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ABSTRACT 
This work provides an exact characterization, across crys- 
tal lattices, of the computational tractability frontier for 
the partition functions of several Ising models. Our results 
show that beyond planarity computing partition functions 
is NP-complete. We provide rigorous solutions to several 
working conjectures in the statistical mechanics literature, 
such as the Crossed-Bonds conjecture, and the impossibil- 
ity to compute effectively the partition functions for any 
three-dimensional lattice Ising model; these conjectures ap- 
ply to the Onsager algebraic method, the Fermion operators 
method, and the combinatorial method based on Pfaffians. 
The fundamental results of the area, including those of On- 
sager, Kac, Feynman, Fisher, Kasteleyn, Temperley, Green, 
Hurst and more recently Barahona: 
• for every Planar crystal lattice the partition functions for the 
finite sublattices can be computed in polynomial-time, paired 
with the results of this paper: 
• for every Non-Planar crystal lattice computing the parition 
functions for the finite sublattices is NP-complete, provide an 
exact characterization for several of the most studied Ising 
models. Our results settle at once, for several models, (1) the 
2D non-planar vs. 2D planar, (2) the next-nearest neighbour 
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interactions vs. 2D, and (3) the general 3D Ising, intensively 
studied open problems of the area. 

Our results axe obtained by establishing a Kuratowski-like 
charcterization theorem for the class of (infinite) crystal 
lattices called Bravais lattices, that can also be extended 
to general crystal structures. The "forbidden subgraph," 
called Kuratowskian, plays the central role, being contained 
in every non-planar crystal lattice. This universality phe- 
nomenon (existence independent of lattice structure), cap- 
tured in the "equation": Translational Invariance + Non- 
Planarity = Universality of Subgraphs, provides a unified un- 
derstanding of non-planarity as a root of computational in- 
tractability. The important structural property of the Ku- 
ratowskians is that they are "embedding-universal" for 3- 
regular graphs, in the sense that every such graph has a sub- 
division included in the Kuratowskian. Several NP-hardness 
results are obtained in this paper, by using different types of 
Kuratowskians, which in turn witness NP-hardness of vari- 
ous counting coefficients of the partition functions. 

The exceedingly complex mathematical methods that solved 
the planar cases of the Ising model, could be interpreted as 
an explanation of why no 3D solvable cases have been found. 
Richard Feynman in 1972 commented " The exact solution 
for three dimensions has not yet been found". Our results, 
for the Ising models that we consider in this paper, provide 
evidence of a paradigm-shift: the "has not yet been found" 
needs now be replaced with "it may be computationally in- 
tractable across lattices." 

Th i s paper i s authored by an emplo yee(s) of the [U. S. ] Government 
and is in the public domain. 
STOC 2000 Portland Oregon USA 
1-58113-184-4/00/5 

1, INTRODUCTION 

1.1 The Search for Exactly Solved Models in 
Statistical Mechanics 

One of the most exciting periods in statistical mechanics 
was in 1944, with the discovery by Laxs Onsager of the first 
exactly solved model that exhibits a provable phase tran- 
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sition. The model was the Ising model of ferromagnetism 
on the two-dimensional square lattice. This result energized 
some of the most brilliant researchers, both  physicists and 
mathematicians in the quest for generalizing the method and 
carrying on the search for other exactly solved models, to- 
wards the three-dimensional models. Decades of research of 
highest distinction uncovered new methods,  and focused on 
a variety of lattices in the search for other t ractable  models. 
The research eventually was extended to rigorously solve all 
planar  lattices, but  no three-dimensional lat t ice was found 
to be exactly solvable. All methods proposed, from On- 
sager's, to Fermions, and to Pffafians, were all rediscovering 
the same t ractable  planar  cases, and none could deal with 
the 3D case. Tractabi l i ty  was hi t t ing a "wall" no mat te r  
what  methods were used. Even research focusing on 2D non- 
planar  lattices, of significant interest in stat ist ical  physics, 
turned out without success. Non-planari ty  of the lattice, 
expressed in physical terminology as lattices with "crossed- 
bonds", was observed to be the root of difficulty for various 
methods.  The search for understanding the l imitat ions of 
the methods based on Onsager, Fermions and Pfaffians con- 
t inued to be active for several decades. 
In this work we identify the exact computat ional  t rac tabi l i ty  
fron~tier of these methods in the context of some of the most 
s tudied variants of the Ising model. Here 1 are citations 

