  , v÷, 

If t x is the number of elements of F(x) then: 

T x = (p.~, r ) ~ Pi x r i ~ Pi u riEF, l~< i< t x 

(the set of all contexts for x, used in the rules of G). 

Z(i,x) = ~-->ul Pi x r i ~ Pi u r i E F U -x ~ -x 

£ x x x x v~} 
F(i,x) = ~ Z(j,x) I Pi = vpj, r i = rj z,v,z 

r V  C{V p rj I : v pi, E(i,x) = V Pi x x V ~ x x 

rj = riz, v,zeV ~, vz ~)t • 

We notice that for i i J , !4i,j~<t x, E(i,x) ~ E(j,x)=~ . 
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We intend to construct a propagating extended SICK-OL system ~l= 

=(S,T[,Xo,IT). So that L(~') = L(G). 

We define S = < V ~j ~N' D>, where 

x eI N 

We define a R-perturbant configuration ~= (Tly)yeVh)~N by 

I) for xEI N, ~'x = < 2,Ex,Fx~, where 

~e~, m~ =<t x + i, E x, Fx>, where 

F(i) = F(i,x), I$i~ t x 

(tx+l) 
EZ , 

E~ I) = 

F~2) = 

2) for 

E~ i) = E(i,x), 

(tx+l) tx 
E- = v+~U 
x i=l 

3) fora~I~, m : <I,(vuiN> + ,{a-~ a}> 
a 

DEFINITION. A Self-controled Tabled 0L system (SC-TOL) is a 5-tuple 

~=(V,m(N),D,C,w) where 

i) V is ~he alphabet of ~ ; 

li) m(~) is a positive integer; 

"{ -i-l~'m(~) D i ~ Dj =~ ,m(~f j l~<i,j.<n (~) iii) D = D i _ , 

~J D i = V + 
i=l 

C ~m(~) , CiCV x V ~ is a table, l.<i.<m (~) iv) c = i]i= ~ 

If ~ is a SC-TOL system, the following binary relation is 

introduced: for w = a I ... a t , u = u I ... u t with the property that 

akEV and UkEV, ~ l~<k~<t we put w~u iff for every j,l~< jyt, 

aj---~ uj6 C s, where "s" is defined by wED s • (In words, we can apply 

to w rules from a table C s iff wEDs). 

The definitions of ~ j language generated by ~ , SC-TOL language, 

E SC-TOL, ~ SC-TOL can be obtained similarly. 
A 

Let us denote by T the finite substitution generated by a table T. 

THEOREM 2. For every SC-TOL system ~ there is a SICK-OL system ~ so 
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PROOF. Let us suppose that we have an S0-TOL ~= (V,m(~),C,D,w). 

Then we define a perturbant configuration ~ = ( f~a)a~V by 

~a = (m(~),D, ~C i~ (a x V*) ~ m(~) ) 
i=l 

The SIGK-OL system ~= (V,~[,w) generates exactly L(~). 
The converse of Theorem 2 is also true. 

THEQ~ 3. For every SICK-OL system ~=(S,~[,w) there exists an 
equivalent SC-TOL system ~ = (V,m(~),D,C,w), i.e. L(~)=L(~). 

PROOF. Let be V ={al,...,a s ? and ~[detailed by 

E(i)aj , Fa(i)j , l~< i~<n(a~), l{j~s. 

For kj variyng in {1, ..o ,n(aj)} , l~< j~s, let us consider the 

sets: 
(k I ) (k2> (k s ) 

E~l ~ ~a2 f~ '" ~ Eas : T(h'''''ks) 

Now we have a partition of V ~ given by the collection 

Z~ -- [~(~l .... ,ks) I ~(k I, .... ~s ) ~ * , 

kje~l,...,n(aj)}, 1.<i.(s}. 
If m is the number of sets in /k we define a SC-TOL 

O 

: <V,m o, ...,ks) 1 s) Z }, 

{Z(kl,...,ks) I T(skl,..f,k s)( ~ ~}, w), where 

Z(kl,...,k s) = <2 ~ ~i~ 
i=l i 

It is easy to see that 

~(y) =L (~). 

