
HapCompass: A fast cycle basis algorithm for

accurate haplotype assembly of sequence data

Derek Aguiar 1,2 Sorin Istrail 1,2,∗

Dedicated to professors Michael Waterman’s 70th birthday and

Simon Tavare’s 60th birthday

1Department of Computer Science, Brown University, Providence, RI, USA

2Center for Computational Molecular Biology, Brown University,

Providence, RI, USA

Abstract: Genome assembly methods produce haplotype phase ambiguous

assemblies due to limitations in current sequencing technologies. Determin-

ing the haplotype phase of an individual is computationally challenging and

experimentally expensive. However, haplotype phase information is crucial

in many bioinformatics workflows such as genetic association studies and

genomic imputation. Current computational methods of determining hap-

lotype phase from sequence data – known as haplotype assembly – have

∗to whom correspondence should be addressed: Sorin Istrail@brown.edu

1

difficulties producing accurate results for large (1000 genomes-type) data or

operate on restricted optimizations that are unrealistic considering modern

high-throughput sequencing technologies.

We present a novel algorithm, HapCompass, for haplotype assembly of

densely sequenced human genome data. The HapCompass algorithm oper-

ates on a graph where single nucleotide polymorphisms (SNPs) are nodes and

edges are defined by sequence reads and viewed as supporting evidence of co-

occuring SNP alleles in a haplotype. In our graph model, haplotype phasings

correspond to spanning trees and each spanning tree uniquely defines a cycle

basis. We define the minimum weighted edge removal global optimization

on this graph and develop an algorithm based on local optimizations of the

cycle basis for resolving conflicting evidence. We then estimate the amount

of sequencing required to produce a complete haplotype assembly of a chro-

mosome. Using these estimates together with metrics borrowed from genome

assembly and haplotype phasing, we compare the accuracy of HapCompass,

the Genome Analysis ToolKit, and HapCut for 1000 genomes and simulated

data. We show that HapCompass performs significantly better for a vari-

ety of data and metrics. HapCompass is freely available for download at

http://www.brown.edu/Research/Istrail Lab/.

2

http://www.brown.edu/Research/Istrail_Lab/

1 Introduction

High-throughput DNA sequencing technologies are producing increasingly

abundant and long sequence reads. Third generation technologies promise

to output even longer reads (up to a few kb) with increasingly long insert

sizes. While the latter promises to alleviate many of the difficulties asso-

ciated with high-throughput sequencing pipelines, both technologies suffer

from producing haplotype phase ambiguous sequence reads. Determining the

haplotype phase of an individual is computationally challenging and exper-

imentally expensive; but haplotype phase information is crucial in bioinfor-

matics workflows (Tewhey et al. [2011]) including genetic association studies

and identifying components of the missing heritability problem (e.g., phase-

dependent interactions like compound heterozygosity (Krawitz et al., 2010,

Pierson et al., 2012)), the reconstruction of phylogenies and pedigrees, ge-

nomic imputation (Marchini and Howie, 2010), linkage disequilibrium and

SNP tagging (Tarpine et al., 2011).

Two categories of computational methods exist for determining haplo-

types: haplotype phasing and haplotype assembly. Given the genotypes of a

sample of individuals from a population, haplotype phasing attempts to infer

the haplotypes of the sample using haplotype sharing information within the

sample. In the related problem of genotype imputation, a phased reference

panel is used to infer missing markers and haplotype phase of the sample

(Marchini and Howie, 2010). Methods for haplotype phasing and imputa-

3

tion are based on computational (Halldórsson et al., 2004) and statistical

inference (Browning and Browning, 2011) techniques, but both use the fact

that closely spaced markers tend to be in linkage disequilibrium and smaller

haplotypes blocks are often shared in a population of seemingly unrelated

individuals.

In contrast, haplotype assembly – sometimes referred to as single individ-

ual haplotyping (Rizzi et al., 2002) – builds haplotypes for a single individual

from a set of sequence reads (Schwartz, 2010). After mapping the reads on

a reference genome, reads are translated into haplotype fragments contain-

ing only the polymorphic single nucleotide polymorphism (SNP) sites. A

fragment covers a SNP if the corresponding sequence read contains an al-

lele for that SNP. Because DNA sequence reads originate from a haploid

chromosome, the alleles spanned by a read are assumed to exist on the same

haplotype. Haplotype assembly algorithms operate on either a SNP-fragment

matrix containing a row for each fragment and columns for SNPs or an as-

sociated graph that models the relationship between fragments or their SNP

alleles.

A considerable amount of theory and algorithms have been developed for

the haplotype assembly problem (Halldórsson et al., 2004, Schwartz, 2010).

One approach is to restrict the input to convert an NP-hard optimization

into a computationally feasible problem. For example, some authors have

considered restricting the input to sequences of small read length or with-

out mate pairs (termed gapless fragments) (He et al., 2010, Lancia et al.,

4

2001, Rizzi et al., 2002, Bafna et al., 2005, Li et al., 2006). These models,

however, are often unrealistic for current high-throughput and future third

generation sequence data. Moreover, gapless fragment models are particu-

larly problematic as paired-end sequencing is required to cover SNP alleles

that are spaced at distances longer than the sequencing technology’s read

length. Other combinatorial and statistical algorithms have been developed

for general data that relax the optimality constraint (Panconesi and Sozio,

2004, Bansal et al., 2008, DePristo et al., 2011, He et al., 2010). For ex-

ample, HapCut, which was used to assemble Craig Venter’s diploid genome,

computes maximum cuts on a graph modeled from the fragment matrix to

iteratively improve their phasing solution (Bansal and Bafna, 2008). Several

of these methods were developed when Sanger was the abundant form of

sequencing and thus it is unclear whether they can handle massive data on

the scale of the 1000 genomes project and beyond. We will test this hypoth-

esis for two leading haplotype assembly algorithms: the Genome Analysis

ToolKit’s read-backed phasing algorithm (DePristo et al., 2011) and HapCut

(Bansal and Bafna, 2008). For a survey of these approaches see Schwartz,

2010.

In this paper, we present simulations to highlight the type of data needed

to completely phase a chromosome and two algorithms based on local opti-

mizations on the cycle basis of an associated graph. Our algorithms, collec-

tively termed HapCompass, impose no prior assumptions on the input struc-

ture of the data and are generally applicable to high-throughput and third

5

generation sequencing technologies, including hybrid sets of reads from dif-

ferent technologies. HapCompass is capable of computing fast genome-wide

haplotype assemblies primarily due to the low complexity of computing a

spanning tree cycle basis. Futhermore, our method is faster and significantly

more accurate than leading algorithms HapCut and the Genome Analysis

ToolKit’s (GATK) read-backed haplotype phasing algorithm using a variety

of metrics on real and simulated data.