1H. N. V. Temperley wrote in 1974 [35] No physically in- 
teresting non-planar lattice has been solved completely as 
yet... The simplest such lattice is the plane square lattice 
with interactions along the diagonals as well as the sides 
of the squares (sometimes called the "union jack" lattice)... 
It is somewhat melancholy thought that nearly twenty lur- 
ther years of  work has added relatively little to our knowl- 
edge of anlytical properties of the Onsager-ising model it- 
self, though we now have a great deal more information de- 
duced from series expansions . . . .  With monotonous regu- 
larity each method has reproduced virtually the same results 
as those listed above and has added virtually no new ones 
on the analytic side. This information may be summarized 
as knowledge for  planar lattices, but not for  any interesting 
non-planar lattice, of  the partition function and correlations 
as a function of temperature in zero magnetic field, together 
with the spontaneous magnetization and various boundary 
and impurity effects . . . .  I t  relates either the trace of  "vac- 
uum to vacuum expectation" of a product of  linear sums of 
operators, known as Clifford or Fermi operators, to what is 
known mathematically as a Pfaffian. This experience is al- 
most unique in mathematical physics. (Nearly always a valid 
new treatment of  a problem produces new results as well as 
repoducing old ones.) 
McCoy and Wu wrote in 1973 [28] in the  comprehensive 
monograph The Two-Dimensional Ising Model at the  end of 
the book: 
Conspicuously missing from the table of  open problems are: 
(1) the calculation of the free energy of the two dimensional 
Ising model when H /=0, and (2) the calculation of the free 
energy of the three dimensional Ising model. This omission 
is intentional. These two problems are both extremely dif- 
ficult. Indeed, they have existed for  a quarter of  a century 
and absolutely no progress has been made. (By no progress, 
we mean no progress toward an explicit solution). 
Mark Kac in 1985 [22] 
The three-dimensional case does exhibit a phase transition 
but exact calculation of its properties has proved hopelessly 
difficult. The two-dimensional case for  so-called nearest- 
neighbour interactions was solved by Lars Onsager in 1944. 
Onsager's solution, a veritable tour  de force of mathematical 
ingenuity and inventiveness, uncovered a number of  supris- 
in9 features and started a series of  investigations which con- 

due to some of the major  research contributors of the area, 
recording both  excitement and hopelessness about  the state 
of the research in early 70's; with the today knowledge on 
computat ional  complexity, we can see tha t  these comments 
describe the simptoms of an NP-completeness phenomena. 

1.2 The Two Dimensional Ising Model 
Exact ly solved models in stat ist ical  mechanics are few [2], 
and all are one- or two-dimensional lat t ice models; the most 
fundamental  of them is the two-dimensional Ising Model of 
Ferromagnetism, exactly solved by Onsager. The impor- 
tance of such exact solutions is due to the physical insight 
they provide into phase transitions. The solution provides 
an analytical  closed-form/or rigorously solved form for the 
par t i t ion function, which in turn provides the basis for exact 
predictions for such systems: all thermodynamical  quanti- 
ties can be computed  exactly. 

The Ising model  was introduced by Ernst  Ising in 1925 [18]. 
In 1936, Peierls [33] showed by a probabil ist ic argument tha t  
the two-dimensional Ising model has a phase transition. In 

tinue to this day. 
The solution was difficult to understand and George Uhlen- 
beck urged me to try to simplify it. "Make it human" was 
the way he put it . . . .  A t  the Institute [for Advanced Studies 
at Princeton] I met  John C. Ward ... we succedin9 in red- 
eriving Onsager's result. Our success was in large measure 
due to knowing the answer; we were, in fact, guided by this 
knowledge. But  our solution turned out to be incomplete ... 
it took several years and the effort of several people before the 
gap in the derivation was filled. Even Feynman got into the 
act. He attended two lectures I gave in 195P at cal Teeh and 
came up with the clearest and sharpest formulation of what 
was needed to fill the gap. The only time I have ever seen 
Feynman take notes was during the two lectures. Usually, 
he is miles ahead of the speaker but following combinatorial 
arguments is difficult for  all mortals. 
Richard Feynman in 1972 [7]: 
The exact solution for  three dimensions has not yet been 
found. 
C. A. Hurst  in 1965 [17]: 
" It has been rather puzzling that the two methods at present 
known for finding exact solutions for the/sing problem, namely 
the algebraic method of Onsager and the combinatorial method 
emplying P]u•ans, have exactly the same range of application, 
although, they appear so different in approach. Problems which 
yield to one method yield to the other, whilst problems which are 
not tractable by one approach also fail to be exactly solved by 
the other, although the reasons for this failure appears to have 
completely different mathematical origins. On the one hand, 
Isin9 problems which cannot be solved by the P]uffian method 
are characterized by the appearance or crossed bonds  which 
produce unwated negative signs in the combinatorial generating 
]unctions, and such crossed bonds are usually manifestations of 
the topological structure of the lattice being investigated, i.e., the 
three-dimensional cubic lattice. On the other hand, the Onsager 
approach breaks down because the Lie algebra encountered in the 
process of solution cannot be decomposed into sufficiently simple 
algebra. It is usually stated that such more complicated alge- 
bras occur only when the corresponding lattice has crossed bonds, 
although an explicit proof of this fact does not appear to be pub- 
lished . . . .  It is di~cult to see why the two methods have exactly 
the same limitations ... 
P. W. Kasteleyn in 1967 [25]: 