COROLLARY i. SICK-OL = SC-TOL 

R_ SICK-0L : ~ ~_ SC-~OL _DCs A 

The inclusion presented in the Corollary 1 is in fact equality. 

THEOREM #. Every propagating R SC-TOL system generates a context- 
sensitive language. 
COROLLARY 2. 

EP R SICK-0L = EP R_ SC - TOL = CS~ 

THEOREM 5. For every SC-TOL system ~= (V,m(~),P,Q,w) there exists 
a system of equations 



294 

t 

n=l 
sol~tion of ( ~ )  • 

X 1 = F!(XI,...,X t) 

x t = Ft(X ~ . . . .  ,x t )  

,..., % ~ is the minimal 

PROOF. Let be the system of equations 

A 

with t = m(~) and let us denote Fi(YI, .... Xt)=qi(P i ~ (X I~ ... 

• . .  L / z  t L / [ w }  ) ) .  

n = o  

and 

X i = ~... 

We obsez~e that xin) is the set of all words from. L(~) with the 

property that are obtained in n steps of derivation in ~, and the 

last table used is Qi • Of course k~ IN is the set of all words in L(~) 

with the property that the last table used is Qi" 

Now it is manifest that t 

~IN 

i=l 

T~CREM 6. Every E SG-TOL L is a component of the minimal solution of 

a system of equations in the form (~). 

PROCF. Let us consider ~1=(V,m('~I),P,Q,w,~l:) and a copy of ~/with all 

letters a in V in the form ~: ~/ = (~,m(~'),},~,~,M). 

Let us define now a SC-TOL ~ . 
c ~ ~ a new symbol. We consider an alphabet V' = V ~ M ~)t~j ~- 

Let us define a finite substitution h on V' by h(a) = a,a~ , 

l) FO~ i, Z~i\~m (~) take 

R i = h(~i)~ M + and 

2) Rm(~,)÷l = Wi+' Tm(~ '  )+ I  = { x ----) x ~ x e V ' }  
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3) 

~) 

We define the SC-~OL ~i by 

,,( ~')+2 
(v,)+- U Ri = ~m( ~')+3 

i=l 

El = (v',m(~')+3, R, T,¢) 
and we associate to ~ the system of equations: 

A 
Xl = %% n % U--.u x 

xt = ~t ( t • (Xl U ...UXtU{f})) 
where t = m( ~1 )+3. 

We have t 
4~!N J~!N ~.~IN ) 

-2 = ~(~')+I = ( ['] /'~ Rm('~")+l 
i=l t 

(because Tin( ~')+2 is the identity) = ( x~IN)g~lvT + = L('~l)~ X +. 

It is easy to see that ~6L(~i) iff u 6 L(~) iff ueL(~l) /~ X+- 

T~VEOREr~ 7. Let us consider the following data: 

i) V an alphabet; 

ii) T1,...,T p, Ft-free tables on V; 

iii) R1,...,R p, a partition of V + with each R i regular; 

iv) w a word over V. 
Then, each component of the minimal solution of the system 

/% 

= ~p (R~ ~ (x I U -.. U xpu t~ ) 
is a context-sensitive language. 

PROOF. The system of equations defines a SC-TOL ~= (V~p, {RI,...,Rp} ' 
P 

{T1,...,Tp] , w) and we have that L(~) = ~ ~i iN, where X MiN = 
i=l 

= (~iN, ...,x~iN]t . is the minimal solution of the system. 

It ~n be pro~e~ that x[~ i~ : ~i(~,(~) Fh h), fo~ a~_~. i, !.< i~< p. 

By theorem # it follows that L( ~ ) is in C S2~ , and so is 
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A 

OOROLI~R[.~, A language L ~V + is in C~S if and only if it is a 

component of the minimal solution of a system of equations in the 

form fulfiling the conditions i) - iv) from Theorem 7. 