6

2 Methods

2.1 Graph theory models for haplotype assembly

The input to the haplotype assembly problem is a set of DNA sequence reads

for a single individual. Sequence reads are mapped to the reference genome to

identify the SNP content of the reads. A fragment is a mapped sequence read

that has the non-polymorphic bases removed. SNPs for which the individual

is homozygous are not useful for assembly because a fragment containing

either allele cannot uniquely identify which haplotype the allele was sampled

from. Furthermore, fragments containing zero or one heterozygous SNPs –

while potentially useful for SNP calling – are not useful for the assembly

of haplotypes and are discarded as well. Fragments containing two or more

heterozygous SNPs contain valuable haplotype phase information as they link

together each allele to the same haplotype and define a potential phasing.

Formally, we define the ith fragment fi as a vector of {0, 1,−} where 0 and

1 represent the major and minor alleles at some SNP site and ’-’ represents

a lack of information either because the read does not cover the SNP site

or there was a technical failure (e.g. in mapping or sequencing). We define

an m × n SNP-fragment matrix M whose m rows correspond to fragments

f1, ..., fm and n columns correspond to heterozygous SNPs s1, ..., sn. Each

fragment fi covers at least two of the n SNP sites; SNPs covered may not be

consecutive on the genome, e.g. when the fragments originate from paired

reads. We refer to the SNP allele k of fi as fi,k. We say that two fragments

7

fi and fj conflict if

∃k|fi,k 6= fj,k ∧ fi,k 6= ’–’ ∧ fj,k 6= ’–’

That is, two fragments conflict if they cover a common SNP and have different

alleles at that site.

Two fundamental graph models associated to the SNP-fragment matrix

M were introduced by Lancia et al., 2001 called the fragment conflict graph

and the SNP conflict graph. The fragment conflict graph, GF (M) = (VF , EF),

is defined as follows: the vertices are fragments, fi ∈ VF , ∀i and the edges are

{fi, fj} ∈ EF if fi and fj conflict ∀i, j. For an error-free M , each connected

component in GF (M) has a bipartition and thus the vertices can be divided

into two conflict-free disjoint subsets; the subsets define a haplotype phasing

for the SNPs associated with the connected component.

The SNP conflict graph, GS(M) = (VS, ES), is defined as follows: the

vertices are SNPs, si ∈ VS, ∀i and the edges {si, sj} ∈ ES if si and sj exhibit

more than two haplotypes ∀i, j. If si and sj exhibit three or four haplotypes,

then some read covering si and sj contains at least one error because only

two haplotypes are possible for a diploid organism. Methods like HASH and

HapCut employ different graph models where SNPs correspond to vertices

and fragment information is encoded in the edges (Bansal et al., 2008, Bansal

and Bafna, 2008). HASH and HapCut keep a reference to the current phasing

of the data and each edge is weighted proportional to the number of fragments

8

that cover the adjacent SNPs and agree with the reference phasing.

2.2 A new model: Compass graphs

Our algorithms operate on a new undirected weighted graph associated to the

SNP-fragment matrix M (similar to the SNP conflict and HapCut graphs),

called the compass graph, GC(M) = (VC , EC , w), defined as follows: (1) the

vertices are SNPs, si ∈ VC ; (2) the edges are {si, sj} ∈ EC if at least one

fragment covers both si and sj; (3) each edge {si, sj} has an associated integer

weight w(si, sj). The weight function w is defined by the fragments. Because

there exists exactly two phasings between any two heterozygous SNPs for

a diploid genome, let us denote the two possible phasings as 00
11 when the

haplotype 00 is paired with the haplotype 11 and similarly denote 01
10 the

other phasing. Our weight function w for a pair of SNPs simply counts the

difference between the number of 00
11 phasings and the number of 01

10 phasings

as defined by the fragments. Formally, let F be the set of all fragments

covering two SNPs si and sj. The weight w(si, sj) is defined as follows:

∑
fk∈F

[
1
(

(fk,i = 1 ∧ fk,j = 1) ∨ (fk,i = 0 ∧ fk,j = 0)
)

− 1
(

(fk,i = 1 ∧ fk,j = 0) ∨ (fk,i = 1 ∧ fk,j = 0)
)]

where 1(b) = 1 for b true and 1(b) = 0 for b false. We note that a subgraph of

a compass graph is also a compass graph. Figure 1 illustrates the relationship

9

between M and its compass graph GC(M).

Figure 1: The SNP-fragment matrix M is shown on the left containing four
fragments and four SNPs. Each pairwise phasing relationship defined by the
fragments is represented on the edges of the compass graph on the right.
A positive edge indicates there is more evidence in the fragments for the 00

11

phasing while a negative edge indicates evidence for the opposite 01
10 phasing.

The compass graph GC encodes information derived from the fragment set

regarding the phasings of SNPs in its edge weights. For example, fragments

covering three SNPs would provide phasing information for all the
(
3
2

)
edges

defined by the fragment in GC . The collected evidence for an edge may have

conflicting information, that is, some fragments may provide evidence for a

00
11 phasing while other fragments suggest a 01

10 phasing. An edge with weight

of zero occurs when evidence for both phasings between the pair of SNPs is

equal and thus both phasings are considered. An edge with a non-zero weight

is called decisive. A decisive edge in EC defines the phasing between its two

SNPs which is given by the sign of its weight i.e., majority rule phasing.

10

2.3 Problem formulations

Computing the two phased haplotypes consistent with a matrix M is trivial

for error free data. When errors are present, error correction may be modeled

by: removing a fragment (row), removing a SNP (column), or flipping the

matrix entry defined by a particular fragment and SNP (from 0 to 1 or vice

versa). Every M induces a particular GF , GS, and GC , and error correction

models on these graphs yield different formulations of the haplotype assembly

problem. There are four problem formulations that have received the most

attention in the literature:

1./2. Minimum edge/fragment removal (MER/MFR): Remove the mini-

mum number of edges/vertices from the fragment conflict graph GF (M)

such that the resulting graph is bipartite.

3. Minimum SNP removal (MSR): Remove the minimum number of vertices

from the SNP conflict graph GS(M) such that no two vertices are

adjacent.

4. Minimum error correction (MEC): Correct the minimum number of errors

in fragments of M (by switching the allele from 0 to 1 or vice versa) such

that the induced matrix M ′ is resolvable into two distinct haplotypes.

We note that in the MER formulation, although GF may be completely

resolvable, the resulting haplotypes may not be completely free of conflicts.

A consensus SNP is commonly chosen at the construction of the haplotypes.

11

When the input is restricted to gapless fragments, i.e. each fragment

covers a contiguous set of SNPs, MFR and MSR can be solved efficiently.

However, when considering sequence reads with an arbitrary length between

an arbitrary number of contiguous blocks of SNPs, MFR and MSR are NP-

hard (Lancia et al., 2001). MER is NP-hard for general input (Lippert et al.,

2002) and MEC is NP-hard even for gapless instances (Zhao et al., 2005,

Lippert et al., 2002).