The dimer problem and the Ising problem were finally 
solved for  planar lattice graphs only, and it was found that 
a generalization to non-planar lattice graphs (including all 
three-dimensional lattice graphs) is impossible unless the 
number of  Pfaffians involved is allowed to increase to in- 
tractably large numbers. 
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1941, Kramers and Wannier [26] established the exact loca- 
tion of the i)hase transition, the Curie point, based on the 
assumption that such a point is unique. Onsager, in 1944, 
[31] provided the complete, definitive exact solubility of the 
two-dimensional square lattice Ising model. 

All such results were obtained using extremely complex math- 
ematical arguments. A tremendous research effort in math- 
ematical physics emerged for the identification of those crys- 
tal lattice structures that  provide soluble models. New pow- 
erful mathematical methods were discovered, but none of 
them were able to identify any soluble three-dimensional 
model. However, the belief was that  advances in mathemat- 
ical physics will eventually solve such models. 
As Onsager's solution was an extraordinarily deep and in- 
volved argument, George Uhlenbeck challenged Mark Kac to 
"Make it human" [22]. Kac and Ward in 1952 [23] at tempted 
to provide an exact evaluation of Onsager's partition func- 
tion formula based on a combinatorial interpretation. This 
is based on viewing the partition function as the generating 
function for the graph-counting problem of Eulerian sub- 
graphs of the lattice. They reduced the problem to that  
of computing a determinant. The argument, however, was 
incomplete. Feynman [22] provided the key technical formu- 
lation of the needed missing lemma, the so-called Feynman's 
conjecture [13; 15], which eventually was proven by Sherman 
in 1960 [34], making the Kac-Ward method completely rig- 
orous. A variant of the Kac-Ward method occured in the 
early 1960s, based on the Pfaffians. In this method, the 
same combinatorial interpretation is used, but the problem 
is reduced to a related problem of counting dimers in an 
associated lattice (or perfect matchings) which was solved 
using determinats via Pfaffians by Kasteleyn 1964 [?], and 
Fisher [8]. 

A more comprehensive account of the developments concern- 
ing statistical mechanics research of the Ising model can be 
obtained from: [6], [5], [8], [35], [20], [37], [30], [17], [29], 
[16], [4], [9], [27], [10], [3], [14], [28], 

1.2.1 l s ing  M o d e l s  a n d  Compu ta t i ona l  Complex i t y  
NP-completeness was used as a rigurous method to clas- 
sify the computational complexity of problems in statistical 
physics, see e.g., [36; 37]. Powerful intractability results, 
previously obtained, in the area of Ising models, closely re- 
lated to this research used different classes of graphs. 
• Graphs: Finite sublattices of a specific lattice. Barahona 
[1] showed that  for the Ising model on 3D cubic lattice, 
with interaction energy { - J ,  0, + J } ,  the problem of com- 
puting the ground states on finite sublatices is NP-complete. 
Our work builds and extends the elegant work of Barahona, 
showing that computational intractability is present in ev- 
ery non-planar lattice, including the 2D non-planar lattices. 
• Graphs: The entire class o] finite graphs. Results by Jer- 
rum and Sinclair [21], and Jaeger, Vertigan and Welsh [19] 
show that computing the partition function for the Ising 
model in this case is NP-complete. 

1.3 An outline of the paper 
The technical outline of the paper is as follows. First a 
Kuratowski-like chaxcterization theorem is proved for a class 
of (infinite) crystal lattices called Bravais lattice. Basically, 
the theorem is general and follows from the two "axioms" 

(1) translational invariance (of crystal lattices) and (2) non- 
planarity. The "forbidden subgraph" called Kuratowskian 
plays the central role in what follows. By the theorem it is 
contained in every non-planar crystal lattice. This univer- 
sality phenomenon (existence independent of lattice struc- 
ture) holds the key to the universality of NP-completeness 
of the partition functions of the Ising model for finite sub- 
lattices. The important structural property of the Kura- 
towskians is that  they are embedding-universal for 3-regular 
graphs, in the sense that  every such graph has a subdivision 
included in the Kuratowskian. This gives the fertile ground 
for a proof of NP-completeness. Several results are obtained 
in the paper, by using different types of Kuratowskians, 
which in turn show NP-hardness of various counting coeffi- 
cients of the partition functions. 