CORCLLARY 4. ~ve~j C_~S language L CV + is a component of the min4~mal 

solution of a system of equations in the form: 

, ~ Xl = FI(Xl,...,~) 

(~) ~L .................. X t = Ft(Xl,...,X t) 

where F1,...,F t are regular espressions over the alphabet ~".", "[j", 

,,+-, "h~ ', "n ") U v ~),(~, (h a aerobes t~e ~ -~ree finite 
substitution). 

CONJECTURE !. The converse of the Corollary # is also true. 

If the above conjecture holds, we have a fixed-point characteri- 

zation of C S~languages using the set of operations:~.,~] ,h~, ~ ,+~ @ 

The essential point seems to be the use of i~tersection, because 

without "~ " a system of eqoations of type (~) has CF languages as 

components of the minimal solution. 

CONJECTURE 2. A language is in~C~S~%, iff it is .a component~ of the 

minimal solution of a system (~) using only [., ~ , (]} • 

T~ORE~ 8. A language L ~V ~ is recursive-enumerable iff is a component 

of the minimal solution of a system of equations in the form 

I X1 = F 1 (X1,.-.,X t) 

x t = F t (Xl,-..,x t) 

where FI,...,F t are regular expressions over the alphabet: ~",", 

" ~)", " , ", "h", "n " }U { ),( ~ ~) V U~A]where A stands for 

the empty word ~ • 

R~2~A~ l. The result on' the Theorem 8 can be ex~ended to the case 

when instead of letters of the alphabet V we consider a finite set of 

recursive-enumerable languages over V. 

3- SOME CQNSID~ATIONS ABOUT FIXED-POINT SEMANTICS OF MONADI ~ 

PROGRAMS 

We work in this section with programs in the formalism presented 

by J°A. Gcguen in [ lJ. 



297 

Speaking heuristically now, in this section we consider programs 

consisting of operation and tests, each performed directly on values 

stored in memory. These tests and operations will appear as (labels) 

of edges in a graph, with all of the partial functions representing 

the several alternatives of a test emanating from the same node. Thus 

a path in this graph represents an execution sequence for the in- 

structions of the program. It should be noted that these flow diagram 

programs are not purely syntactic entitles: a specific interpretation 

is assumed to be already given for each operation ~nd test instruction. 

One of the question of greatest interest for such a program is 

semantic: What function does it compute? 

We give now the formal definitions. 

A (directed) graph is a pair, G = (V,E) where V is a finite set 

of nodes, E is a set of edges ECV x V. 

An exit node V' is a node with the property that there are no 

edges in G with source v'. 

We denote by,the class of sets in the form N r, r ~o, and ~o 

the class of partial functions between sets in~. 

A Program is a pai~ (G,P) where i P I : V )v4 O, 

P : E--Y~with the property that for every (Vl,V 2) ~ E, 

P(Vl,V2),IPl(v I) -~IPl (v 2) 

A program (G,P) is called deterministic if whenever e,e' are 

edges with same source node, the partial functions Pe, Pe' have dis- 

joint sets of definition. 

If we denote by Pa(G) = ~ (v,v') I there exists a path in G from v 

to v ~ ~ we can define the behavior of a program. We can extend the 
J A 

functions P : E -~ ~ to P : P~(~)~P . ~ fact, if (Vo,V 1 

...,v t) is the sequence of nodes which describes a path in G from v o 

to v t we have 
A 
P(Vo,...,v t) = P(Vo,Vl)O... o P(Vt_l,Vt). 

Also we have the following result stated as Proposition 5 in [1S : 

If (G,P) is a deterministic program and if f, f' are path in G with same 

source, such that neither is an initial segment for the other, then 

P(f) and P(f') have disjoint sets of definition. 

DEFinITION. The behavior or complete partial £unoti0n computed b~ the 

program (G,P)with entl V at v and exit at v' is 
A 

f a path from v to v' in G~. 
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It is easy to see that if (G,P) is deterministic and v' is an exit 

node, then F(v,v')ia also a partial function (Corollary 6 ~l ] )o 

Let us consider RelN the class of relations over N. We use three 

symbols ~'s" "b", " " , #~ in order ~o define the function S: Rel N > 

~(a+~ b +) given by S(R) :{an+l#@ bm+l I (n,m) 6R}. (Note that 

~(A) is the power-set of ~). 