2.3.1 Minimum weighted edge removal

The minimum weighted edge removal (MWER) optimization problem is de-

fined for a compass graph GC . Let L ⊂ EC be a subset of edges in GC and

let G′
C be the resulting graph created from removing L from EC . MWER

aims to compute an L such that the following conditions are satisfied: (1)∑
{si,sj}∈L |w(si, sj)| is minimal (cost of removed edges is minimal); (2) all

edges in G′
C are decisive; (3) choosing a phasing for each edge in G′

C by ma-

jority rule gives a unique phasing for G′
C . We call a subgraph of a compass

graph that meets conditions (1-3) a happy graph.

The MWER problem for GC aims at constructing the phased haplotypes

that are most witnessed by pairwise phasing information contained in the

fragments. Removed edges model the tolerance of some conflicting evidence.

The final phasing for the retained edges is obtained as a consequence of the

global unique phasing of the resulting happy graph.

12

2.4 Properties of the compass graph

We can extend unique pairwise phasings of decisive edges of GC to unique

phasings of paths. In other words, the phasing is transitive among the SNPs

along a path. An edge of GC is said to be positive (negative) if its weight is

positive (negative).

Lemma 1 There is a unique phasing between two SNPs si and sj if and only

if for any two simple edge-disjoint paths p and q in GC between si and sj,

the number of negative edges of p plus the number of negative edges of q is

even, and p and q include no 0-weight edges.

Proof 1 If there is a unique phasing between two SNPs si and sj then they

must be connected in GC. If there is one path between si and sj then the

phasing is unique because this one path induces the only phasing between the

two SNPs. If there is t > 1 paths between si and sj then there exists a total

of
(
t
2

)
pairs of paths. Let p and q be any two paths in the traversal from si to

sj. We say that p and q have k and l edges with negative weight respectively.

If k and l are both odd, the phasing induced between si and sj by both paths is

10
01. Likewise, if k and l are both even, the phasing induced between si and sj

by both paths is 00
11. If k is odd and l is even, p defines the phasing as 10

01 and

q defines the phasing as 00
11 (and vice versa in the case of l odd and k even).

So if all paths between si and sj produce a total negative edge traversal count

that is even, the induced phasings cannot conflict. Likewise, if at least one

pair of paths produce a total negative edge traversal count that is odd then at

13

least one pair of paths disagree on the phasings of si and sj. Also, if there

is a unique phasing between two SNPs, no paths include a 0-weight edge by

definition. The other direction follows similarly.

Definition 1 A compass graph is happy if it has a unique phasing, that is,

for every pair of SNPs the phasing is unique.

Definition 2 A conflicting cycle in GC is a simple cycle that contains

an odd number of negative edges, at least one 0-weight edge or both. A non-

conflicting cycle, is called a concordant cycle and contains an even number

of negative edges and no 0-weight edges.

Corollary 1 A compass graph is happy iff it has no conflicting cycles.

In general an edge may be a member of many conflicting or concordant

cycles.

A spanning tree of GC is a connected, undirected subgraph that contains

no cycles. There is a unique path between every two vertices in a spanning

tree.

Theorem 1 Every spanning tree of a compass graph is a happy graph. Every

spanning tree of a happy compass graph has the same unique phasing as the

compass graph.

Figure 2 gives an example of computing a happy compass graph from GC

one edge removal step. Two spanning trees are shown in the happy GC which

correspond to the same phasing.

14

Compass
Graph Gc

4

-2

non-ST edge
--- ------1

ST edge

3

Happy
Compass
Graph Gc

, ,
, ,
,

, , ,
,

,'-2

4

, ,

, , , ,
-2

3

~~2
-3

~

-3

-2 -3
Spanning Tree A SNPs Spanning Tree B

SNPs
s 1 S2 S3 S4 Ss 56 s 1 S2 S3 S4 Ss 56 edges edges

(51 ,56) 1 0 (51 ,53) 1 1
(51,52) 1 1 1 0 (S6,Ss)

0 1 (51 ,56) 1 (ss,S3) 1 -3
-------------- (53, 54) 1 0 (53, 54) 1 0

(S4,S2) 1 0 (S3,Ss) 1 1
1 1 1 0 1 0 4! assembled haplotype • 1 1 1 0 1 0

Figure 2: A compass graph GC is shown on the left with two conflicting cy-
cles. One edge removal (s2, s3) makes GC happy by removing two conflicting
cycles in one step. All spanning trees (ST) of the happy GC correspond to
the same phasing but only two are shown in the lower right corner.

2.5 Cycle Basis Algorithm

We present two algorithms for the minimum weighted edge removal problem

on compass graphs. Our algorithms are based on optimizations involving

constructing cycle bases of connected undirected weighted subgraphs of GC .

The main idea is to consider all simple cycles in an undirected graph obtained

from a cycle basis. In short, we first compute a cycle basis for GC . An

efficient algorithm for generating a cycle basis first constructs a spanning

tree T of GC and defines an arbitrary root. Then, for every non-tree edge

e ∈ GC but e /∈ T , we form the cycle of e plus the paths from the adjacent

15

SNPs of e to their least common ancestor. We add the cycles created by this

operation on non-tree edges to the cycle basis. This spanning tree cycle basis

has cardinality |EC | − (|VC | − 1).

Algorithm 1

1. Remove all 0-weight edges from GC . The removal of edges with 0-weight

does not affect the MWER score and can therefore be removed.

2. Construct a maximum (or near maximum) spanning tree T . A maxi-

mum weight spanning tree basis may be preferable, but computing such

a basis is NP-hard (Deo et al., 1982).

3. The spanning tree cycle basis is computed in respect to T and cycles

are marked as either conflicting or concordant. Iterate (4-6) until GC

is happy:

4. Select a conflicting cycle at random and remove the edge e with weight

closest to 0; this represents the edge with the least amount of evidence

for phasing its SNPs. The removal of e can either remove a tree or

non-tree edge of T .

5. If e is a non-tree edge then T is obviously still a valid spanning tree.

If e is a tree edge then we add the non-tree edge ent into the spanning

tree T . After this step we clearly still have a spanning tree as any path

that previously passed through the removed edge e can now pass through

the added edge ent.

16

6. If e was a tree edge, compute a new cycle basis in respect to T ∪

ent. The addition of the non-tree edge into the spanning tree T might

introduce conflicts in existing concordant cycles in which case we add

these cycles to the set of conflicting cycles. However, in the worst case,

the algorithm will continue to remove edges until GC is a tree which is

a valid phasing thus the algorithm terminates.

7. Output the phasing corresponding to any spanning tree of GC . Report

the number of weighted edges corrected as the score of this phasing (or

report the weight of all remaining edges in GC).

Let the |EC | = m, |VC | = n and the number of non-tree edges |EC |−|T | =

m− n + 1.

Lemma 2 Algorithm 1 runs in O(m(m − n + 1)2 + (m − n + 1)(m log n))

time.