2. ISING MODELS 
Ising models are of fundamental importance in statistical 
physics. The Ising model can be formulated on any graph 
as follows. Consider a graph GN = (V, E),  having N ver- 
tices (representing lattice sites) V = {Vl,...,VN}, and a set 
E of edges (representing the near-neighbour interactions). 
Each edge (i, j )  E E has an associated constant interaction 
energy or coupling constant J~j is a positive, zero or nega- 
tive number. We interpret Jij as labels of the corresponding 
edges. The model is usually defined as the the graph of a 
crystal lattice where the vertices represent lattice sites, and 
the edges represent near-neighbour interactions. 
Every vertex vi has a magnetic spin variable ai associated 
with it; it takes values as = 4-1, where +1 represents the 
"up spin", and - 1  represents the "down spin". A state or a 
spin configuration w is an assignment of N +1 values to the 
variables ai, 1 < i < N.  Let f~ = { -1 ,  +1} N be the set of 
all spin configurations. 
The energy of a state w in zero magnetic field is given by 
the Hamiltonian: H(w) = - ~ J i ja iaj .  Three fundamental 
objects of study for statistical physics are: 

G r o u n d  S t a t e  A spin configuration of minimum energy is 
called a ground state. 

P a r t i t i o n  F u n c t i o n  The partition function of the Ising 
model is given by: 

z ( ~ )  = 2 _ .  e ~T 
wEf~ 

where ~ is the Boltzmann constant, and T is the tem- 
perature. 

F ree  E n e r g y  The free energy from the magnetic degree of 
freedom is aT  log Z(T) ,  and the equilibrium magnetic 
properties, magnetization, entropy, magnetic energy, 
specific heat and susceptibility, can all be obtained by 
differentiating the partition function with respect to 
the temperature. 

In this first paper we will be concerned with the problems 
of computing ground states and partition functions. We 
will not address directly the problem of computing the free 
energy. 

2.1 Ground States and the Minimum Weight 
Cut 
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Let us consider a graph GN = (Y, E)  with its edges weighted 
by the J~j interaction energies. The energy of a s tate w = 
(a l , . . . , aN)  is given by H(w).  It  is easy to see tha t  H can 
be defined in terms of cuts in GN. Indeed, for a s tate w = 
((71, . . . ,aN),  let us denote by C + = {vi ] a i  = +1}, and by 
C -  = {vi I a~ = -1} .  This defines the  cut C = (C +, C - )  of 
GN. Let us also define E +, and E -  as the set of edges with 
both endpoints in C +, and respectively in C - .  We divide 
the vertices in two parts.  The cut refers to the set of edges 
tha t  cross between the "up spins" vertices to the "down 
spins" vertices. Let E + -  be the  set of edges in the cut, tha t  
is, all edges with one endpoint  in the C + and the other in 
C - .  Another  al ternative notat ion for E + -  tha t  highlights 
the cut C is ~(C). The weight of the cut is weight(C)  = 
~ j e ~ ( c )  J~J" The summations used in defining the model 
are over edges in the graph: the short hand i j  stands for 
{v~, vj }. 
Clearly as w varies over all spin configurations, the corre- 
sponding cut C ranges over all cuts of GN. Observing tha t  
we actually have a one-to-one correspondence between spin 
configurations and cuts we can write the Hamil tonian as fol- 
lows: H ( C )  = - ~ i~eE+ J~ - ~ e ~ -  &J - ~ j e E + -  J~ 
and so H(C)  = - ~-,ijeE J~J + 2 ~']~ije~(c) Jij .  If C is the 
cut defined by w, H(w)  is the same as H(C) .  For a given 
cut, the Hamiltonian is now a sum of a constant term (for 
the graph) and twice the weight of the cut. Minimizing the 
Hamiltonian, tha t  is, finding the ground state,  is therefore, 
equivalent to computing the cut of minimum weight in our 
graph. 

The Minimum Weight Cut Problem can be solved in poly- 
nomial t ime for the class of weighted planar  graphs. That  
is, for every choice of positive, zero or negative weights for 
the edges of a planar  graphs, we can compute in polynomial  
t ime the minimum weight cut of such graphs. The prob- 
lem in NP-complete on arbi t rary  graphs.We will show in 
section ?? tha t  the same problem is NP-complete for every 
non-planar crystal- lat t ice graph, when restr icted to the set 
of its finite sublattices. 

3. PLANAR LATTICES: COMPUTATIONAL 
TRACTABILITY 

Computing both the ground states and the par t i t ion func- 
tion for planar graphs can be done in polynomial  t ime, [1] 
and [27]. P lanar i ty  and its duali ty are fundamental  for ob- 
taining computat ional ly  t ractable  solutions. For the mini- 
mum weight cuts in planar  graphs, algorithms are due to 
Hadlock 1975 [12] and Goodman and Hedetniemi [11], and 
[32]. The problem of computing the par t i t ion function for 
the zero field Ising model for finite planar  lattices is equiv- 
alent to tha t  of computing a determinant ,  and therefore, 
can be done in polynomial  time. For planar  graphs, Pfaf- 
fian orientations could be constructed (Kasteleyn's  theorem 
[24], which in turn  relate the underlying problems of count- 
ing cuts, to the problem of counting Eulerian subgraphs in 
the dual lattice, and therefore, to tha t  of evaluating Pfaf- 
fians, which can be expressed in terms of determinants  [1]. 
Our results from the section ?? show tha t  unless P = N P  
no such results can be extended to any non-planar crystal  
lattice. 