~or a partial function f • N ---b ~, if Don f is the definition 

domain of f, we have 

S(f) ={a n+l eb f(n)+l I neDomf~ 

We notice that the language S(f) encodes the association realized 

by f. 

Our intention is 9o work wibh such type of !ancuages instead of 

functions, in the definition of monadic~, i.e. programs which 

use only one-variable functions. 

In fact, if (G,P) is a monadic deterministic program we can 

consider the diagrsm 
s ?( 

- ,----> N ~ a + ~ b +) 

We observe that the function S is bijective, and its reverse 

F: ~(a + @ b +) ~ Rel N can be interpreted as a "forgetful" 

operator, i.e. forgets the language encoding of relations over N. 

If "o" stands for the relation composition, we have: 

S(RIO R 2) : S(FS(R I) o FS(R2)). 

The above equality defines an operator which beginning with two 

languages S(R I) and S(R 2) gives a new languages S(R I o R 2). 

More formally, the operation can be expressed with classical 

operators. 

Let be c, 4~lnew symbols, end the languages: 

L 1 ={am@bnl (m-l,n-l)6R~ L2:%bk@icS I (k-l,s-l) eR2} • 

We consider the language L 3 : Ll~lC+ ~ a + ~WF L 2. 

We have : 

ame bn#  °t I n-1) eR l, (n-l, t-l)eR2 } 

The homemorphism h, defined by h(b) : h(@l) --71 , h(a):a~ h(c)=b 

maps L 5 into S(R 1 o R 2), i.e. 

h(L3 ) : {a m=~gb n [ (m-l, n-1)eRIO R2} : S(RIO R 2) 

Therefore, if h' is a new homomorphism given by h'(a):b, h'(~;)=~l , 

h' (b)=c we have the following representation 
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(0 s(R~ oR2) = h(~ I~Io + #h a ÷ ~ ~2 ) 

= h(S(R l)@~c + gh a +@ h'(S(R2)) 
We denote by ~ this new operator, i.e. 

, ~<a ÷ ~ b+) x 9<a + ~ b ÷) --~9(a + ~ b +) 
given by 

(EI,E 2) = S (F(E I) o F(E2)) 

The operator can be extended for any t ~ 2 to 

t 

Suppose that we have already defined the operator for s; now the 

extension to s+l is defined by 

~(~I' .... Es+l? = ~ ( ~ (~l' .... ~s )' ~s+l > 

In the rest of this section we consider monadic deterministic programs 

with one memory location only. 

The extension to monadic nondeterministic programs with a finite 

number of locations requires a little bit more complicated notational 

apparatus. 

Let (G,P) be a monadic deterministic programwith one location. 

If G = (V,E), for every e6E, by the way of P and S we have associate 

a language, i.e. 

P(e) : i PI(Vl)---~IPI (v2), e = (Vl,V2) 

and S(P(e)) e ~a+~ b+). 

To a path from Pa(G), say f _ : (Vil,Vi2,...,Vik) we assooiete the 

language 

S(~) = S(P(Vil,Vi2) o -. )o...o )) P(vi2'~l } P(Vik_l'Vi k 

= ~ (P(vii,vi2), .... P(Vik_l,Vik)) 

EF~J~J?LE 

(G,P) 

x$1oo 

INITIAL 

x <--2x 
.% 

2 x~--x 

B 

x > I00 

FINAL 

x the location 
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We have 

~(:~ , - -  2 ~ : ) = { a  n+l ~ b~÷] ' l  n> , 0 t. 

s<~<loo) = {a ~÷l ~b n÷l I ~,<loo} 
S(x>loo) ={a n+l ~ bn+l ~ n>loo} 

Let us consider the path ~ : (A, B, A)® 

We have 

S(~) = S((x <---- x 2) 0 (x~lo0)) = 

bn2÷li n o}>o  (an+l.bn*l I n loo}>) 
{an+l ,b~2÷l I n2÷l~loo}. 