Proof 2 The removal of 0-weight edges in step (1) can be done in O(m)

time. Step (2) involves computing a (near) maximum spanning tree which

can be done in O(m log n) time. For step (3) we keep pointers at each vertex

pointing to the “parent” node in respect to an arbitrary root vertex. The

algorithm never traverse an edge more than m − n + 1 times. So this step

takes no longer than O(m(m − n + 1)). Again, step (4) takes no longer

than m(m − n + 1) time for processing all simple cycles in respect to T .

Step (5) processes one cycle, so, if the cycle being considered is c, then this

operation takes at most |c| time. Step (6) is dominated by O(m log n). For

17

step (7) the algorithm parses through each edge of GC thus this step takes

no more than O(m) time. Because we iterate through steps (4-6) at most

(m − n + 1) times and m(m − n + 1) >> |c|, the algorithmic complexity is

O(m(m− n + 1)2 + (m− n + 1)(m log n)).

Algorithm 1 is quite simple and, in practice, we use a more complex

algorithm that exploits the relationship between MWER and set cover.

Algorithm 2

• We follow steps (1-3) but replace (4) with a step that removes a set

of highly conflicting edges. In the MWER set cover formulation each

edge of GC is a set and each conflicting simple cycle is an element.

The simple cycle elements belong to the edge set if the edge is part of

that cycle. We then formulate the problem of resolving the conflicting

cycles as finding the set of edges (sets) of minimum weight such that

they cover all of the conflicting simple cycles (elements).

• Each conflicting simple cycle will have at least one edge removed, and,

removing one or more edges from a conflicting cycle creates a tree

which, due to Lemma 1, is non-conflicting. This, of course, would be

too computationally expensive to formulate for the entire graph so we

use this step on a subset of cycles. This subset is found by selecting the

edge that is a member of the most conflicting cycles (this can easily be

logged at the computation of the cycle basis).

18

• After removing a set of edges, we reconnect T . During the removal of

each edge, we find the non-tree edge whose absolute value of the weight

is the largest and add it back into T after all edges are removed.

• Step (6-7) is computed as before. Because the MWER score is influ-

enced by the order in which cycles are processed as well as the initial

maximum spanning tree, steps (1-7) are iterated many times and the

lowest score is reported as the solution.

Lemma 3 At the end of each step, GS is connected.

Proof 3 If only one cycle was corrected at a time then the non-tree edge

selected for inclusion into T provides a new path for vertices previously using

the removed edge. If more than one cycle was corrected by the removal of

one edge, then paths previously taking the removed edge can now take any

non-tree edge associated with the set of cycles.

Lemma 3 is critically important because it ensures we do not needlessly

separate components and create haplotype phase uncertainty.

The primary differences between Algorithms 1 and 2 is the local opti-

mization step where Algorithm 2 removes multiple edges using the set cover

formulation; this formulation models a sense of parsimony in that we prefer

the removal of edges that resolve multiple conflicting cycles at once.

Lemma 4 If the edge e is shared by k conflicting cycles then the removal of

e resolves the k conflicting cycles.

19

Proof 4 GC has had all edges with 0-weight removed thus each conflicting

cycle has an odd number of negative edges. Let ci and cj be any two of the k

conflicting cycles with negative edge counts of ni and nj. If e is positive then

ci and cj form a cycle whose negative edge count is ni + nj. If e is negative

then ci and cj form a cycle whose negative edge count is (ni − 1) + (nj − 1).

In both cases (odd+odd and even+even) a cycle is produced containing an

even number of negative weighted cycles.

An illustration of Lemma 4 is shown in Figure 2. There are two caveats

to Lemma 4 that are due to the complex relationship between sets: (1) the

removal of an edge will resolve conflicting cycles but may change concordant

cycles into conflicting and (2) the removal of successive edge after the first

may revert previously resolved conflicting cycles. These issues arise from the

set cover formulation which simply optimizes the sum of the weighted sets

and does not consider complex interactions between sets.

There are several ways to address these caveats. We may consider other

properties of the edges in our minimum weighted set cover formulation. The

weight on an edge e corresponds to the confidence in the pairwise phasing

between the two adjacent SNPs of e. Another measure of confidence for

e in GC is the number of conflicting and concordant cycles e is a member

of. The weight in the minimum weighted set cover formulation can then be

computed as a combination of the edge weight and conflicting/concordant

cycle membership. Because the number of conflicting or concordant cycles

an edge is a member of may change with the selection of the first covering set,

20

this minimum weighted set cover is solved iteratively. However, in practice,

we specifically address (1) by breaking edge-weight ties with the number

of conflicting cycles minus the number of concordant cycles and (2) by not

considering shared edges from any of the resolved conflicting cycles in future

removal steps of the same iteration.

Theorem 2 Algorithm 2 is polynomial and terminates with GC a happy

graph, i.e., having exactly one phasing.

Proof 5 Algorithm 2 retains Algorithm 1’s complexity with additional com-

putation in step (4). The greedy approximation algorithm for set cover, how-

ever, can be computed in linear time in the size of the sets so Algorithm 2 is

clearly polynomial if it terminates. Lemma 4 allows the resolution of many

conflicting cycles at each local optimization step but may also change existing

concordant cycles to conflicting. However, because the graph is connected at

the end of each step (Lemma 3) and we correct |EC |− (|VC |− 1) edges in the

worst case, the algorithm clearly terminates. We also have the property that

the final happy graph corresponds to a valid phasing because of Lemma 3.

3 Results

The direct comparison of algorithms for which the same problem optimization

is used (e.g. MEC, MFR, MSR) is straightforward. The algorithm that

computes the minimum number of errors to correct is clearly the winner,

21

for example. However, before haplotype assembly algorithms that optimize

different formulations can be compared, care must be taken to develop a

metric that best captures the more accurate solution.

3.1 Evaluation criteria for haplotype assembly

Before we consider new evaluation metrics that capture the quality of the

haplotype assembly, we address the haplotype switch error metric that has

been used previously when the ground truth is known. The haplotype switch

error metric is defined as the number of switches in haplotype orientation re-

quired to reproduce the correct phasing (Lin et al., 2002). It was originally

developed for the haplotype phasing problem and was among the metrics

used in the Marchini et al., 2006 phasing benchmark. Switch error is gener-

ally more favorable than pure edit distances for haplotypes because it more

accurately models phase relationship between adjacent SNPs.

This metric was originally developed for haplotype phasing algorithms

which operate on the genotype data of many individuals simultaneously.

Haplotype sharing and linkage disequilibrium are very important quantities

for haplotype phasing algorithms as the relationship among adjacent SNPs

allows methods to infer likely haplotypes in the data. In this manner, the

switch error metric accurately captures the close range relationship between

adjacent SNP phase. However, haplotype assembly algorithms operate on

much different data and assumptions. Phase relationships are inferred often

from long distance mate pair reads. The switch error metric does not accu-

22

rately capture these relationships. Furthermore, if two haplotype assemblies

do not produce the same amount of blocks of haplotypes or otherwise do

not agree on where to commit to a particular phasing, then the switch error

becomes biased towards those algorithms that phase less SNPs.