4. NON-PLANAR LATTICES: COMPUTA- 
TIONAL INTRACTABILITY 

Crystal  lattices are defined in two stages: Bravais Lattices, 
and their  generalizations, the crystal  s tructures [?]. We will 
present in this extended abstract  the details of the dvevel- 
opments for non-planar Bravais lattices, and leave the de- 
scription of their extensions to crystal  lattices to the final 
version of the paper.  

4.1 Bravais Lattices 
Crystal  lattices are defined in terms of Bravais sets of points. 
We axe interested in such sets in the two-dimensional and 
three-dimensional space. A d-dimensional Bravais lattice L 
is the infinite set of points in the d-dimensional Euclidean 
space whose position vectors r are given by 

r ~- X l a l  -]- x2a2  • ... -~ X d a d  

where al, as, ..., ad are linearly independent  vectors, and x l ,  x2, ..., xd 
are integers. The finite N1 × N2 × .... x Nd sublatt ice of the 
infinite lat t ice L, denoted L[N1, ..., Nd], is obtained by im- 
posing a boundary  for every xi ,1  < i < Ni ,1  _< i _< d. 
Interaction are specified as a set of pairs of points, typically 
near-neighbour. Line segments are drawn between two inter- 
acting lat t ice points. The lat t ice points are the vertices, and 
the interaction pairs define the edges of our lat t ice graphs. 

4.2 Non-Planar Bravais Lattices 
We will show tha t  the  computat ion of the ground states is 
NP-complete  in every non-planar Bravais lattice. 
We first give a charcterization theorem in the spirit  of the 
Kuratowski theorem for planar  Bravais lattices. The for- 
bidden sublat t ice unvailed by the theorem, tha t  we call the 
Basic Kuratowskian, has interesting properties.  Firs t  of all, 
every non-planar Bravais lat t ice contains Kuratowskians, 
i.e., subdivisions of the Basic Kuratowaskian. Second, com- 
puting ground states on the Basic Kuratowskian is NP- 
complete; and the same proper ty  holds for any of its subdi- 
vision. These two facts establish our first main result. 

We then focus on a more elaborate version of the Kura- 
towskians, called uniform Kuratowskian. We develop similar 
results using them. In turn, we use these structures to es- 
tablish computat ional  intractabi l i ty  of par t i t ion functions, 
where computing ground states is easy, but  other compo- 
nents are NP-hard.  

4.2.1 The Kuratowskians 
The finite lat t ice graph in figure 1 plays a special role in this 
paper.  I t  generically defines an infinite lat t ice graph. We 
call the inifinite graph the Basic Kuratowskian, and denote it 
by/Co. It  captures through its subdivisions, common struc- 
tural  characteristics present in each and every non-planar 
infinite Bravais lattice. We will use the term Kuratowskian 
for any subdivision of the Basic Kuratowskian. 

DEFINITION 1. We will call Kuratowskian every subdivi- 
sion of l~o. 

Let us remark tha t  non-planari ty for an infinite latt ice means 
tha t  one of its s tandard  finite subgraphs is non-planar.  

LEMMA 1. The infinite Basic Kuratowskian 1Co is a non- 
planar graph. Moreover, every Kuratowskian is non-planar. 
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Figure 1: A finite sublatt ice of the Basic Kuratowskian ~o 
and a subdivision of it. 

P roo f .  I t  suffices tha t  a s tandard  finite sublatt ice graph ]Co 
is non-plnar. This means by the Kuratowski theorem tha t  
one such sublatt ice has as a subdivision one of the Kura- 
towski graphs, K3,3 or Ks.  Figure 4.2.3 shows a subdivi- 
sion of K3,s contained in/Co. Clearly, the same proper ty  is 
true for every subdivisions of ]Co. Each such subdivision will 
have a a finite sublatt ice graph tha t  is non-planar.  

We will show that  every Bravais lat t ice contains Kuratowskians 
as sublattices. This will provide a unifying framework of a 
type of universality proper ty  with respect to the computa-  
tional complexity of the par t i t ion functions for such lattices. 