Now, for such a program we intend to construct a system of equations 

with variables in the power-set of a finite generated free monoid so 

that one of the components of its minimal solution gives its behavior 

as a function encoded with S. 

Let be (G,P) a program with the location x, and G=(V,E).Suppose 

that v I and v F are the entry and the exit nodes. 

If V =~vI = Vo,Vl,...,vt = vF}then we associate a variable X i 

(varying in" ~(a+ 9~ b+)) to each node v i, o~ i~t. 

For a node vi, let be (Vjl,l,Vl),...,(Vjk(i), i, v i) the collection 

of all edges in G which enter in vi, and f~i)~ ,f~ij~ ~ '''" k(i) the corres- 

ponding partial functions associated by P. 

For every i, i~ i~t we consider the equation 

k(i) f~i) 
Xi = ~--1 S(~(Xjs,i) o ) : 

k(i) S(f~i) )) 
[ ~ (Xjs,i , 
s=i 

To the node v I = v o we associate a constant equation 

l~tting together, we obtain the system 

xi = U ~ (xis,i , s(% (i>>>' 
s=l 

which plays a major role in the sequel. 

14i.<t 
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Because of the representation of ~ given in the formula (!), the 

equations of X i, l~ i~t have the form presented in the Theorem 9 

with the addition of Remark 1. 

So, at this moment, such a system has a minimal solution, with 

all components recursive- enumerable languages: X MiN ~o ~iN ~N) = ( ~to,, • 

We intend to show the following 

s(P(v.r,vF ) ) = "~i~ 

I.e., for every monadic deSerministic program with one location,there 

exists a system of equations in the form (4-) so that its semantics - 

in some encoded form - is a component of the minimal solution of the 

system • 
A A 

PROOF. We have P(vi,v F) =U{ P(~)I~ path in G from v I to vF}and 

s(P(vI,vF)) = U S(P(ff))i ~th in G from v I to v F . 

co 4 x(n+l) n) On the other sldo, U n) whe  t =  tCXCo 
n=o ~n) ) ... and 
k(i) 

We intend to show that for every i and p, with l~<i~<~, p>zl we have 

4 u { ^ = S(P(~))l~path in G of length p from v I to v~ }. 

We denote by Path (vi,vj;m) the set of all paths of length m in G 

from v i to vj, and by Path (vi, vj;-) the set of all path in G from 

v i to vj. 

For p=o, X(P)=~, l~<i~<t. 

We take first p=l. If am~ bn6 X(i I), we have for 
k(i) 

41 = ¢o) 
s=l ~s'" 

a number r, so that X(. O). = X(o°) and am#~bn~S(f(ri)) 
~r,l 

Hence (v~ ~,v~) is the edge (VT,V~) , and it follows that am~@b n 

s(9(vl,vi{l and so the inc!usion xi()CO{S(P(k,.))i~6Path(vi,vi,l) } 

holds. 

Conversely, S(P(vi,vi)) = S(F(Xo(°))o F(S(P(vi,vi)))) = T (X~ °)' 

S(P(vi,vi))) C X(1), because (vi,v i) E E implies that in the equation 

of X i there exists a r so that Xjr,l= X o. 
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Now it is manifest that (A) holds for p=l. Suppose that it is 

true for p~'q. Then we have 
k(i) 

x~ q+l) k.) S(F(X i 
s:l 

F A • 
: s(U tFS<P<f))l~ S ~ath<v~,va$,i,q) ~ 

k(i) 

k(i) 
t) 
s=l 

k(i) 
X 
k(i) 

U 
s=i 

k(i) 
LJ 
S=l 

k(i) 

U 
s=l 

{ Pat (vI'V s, i '¢}°  

o f~l)) 

f(i)) 
o s 

f~i) 

Because of the simple observation that 

m--o 

A ~tiN. 
it follows that S(P(vI,VF)) = 

i. J.A.G o g u e n - 

2. G.T.H e r m a n , 

3. S.I s t r a i 1 - 

#. S.I s t r a i 1 - 
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