Instead, we suggest using a new metric inspired by genome assembly that

captures how well the haplotype assembly represents the input fragments and

can be applied regardless of knowing the true haplotypes. One of the most

meaningful statistics for genome assembly is how many sequence reads suc-

cessfully map back to the assembly. We can also slightly modify this metric

to ask the question: “How many of the phase relationships represented by

the read fragments are represented in the assembly?” This fragment map-

ping phase relationship (FMPR) metric summarizes how well the haplotype

assembly represents the input data.

Let the set of all fragments be F and fi the ith fragment of F . We denote

the kth SNP of fi as fi,k. The haplotypes produced from an algorithm are

denoted h1 and h2 and the allele of h1 at position k is denoted h1,k (h2,k

is defined similarly). Then the fragment mapping phase relationship metric

can be described as

∑
fi∈F

∑
fi,j ,fi,k∈fi|j 6=k

min (1(fi,j, fi,k, h1), 1(fi,j, fi,k, h2))

where 1() is a function that takes two SNP alleles and a haplotype and

determines whether the phase relationship between the two alleles exists

23

in the haplotype; formally, 1(fi,j, fi,k, h1) = 1 if (fi,j 6= ’–’ ∧ fi,k 6= ’–’) ∧

(fi,j 6= h1,j ∧ fi,k 6= h1,k) and 1(fi,j, fi,k, h1) = 0 otherwise. This metric is

computed by counting all of the pairwise phase relationships defined by the

input set of fragments that do not exist in the solution. One fortunate side

effect of this metric is that an algorithm that produces smaller blocks will be

penalized. For instance, if an algorithm produces a haplotype assembly for

five disjoint blocks when fragments exist in the data that connect every SNP

in one large block, the switch error metric will not penalize the unknown

phase between blocks. However, the fragment mapping metric will capture

the phase ambiguity error that exists between disjoint blocks if the input

fragments do indeed suggest they should be connected. We also define the

boolean fragment mapping (BFM) metric which counts the percentage of

fragments that map to the resolved haplotypes with at least one error. For

both FMPR and BFM metrics, smaller numbers are preferred.

3.2 1000 Genomes data

We first evaluate the number of reads that must supplement the current high

coverage 1000 genomes data (The 1000 Genomes Project Consortium, 2010)

for the NA12878 CEU individual in order to achieve a complete haplotype

assembly of chromosome 22. To do this, we supplemented the 454, Illumina,

and SOLiD sequence data with simulated Illumina reads. The starting point

of each simulated read was generated at random from the set of bases that

were sampled by real sequence reads. Illumina-sized reads were simulated

24

using varying distributions for insert size. Figure 3 shows a least squares

fitted curve to the largest component (or block) sizes for various coverages in

chromosome 22. Disconnected components of GC must be phased separately

and the haplotype phase between them is ambiguous; therefore, the largest

component size gives an indication of the connectedness of GC and the size

of the maximum achievable phased haplotype.

We then evaluated each algorithm using the aforementioned metrics for

the Illumina, SOLiD, and 454 reads generated for the CEU individual NA12878

in the 1000 genomes data (Table 1). Because each sequencing technology pro-

duces reads with similar insert sizes, the real data block sizes are small. For

these block sizes, HapCompass produces the best results with GATK also

producing very accurate haplotype assemblies.

3.3 Simulated data

Limitations in current sequencing technologies restrict the number of SNPs

one can hope to phase from the sequence reads. Many factors influence the

connectedness of GC but the most influential factor is the mean sizes and

variance of the inserts used to generate the paired reads (Halldorsson et al.,

2011). This is less of a concern for whole-exome data where haplotype assem-

blies can be constructed rather easily with high coverage. However, in order

to test the algorithms on their capability to provide genome-wide haplotype

assemblies in terms of both accuracy and time efficiency, we simulated two

datasets of 10 million 100 bp reads and varied the error parameter. The 10

25

0 2 4 6 8 10 12 14 16 18 20
0

5

10

15

20

25

Number of supplemented reads (millions)

La
rg

es
t c

om
po

ne
nt

 s
iz

e
(t

ho
us

an
ds

)

Largest Component Size vs. Number of Supplemented Reads (Chr 22)

largest component sizes
exponential fit
total SNPs

Figure 3: In this simulation study, reads of size 100bp were simulated on
chromosome 22 of the 1000 genomes CEU individual NA12878. Mate pair
lengths were sampled at random from one of four normal distribution with
means [10kb, 50kb, 100kb, 250kb] and standard deviations [1kb, 5kb, 10kb,
25kb]. With these parameters for sequencing, we require about 10 million
reads to connect most of the SNPs of GC .

26

block
size

no. frag-
ments

HapCut
FMPR
(BFM %)

GATK
FMPR
(BFM %)

HC FMPR
(BFM %)

51 477 223 (13.8) 60 (8.4) 23 (1.9)
53 581 265 (11) 30 (2.9) 25 (2.4)
53 551 71 (7.1) 23 (2.9) 9 (1.3)
58 626 209 (11) 12 (1.4) 12 (1.4)
60 645 199 (10.1) 54 (3.9) 43 (3.1)
60 467 28 (4.7) 18 (3) 4 (0.86)
62 393 24 (4.5) 14 (3.1) 6 (1.5)
62 528 126 (10.6) 16 (2.5) 8 (1.3)
63 770 45 (3.8) 24 (2.2) 19 (1.7)
66 602 91 (5.6) 31 (3.7) 11 (1.5)
66 718 452 (14.6) 47 (3.3) 28 (2.1)
79 877 245 (10.1) 26 (2.1) 8 (0.8)
102 949 212 (8.7) 48 (2.7) 37 (1.9)
166 1914 207 (5.9) 83 (2.7) 44 (1.5)
Total
FMPR

- 2397 486 277

Table 1: HapCut, GATK, and HapCompass (HC) were evaluated according
to the fragment mapping phase relationship and boolean fragment mapping
metrics for 1000 genomes data chromosome 22 of individual NA12878. The
block size is the number of SNPs in the component of GC and no. fragments
denotes how many read fragments were used for assembly. Bold cells denote
the algorithm with the best score.