4.2.2 A Kuratowski - l ike  The ore m  f o r  Brava i s  Lat t ices  
In this section we give a necessary and sufficient condition 
for a Bravais latt ice graph to be planar. The characteriza- 
tion, as in the Kuratowski Theorem, is in terms of forbidden 
subgraphs. Our Basic Kuratowskian plays the same role as 
the one played by the Kuratowski graphs/{3,3 and Ks.  
Consider an infinite Bravais latt ice L tha t  is non-planar.  
Non-planari ty implies that  there is a s tandard  finite sublat- 
tice graph A tha t  is non-planar.  By the Kuratowski the- 
orem, A contains a subdivision of one of the Kuratowski 
graphs K3,3 and Ks,  say K.  By translat ional  invariance of 
the Bravais lattice, there are infinitely many disjoint copies 
(their sets of vertices are disjoint) of K in L. We will use 
such occurences of K to identify non-planar pieces, called 
corssing gates. Then we will interconnect these gates and 
will form a network that  connects in a planar  manner all 
these non-planar pieces. This construction will witness the 
containment of a Kuratowskian in L. 

THEOREM 1. A 2D or 3D infinite Bravais lattice is pla- 
nar if and only i f  it does not contain the Basic Kuratowskian 
]Co or any of its subdivisions. 

Proof .  Let us consider L an infinite Bravais lattice. 
(1) Suppose first that  L contains a Kuratowskian. Then, by 
the Lemma 1 it follows tha t  L is a non-planar latt ice graph. 
(2) Suppose now tha t  L is non-planar.  To establish the other 
part  of the theorem, we will show tha t  for L there exists a 
specific subdivision of ]Co tha t  is contained in L. We treat  
the two cases 2D and 3D separately. 

We will use pairs of (non-colinear, respectively, non-planar) 
vectors, defining the interaction pa t te rn  of the lattice, to 
construct corresponding "tesselation" planes in the lattice. 

Figure 2: A "tesselation plane" of the Bravais latt ice de- 
fined by two non-colineax vectors. I t  divides the plane into 
paralelograms. 

Then, non-planari ty of the L would imply existence of sub- 
divisions of the Kuratowski subgraphs, tha t  in turn will pin- 
point to occurences of crossing pair of paths. The combi- 
nation between tesselation planes and crossing pair of paths 
define a "Kuratowski network". This in turn contains a 
subidvision on Ko. 

• L is a 2D Bravais lattice. 
Crossing paths. Let ~r = {pl,p2, .... ,p~} be the interation 
pa t te rn  of L. Assume tha t  L is embedded in the plane, 
with vertices drawn as points, and the edges as straight line 
segments connecting corresponding points. L being non- 
planar  implies tha t  some of the line segments cross; crossing 
could happen between two segments, or, one segment can 
cross a two segment pa th  going through the middle ver- 
tex. We use the Kuratowski theorem to find crossing paths. 
The non-planari ty of L implies that  there is a s tandard fi- 
nite sublatt ice LN×N containing a subdivision of a graph 
K E (Ks ,  Ks,a}. Let us fix tha t  occurence of the subdivi- 
sion of K in L. Because K is non-planar,  there should exist 
four vertices of K,  say vl,v2,v3,v4 and two paths P1 and 
P2 in K,  such that :  P1 s tar ts  at vl and ends at v2, and P2 
has end points v3 and va, and P1 crosses P2 exactly once. 
Moreover, we chose the two paths  such that  they are mini- 
mal in size with respect to this property. 
Tesselation planes. As the interaction pa t te rn  of a non- 
planar  latt ice g r a p h  needs to have at least 3 vectors, let 
us consider two vectors that  are non-colinear, say, p,p' in 
~r. Let T the corresponding tesselation of the 2D plane. 
Crossing gates. We will form such a "crossing gate" by us- 
ing the two crossing paths  P1 and P2 that  we identified in K,  
and a paralelogram A in T tha t  is large enough and contains 
PI and P2 in the planar  area that  it  defines. We pick A such 
that  (1) we can extend P1 and P2 such tha t  they become di- 
agonai paths  for A such tha t  these extensions are contained 
inside A, using no edge segments from A's  boundary. The 
resulting structure consisting of A together with the these 
crossing diagonal paths  is called a crossing gate. Let us note 
that  such a crossing pa th  could be unique, but  it must exist. 
Both/{3,3 and K5 are non-planar,  but  could become planar 
if one one of their  edge is removed. Kuratowski Network. 
Consider now an arrangement of these crossing gates as ar- 
ranged in the figure 4.2.2. The crossing gates are connected 
using connecting paralelograms of T of appropriate  size. We 
call the arrangement a Kuratowski Network. Note that  the 
network connects in a planar  way non-planar crossing gates. 
I t  is easy to see tha t  this Kuratowski network contains a 
subdivision of ]Co. The crossing gates are arranged in a row 
and such rows al ternate with rows with no gates. Therefore, 
L, contains a subdivision of ]Co. 