27

block
size

no. frag-
ments

HapCut
FMPR
(BFM %)

GATK
FMPR
(BFM %)

HC FMPR
(BFM %)

580 2268 355 (13.8) 703 (28.2) 284 (11.4)
1331 4023 647 (14.5) 1236 (28.7) 441 (10.1)
1598 6545 1182 (15.5) 2011 (27.6) 1033 (13.9)
1835 6962 1212 (14.8) 2235 (28.8) 1089 (13.8)
3193 15036 3416 (17.7) 5237 (30) 2746 (15.7)
4153 17862 3642 (16.6) - (-) 2719 (13.2)

Table 2: HapCut, GATK, and HapCompass (HC) were evaluated according
to the fragment mapping phase relationship and boolean fragment mapping
metrics for 1000 genomes data chromosome 22 of individual NA12878 and 10
million simulated reads with error rate = 0.05 and read length = 100. A dash
(-) mark denotes the algorithm did not finish using the allotted resources.
Bold cells denote the algorithm with the best score.

million reads parameter is guided by the data generated for Figure 3 and

will vary depending on read length, insert size distributions, coverage and

genome allele structure (e.g. runs of homozygosity that are longer than the

insert size will disconnect components of GC).

Because the NA12878 individual is the child of a CEU trio who were

also sequenced, we used the parents to phase most of the SNPs; a random

phasing was selected for SNPs that were triply heterozygous. Using this

method, we are able to construct a set of haplotypes to simulated reads from

that are as close to the ground truth as possible with the available data. Our

principle measurements of accuracy are FMPR and BFM. First we tested

each algorithm on simulated data with moderately high error rates (0.05).

We can summarize the trends in Tables 1 and 2 by fitting a linear least

28

squares regression line to the data (Figure 4).

It is clear from Figure 4 that HapCompass produces the best results. Hap-

Cut seems to produce better results than GATK on larger haplotype blocks

(the reverse was true for the small haplotype blocks from real data). When

considering serial execution, the processing times for HapCut and HapCom-

pass were similar. For instance, for the simulated component of size 4177,

25 iterations of HapCut took 3.7 hours while 25 iterations of HapCompass

took 4.8 hours. However, iterations of the HapCompass algorithm are inde-

pendent and can be trivially parallelized. When this is the case, the solution

with the smallest MWER score is retained as the overall solution. HapCut

and HapCompass both used less than 2 gigabytes of memory while GATK

required a great deal more memory and processing time for similar sized com-

ponents. Each algorithm was terminated if it required more than 12 hours

of processing time or 8 gigabytes of heap space.

Even though switch error has an unclear interpretation on haplotype as-

sembly data, we show that switch error produces the same algorithmic rank-

ings. Switch error is as defined before but we incur a penalty of 1 for each

haplotype block reported beyond the first. Because we compare each algo-

rithm to a connected haplotype block – in the sense that there is a path

between every SNP in GC – reporting more than one phasing represents a

switch error between phased components. The switch error metric gives the

same relative ranking of algorithm performance (Table 3). We only show

these results for completeness and do not recommend using switch error as

29

60 80 100 120 140 160
0

100

200

300

400

500

Block sizeF
ra

gm
en

t M
ap

pi
ng

 P
ha

se
 R

el
at

io
ns

hi
p

(F
M

P
R

) Algorithmic Comparison on Real Data (Chr 22)

GATK
HapCut
HapCompass

1000 1500 2000 2500 3000 3500 4000
0

1000

2000

3000

4000

5000

6000

7000

Block sizeF
ra

gm
en

t M
ap

pi
ng

 P
ha

se
 R

el
at

io
ns

hi
p

(F
M

P
R

) Algorithmic Comparison on Real + Simulated Data (Chr 22)

GATK
HapCut
HapCompass

Figure 4: We fit a linear least squares regression line to the FMPR measure-
ment for algorithms Genome Analysis ToolKit (GATK), HapCut, and Hap-
Compass on chromosome 22 of the (Top) 1000 genomes data for the NA12878
individual (Table 1) and (Bottom) 1000 genomes data for the NA12878 in-
dividual with 10 million simulated reads of length 100 with sequence base
error rate of 0.05 (Table 2).

30

block
size

no. frag-
ments

HapCut
SE

GATK SE HC SE

580 2268 197 259 148
1331 4023 544 581 329
1598 6545 604 654 474
1835 6962 694 766 563
3193 15036 1092 1287 859
4153 17862 1630 - 1007

Table 3: Switch error (SE) measurements for HapCut, GATK, and Hap-
Compass (HC) for the same data as Table 2. A dash (-) mark denotes the
algorithm did not finish using the allotted resources. Bold cells denote the
algorithm with the best score.

the sole measurement of haplotype assembly algorithm accuracy.

We then reduced the error rate to evaluate the behavior of each algo-

rithm on higher quality data. Table 4 again demonstrates that HapCompass

remains significantly better than HapCut and GATK.

4 Discussion

The HapCompass algorithmic framework can also be extended to other opti-

mization formulations. For instance, it is possible to extend these algorithms

to accommodate the MEC formulation by employing a different local opti-

mization step. However, we do not have the same termination requirements

as with MWER. In particular, an edge must have all fragment based evi-

dence suggesting one unique phasing. The MEC optimization also defines a

different local optimization sub-problem. Preliminary results are encourag-

31

block
size

no. frag-
ments

HapCut
FMPR
(BFM %)

GATK
FMPR
(BFM %)

HC FMPR
(BFM %)

578 2326 180 (6.6) 650 (25.5) 46 (1.7)
1852 7234 888 (10.7) 1896 (23.7) 207 (2.5)
4177 17953 2088 (9.3) - (-) 425 (2)

Table 4: HapCut, GATK, and HapCompass (HC) were evaluated according
to the fragment mapping phase relationship and boolean fragment mapping
metrics for 1000 genomes data chromosome 22 of individual NA12878 and 10
million simulated reads with error rate = 0.01 and read length = 100. A dash
(-) mark denotes the algorithm did not finish using the allotted resources.
Bold cells denote the algorithm with the best score.

ing where we model the local optimization as a haplotype clustering problem;

the sub-problem becomes finding the two haplotypes that minimize the MEC

on a subgraph of GC .

As is the case with most haplotype assembly algorithms, our algorithm

does not yet consider quality scores of sequence reads or SNP calls. In the

previous analyses we simulated reads with perfect mapping and sequence call

quality. This information, however, could be incorporated into the weights

on the edges. The edges of GC require a measurement of confidence in the

phasing and other sources of information may be encoded on these edges;

for instance, a likelihood model may also be formulated accommodating the

inclusion of sequence base call scores and the quality of SNP calls.

32

5 Conclusion

Haplotype assembly is becoming increasingly important as the cost of se-

quencing plummets and more genome-wide and whole-exome studies are

conducted (Levy et al., 2007, Tewhey et al., 2011). We have designed and im-

plemented a haplotype assembly algorithm that is widely applicable to these

studies because it does not make any prior assumptions on the input data.

Through the use of simulations, we show that supplementing 1000 genomes

data with sequencing data of a particular type connects GC enabling the hap-

lotype assembly of entire chromosomes. We described the fragment mapping

phase relationship and boolean fragment mapping metrics that capture the

quality of the haplotype assembly through support from mapped fragments.

These metrics can be used independent of the algorithm and without knowing

the true haplotypes to evaluate the quality of the haplotype assembly.

We compared HapCompass to two leading haplotype assembly software

packages that can also process arbitrary input sequence data: HapCut and

the Genome Analysis ToolKit’s read-backed phasing algorithm. HapCom-

pass is shown to be more accurate on real 1000 genomes data for the BFM

and FMPR metrics. We also show that HapCompass is more accurate when

we supplement the existing 1000 genomes real data with simulated Illumina

reads for BFM, FMPR and haplotype switch metrics on haplotype blocks of

unprecedented size. Although only data from chromosome 22 is shown (chr22

with 33144 SNPs), the number of SNPs on the most polymorphic chromo-

33

some (chr2 with 218005 SNPs) is only an order of magnitude more according

to CEU 1000 genomes data (minor allele frequency ≥ 0.01). Because we

have shown the small order polynomial complexity of this algorithm, we do

not believe it would be difficult to extend this algorithm to operate on large

components of GC in parallel on a computing cluster for genome-wide data.

As high-throughput sequencing becomes more available to a greater number

of researchers, we believe HapCompass will provide a valuable tool to quickly

and accurately identify the haplotypes of diploid organisms.

Acknowledgments

We thank Bjarni Halldórsson for many helpful early discussions regarding

haplotype assembly. This work was supported by National Science Founda-

tion grant number 1048831 to S.I. The work of D.A. and S.I. was supported

by this grant.

Author Disclosure Statement.

No competing financial interests exist.

References

Vineet Bafna, Sorin Istrail, Giuseppe Lancia, and Romeo Rizzi. Polynomial

and apx-hard cases of the individual haplotyping problem. Theoretical

34

Computer Science, 335(1):109 – 125, 2005. ISSN 0304-3975. doi: 10.

1016/j.tcs.2004.12.017. URL http://www.sciencedirect.com/science/

article/pii/S0304397504008114. ¡ce:title¿Pattern Discovery in the Post

Genome¡/ce:title¿.

Vikas Bansal and Vineet Bafna. Hapcut: an efficient and accurate algorithm

for the haplotype assembly problem. Bioinformatics, 24(16):153–159, 2008.

Vikas Bansal, Aaron L. Halpern, Nelson Axelrod, and Vineet Bafna. An

mcmc algorithm for haplotype assembly from whole-genome sequence data.

Genome Research, 18(8):1336–1346, 2008. doi: 10.1101/gr.077065.108.

URL http://genome.cshlp.org/content/18/8/1336.abstract.

Sharon R. Browning and Brian L. Browning. Haplotype phasing: existing

methods and new developments. Nat Rev Genet, 12(10):703–714, October

2011. ISSN 1471-0064. doi: 10.1038/nrg3054. URL http://dx.doi.org/

10.1038/nrg3054.

Narsingh Deo, G. Prabhu, and M. S. Krishnamoorthy. Algorithms for Gen-

erating Fundamental Cycles in a Graph. ACM Trans. Math. Softw., 8

(1):26–42, 1982. ISSN 0098-3500. doi: 10.1145/355984.355988. URL

http://dx.doi.org/10.1145/355984.355988.

Mark A. DePristo, Eric Banks, Ryan Poplin, Kiran V. Garimella, Jared R.

Maguire, Christopher Hartl, Anthony A. Philippakis, Guillermo del An-

gel, Manuel A. Rivas, Matt Hanna, Aaron McKenna, Tim J. Fennell, An-

35

http://www.sciencedirect.com/science/article/pii/S0304397504008114
http://www.sciencedirect.com/science/article/pii/S0304397504008114
http://genome.cshlp.org/content/18/8/1336.abstract
http://dx.doi.org/10.1038/nrg3054
http://dx.doi.org/10.1038/nrg3054
http://dx.doi.org/10.1145/355984.355988

drew M. Kernytsky, Andrey Y. Sivachenko, Kristian Cibulskis, Stacey B.

Gabriel, David Altshuler, and Mark J. Daly. A framework for variation dis-

covery and genotyping using next-generation DNA sequencing data. Nat

Genet, 43(5):491–498, May 2011. ISSN 1061-4036. doi: 10.1038/ng.806.

URL http://dx.doi.org/10.1038/ng.806.

Bjarni V. Halldórsson, Vineet Bafna, Nathan Edwards, Shibu Yooseph, and

Sorin Istrail. A survey of computational methods for determining hap-

lotypes. In Computational Methods for SNPs and Haplotype Inference

(LNCS 2983), pages 26–47. Springer, 2004. URL http://citeseerx.

ist.psu.edu/viewdoc/summary?doi=10.1.1.85.4196.

Bjarni V. Halldorsson, Derek Aguiar, and Sorin Istrail. Haplotype phas-

ing by multi-assembly of shared haplotypes: Phase-dependent interactions

between rare variants. In Proceedings of the Pacific Symposium on Bio-

computing, pages 88–99, 2011.

Dan He, Arthur Choi, Knot Pipatsrisawat, Adnan Darwiche, and Eleazar

Eskin. Optimal algorithms for haplotype assembly from whole-genome

sequence data. Bioinformatics, 26(12):i183–i190, 2010. doi: 10.1093/

bioinformatics/btq215. URL http://bioinformatics.oxfordjournals.

org/content/26/12/i183.abstract.

Peter M. Krawitz, Michal R. Schweiger, Christian Rodelsperger, Carlo

Marcelis, Uwe Kolsch, Christian Meisel, Friederike Stephani, Taroh Ki-

36

http://dx.doi.org/10.1038/ng.806
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.85.4196
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.85.4196
http://bioinformatics.oxfordjournals.org/content/26/12/i183.abstract
http://bioinformatics.oxfordjournals.org/content/26/12/i183.abstract

noshita, Yoshiko Murakami, Sebastian Bauer, Melanie Isau, Axel Fis-

cher, Andreas Dahl, Martin Kerick, Jochen Hecht, Sebastian Kohler,

Marten Jager, Johannes Grunhagen, Birgit J. de Condor, Sandra Doelken,

Han G. Brunner, Peter Meinecke, Eberhard Passarge, Miles D. Thomp-

son, David E. Cole, Denise Horn, Tony Roscioli, Stefan Mundlos, and

Peter N. Robinson. Identity-by-descent filtering of exome sequence data

identifies PIGV mutations in hyperphosphatasia mental retardation syn-

drome. Nature Genetics, 42(10):827–829, August 2010. ISSN 1061-4036.

doi: 10.1038/ng.653. URL http://dx.doi.org/10.1038/ng.653.

Giuseppe Lancia, Vineet Bafna, Sorin Istrail, Ross Lippert, and Russell

Schwartz. SNPs Problems, Complexity, and Algorithms. In ESA ’01:

Proceedings of the 9th Annual European Symposium on Algorithms, pages

182–193, London, UK, 2001. Springer-Verlag. ISBN 3-540-42493-8. URL

http://portal.acm.org/citation.cfm?id=740484.