• L is a 31} Bravais lattice. 
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Figure 3: A: An occurence of a subdivision K of K3,3 in 
a non-planar lattice; B: A pair of crossing paths  given by 
K extended to a crossing gate within a paralelogram of a 
tesselation plane 

Figure 4: The Kuratowski Network in a 2D non-planar lat- 
tice 

The proof is as before, with the exception tha t  we are now 
in 3D, and a few things change. One is the fact tha t  " paths  
crossing" is no longer well-defined. Therefore, we will con- 
sider two non-colinear vectors pl,p2 E 7r, as before, and the 
teselation planes Ti tha t  they define. Consider K '  a subdi- 
vision of a Kuratowski graph K,  tha t  is contained in L. K '  
is non-planar,  and so is any "projection" on any tesselation 
plane Ti. Our crossing gates will be three-dimensional,  while 
the interconnection between them will be two-dimensional 
planar. 
Let us pick a tesselation plane T tha t  is defined by non- 
colinear vectors pl and p2 such tha t  it  has no vertices in 
common with K ' .  We will use a third vector p3 E 7r, tha t  
is not co-planar with the first two, to project  the ends of a 
pair of crossing paths  (as viewd crossing when projected to 
T) from K ' .  
We pick as before two crossing paths  P1 and P2 in K '  With 
end points vl,  v2, and respectively v3, v4. Our choice of the 
crossing paths  is such their  four end points are projected into 
four points on T, using the p3 lines for projection. We can 
always make this choice, if necessary shortening the paths  
and extending them with edges in the pl  and p2 directions. 

V t V t V t V ~ .  Let the projections of vl,v2,vs,v4 on T be 1, 2, 3, 
We will continue our construction as in the  2D case, by 
finding a paralelogram A of T tha t  contains these four points 
and such tha t  each of our crossing paths  could be extended 
with segments interior to A to connect opposite corners of 
A. The paralelogram A and these diagonal paths  form the 
new "crossing gates." 
It is easy to see now, tha t  we can use the plane T to connect 
the gates and to form a similar Kuratowski network for L. 
Figure 4.2.2 shows the generic construction. I t  is easy to see 
that  a subdivision of ]Co is contained in L having the "X" 
crosses partially, outside the plane T, where the "X"s are 
connected by a two-dimensionai planar  set of edges. Clearly, 

Figure 5: The Kuratowski Network in a 3D non-planar lat- 
tice 

for a given non-planar lattice, the Kuratowski network is not 
unique. 

4.2.3 Universality o f  graph embedding into Kura- 
towskians 

In this section we show tha t  for every 3-regular graph, and 
for every Kuratowskian, there is one subdivision of the graph 
tha t  is contained into the Kuratowskian.  
K u r a t o w s k i a n s  a r e  u n i v e r s a l  for  s u b d i v i s i o n s  o f  3- 
regular graphs 

The latt ice ]Co has the following "3-universality" property. 

DEFINITION 2. A lattice is called 3-universal if every 3- 
regular graph has a subdivision that is contained in the lat- 
tice. 

LEMMA 2. ]Co iS 3-universal. Moreover, every Kuratowskian 
is also 3-universal. 

Proof. Figure 4.2.3 shows a subdivision of//'33 contained in 
]Co. We now present an algori thm tha t  for every 3-regular 
graph G = (V, E) ,  will find a subdivision G' of G tha t  will 
be contained in ]Co. 
Suppose tha t  V = {vl , .  .... vn} and E = {el, ...., e,~}. We 
will select a set of 3 * n columns in ]Co, three columns for 
each vertex of G. From left-to-right, the first three columns 
will be assigned to vertex vl, the next three to vertex v2 and 
so on. The vertices will be located in the middle column of 
the three columns associated to it. We will also select m 
X-rows, each corresponding to an edge of G. The first row 
of X-es will be assinged to el ,  the  next to e2 and so on. 
Each edge ek = (vi, vj) will be present as a subdivision, i.e., 
a pa th  P~k, tha t  will connect v~ with vj. Suppose tha t  i <_ j .  
The pa th  Pe~ will use: (1) the column where vi is located 
to s tar t  from vl and to reach lower to the X-row assignated 
to the edge ek; (2) it  will continue on this row till it will 
reach the column where vj is located; (3) finally, it will use 
this column to reach the vertex v~. All these paths  will be 
vertex disjoint regardless what  the edge structure of G is. As 
expected, when such paths  must cross, the X-gates  will be 
used to accomodate this crossing whithout  sharing vertices. 