Samuel Levy, Granger Sutton, Pauline C. Ng, Lars Feuk, Aaron L. Halpern,

Brian P. Walenz, Nelson Axelrod, Jiaqi Huang, Ewen F. Kirkness, Gen-

nady Denisov, Yuan Lin, Jeffrey R. MacDonald, Andy Wing Chun W.

Pang, Mary Shago, Timothy B. Stockwell, Alexia Tsiamouri, Vineet

Bafna, Vikas Bansal, Saul A. Kravitz, Dana A. Busam, Karen Y. Bee-

son, Tina C. McIntosh, Karin A. Remington, Josep F. Abril, John Gill,

Jon Borman, Yu-Hui H. Rogers, Marvin E. Frazier, Stephen W. Scherer,

Robert L. Strausberg, and J. Craig Venter. The diploid genome se-

37

http://dx.doi.org/10.1038/ng.653
http://portal.acm.org/citation.cfm?id=740484

quence of an individual human. PLoS biology, 5(10):e254+, Septem-

ber 2007. ISSN 1545-7885. doi: 10.1371/journal.pbio.0050254. URL

http://dx.doi.org/10.1371/journal.pbio.0050254.

Zhen-ping Li, Ling-yun Wu, Yu-ying Zhao, and Xiang-sun Zhang. A dy-

namic programming algorithm for the k-haplotyping problem. Acta Math-

ematicae Applicatae Sinica (English Series), 22:405–412, 2006. ISSN

0168-9673. URL http://dx.doi.org/10.1007/s10255-006-0315-6.

10.1007/s10255-006-0315-6.

Shin Lin, David J. Cutler, Michael E. Zwick, and Aravinda Chakravarti.

Haplotype inference in random population samples. The American Journal

of Human Genetics, 71(5):1129–1137, Nov 2002.

R. Lippert, R. Schwartz, G. Lancia, and S. Istrail. Algorithmic strategies for

the single nucleotide polymorphism haplotype assembly problem. Brief

Bioinform, 3(1):23–31, March 2002. ISSN 1467-5463. doi: 10.1093/bib/3.

1.23. URL http://dx.doi.org/10.1093/bib/3.1.23.

J. Marchini, D. Cutler, N. Patterson, M. Stephens, E. Eskin, E. Halperin,

S. Lin, Z. S. Qin, H. M. Munro, G. R. Abecasis, and P. Donnelly. A com-

parison of phasing algorithms for trios and unrelated individuals. American

Journal of Human Genetics, 78(3):437–450, March 2006. ISSN 0002-9297.

doi: 10.1086/500808. URL http://dx.doi.org/10.1086/500808.

Jonathan Marchini and Bryan Howie. Genotype imputation for genome-

38

http://dx.doi.org/10.1371/journal.pbio.0050254
http://dx.doi.org/10.1007/s10255-006-0315-6
http://dx.doi.org/10.1093/bib/3.1.23
http://dx.doi.org/10.1086/500808

wide association studies. Nat Rev Genet, 11(7):499–511, June 2010. ISSN

1471-0056. doi: 10.1038/nrg2796. URL http://dx.doi.org/10.1038/

nrg2796.

Alessandro Panconesi and Mauro Sozio. Fast hare: A fast heuristic for single

individual snp haplotype reconstruction. In Proceedings of the 4th Interna-

tional Workshop on Algorithms in Bioinformatics WABI04, volume 3240,

pages 266 – 277, 2004.

Tyler Mark Pierson, Dimitre R. Simeonov, Murat Sincan, David A. Adams,

Thomas Markello, Gretchen Golas, Karin Fuentes-Fajardo, Nancy F.

Hansen, Praveen F. Cherukuri, Pedro Cruz, Craig Blackstone, Cynthia

Tifft, Cornelius F. Boerkoel, and William A. Gahl. Exome sequenc-

ing and snp analysis detect novel compound heterozygosity in fatty acid

hydroxylase-associated neurodegeneration. Eur J Hum Genet, 20(4):476–

479, 2012.

Romeo Rizzi, Vineet Bafna, Sorin Istrail, and Giuseppe Lancia. Practical Al-

gorithms and Fixed-Parameter Tractability for the Single Individual SNP

Haplotyping Problem. In Algorithms in Bioinformatics, volume 2452 of

Lecture Notes in Computer Science, pages 29–43. Springer Berlin Heidel-

berg, 2002. ISBN 978-3-540-44211-0.

Russell Schwartz. Theory and algorithms for the haplotype assembly prob-

lem. Commun. Inf. Syst., 10(1):23–38, 2010.

39

http://dx.doi.org/10.1038/nrg2796
http://dx.doi.org/10.1038/nrg2796

Ryan Tarpine, Fumei Lam, and Sorin Istrail. Conservative extensions of

linkage disequilibrium measures from pairwise to multi-loci and algorithms

for optimal tagging SNP selection. In Proceedings of the 15th Annual

International Conference on Research in Computational Molecular Biology,

RECOMB’11, pages 468–482, Berlin, Heidelberg, 2011. Springer-Verlag.

ISBN 978-3-642-20035-9. URL http://dl.acm.org/citation.cfm?id=

1987587.1987629.

Ryan Tewhey, Vikas Bansal, Ali Torkamani, Eric J. Topol, and Nicholas J.

Schork. The importance of phase information for human genomics. Nature

Reviews Genetics, 12(3):215–223, February 2011. ISSN 1471-0056. doi:

10.1038/nrg2950. URL http://dx.doi.org/10.1038/nrg2950.

The 1000 Genomes Project Consortium. A map of human genome variation

from population-scale sequencing. Nature, 467(7319):1061–1073, October

2010. ISSN 0028-0836. doi: 10.1038/nature09534. URL http://dx.doi.

org/10.1038/nature09534.

Yu-Ying Zhao, Ling-Yun Wu, Ji-Hong Zhang, Rui-Sheng Wang, and Xiang-

Sun Zhang. Haplotype assembly from aligned weighted SNP fragments.

Computational Biology and Chemistry, 29(4):281 – 287, 2005. ISSN

1476-9271. doi: 10.1016/j.compbiolchem.2005.05.001. URL http://www.

sciencedirect.com/science/article/pii/S1476927105000459.

40

http://dl.acm.org/citation.cfm?id=1987587.1987629
http://dl.acm.org/citation.cfm?id=1987587.1987629
http://dx.doi.org/10.1038/nrg2950
http://dx.doi.org/10.1038/nature09534
http://dx.doi.org/10.1038/nature09534
http://www.sciencedirect.com/science/article/pii/S1476927105000459
http://www.sciencedirect.com/science/article/pii/S1476927105000459

	Introduction
	Methods
	Graph theory models for haplotype assembly
	A new model: Compass graphs
	Problem formulations
	Minimum weighted edge removal

	Properties of the compass graph
	Cycle Basis Algorithm

	Results
	Evaluation criteria for haplotype assembly
	1000 Genomes data
	Simulated data

	Discussion
	Conclusion