4.2.4 The Uniform Kuratowskians  
A similar set of results can be obtained for a special type 
of Kuratowskian,  called uniform Kuratowskian. They are 
going to play a similar role, by providing a Kuratowski- 
like characterization of non-planar lattices, and by provising 
again universality of embedding for 3-regular graphs. This 
time, however, the subdivisions of 3-regular graphs will be 
uniform, tha t  is, all edges replaced by subdivisions of the 
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Figure 6: A subdivision of the graph K4 contained in the 
basic Kuratowskian 
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Figure 7: A subdivision of the graph K33 contained in the 
Basic Kuratowskian 
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Figure 8: Construction of the uniform crossing gate 

same length. The new construction is based on an uniform 
crossing gate that is presented in the Figure 8. Complete 
details will be presented in the final version of this paper. 

5. COMPUTATIONAL COMPLEXITY OF THE 
3D ISING MODELS 

We will consider four cases: models with {-J,O, + J )  in- 
teractions, with { - J ,  0} interactions, with {0, +J}  interac- 
tions, and with { - J ,  +J}  interactions. We will show that 
the computation of the partition function is NP-complete for 
all such cases when the crystal lattice is non-planar. How- 
ever, as we restrict the type of interactions along these four 
models, the roots of computational intractability become 
deeper. 

5.1 Ising Models with {-J, 0, +J} Interactions 
Recall that computing the lowest energy state, i.e., the ground 
state is equivalent with computing the cut of minimum weight, 
where the cut is defined by the edges that have their nodes 
associated opposite spins. We show that in this case, com- 
puting the ground state is NP-complete. We reduce the 
problem to that of computing the maximum cut in 3-regular 
graphs. The proof uses the containment, for every non- 
planar lattice of a Kuratowskian into the lattice. 

THEOREM 2. Consider the Ising model with interaction 
energies {-J ,  0, +J}.  For every non-planar crystal lattice, 
computing the Ground States of finite sublattices is NP- 
complete. Therefore, computing the Partition Functions for 
the finite sublattices is also NP-complete. NP-eomplete. 

Proof.  Let us consider L a non-planar crystal lattice, and 
let/C' be its Kuratowskian. Let us assign weight 0 to every 
edge of L that is not in/C'. As computing ground states on 
finite sublattices is now equivalent to computing the Min- 
imim Weight Cut on/C ~, it will suffice to show that this last 
task is NP-complete. This is established in lemma 3, which 
in turn establishes the theorem. The lemma and its proof 
are similar to what we can coin as the Barahona Lemma, 
[1]. 

LEMMA 3. Computing Min Weight Cut on/co with weights 
{ -J ,  O, +J} is NP-complete. Moreover, the same is true for 
every subdivision of/co. 

Proof.  By Lemma 2, for every 3-regular graph G there 
exists a subdivision G ~ of G that is contained in /Co. Let 
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us assign weight 0 to every edge of/Co that  is not in G'.  
Consider one edge e = (vl, v2) and the corresponding subdi- 
vision of e namely pc = (wl,w2,. . . ,w~+l) tha t  is composed 
of the t > 1 edges: Label one edge picked arbi trar i ly by - J  
and the rest of the edges by + J .  We claim tha t  there exists a 
cut in G of size > h if and only if there exists a cut in (G',  A) 
of weight _< - h J .  Indeed, Consider a cut C = ($1, $2) in 
G of size r, and let E c  be the edges of the cut. Then it is 
easy to see how to construct a cut C'  in (G' ,) , )  of weight 
- r .  Let Ec,  be the set of edges labeled - J  in all the paths  
pc, where e E Ec .  Let C'  be the cut defined by the edes 
Ec,  as follows. We define the  cut (S~, S~) such tha t  Si C S~ 
in the obvious way. We have w(C')  = - t J .  Conversely, let 
us observe tha t  if there is a cut  C'  in G' of weight - r  J,  
and the cut edges are the only edges labeled - J  then there 
exists a cut in G of size r. However, if C '  contains also edges 
labeled + J ,  it  may not exist a cut is G of size exactly r, but  
it should exist one cut of larger size. 
Therefore, as computing Max Cut for 3-regular graphs is 
NP-complete,  it follows tha t  computing the Minimum Weight 
Cut for/Co with labels { - J ,  0, + J }  is NP-complete.  I t  is easy 
to see tha t  the same conclusion holds for every subdivision 
of/Co, as 3-universality also holds for all subdivisions of/Co. 

5.2 Ising Models with {0, +J} and {-J, 0} Inter- 
actions 

In this section we analyse the case of non-negative pairwise 
interactions for the {0, + J } .  The proofs use the stronger re- 
sult about  the containment of uniform Kuratowskians into 
every non-planar lattice. We show tha t  computing the high- 
est energy states is NP-complete.  Again, we will reduce the 
problem to tha t  of finding the maximum cut in a 3-regular 
graph. 
The analysis of the { - J ,  0} interactions model is a sim- 
ple adapta t ion  of the {0, + J }  case. The only change is 
tha t  what  is computat ional ly  intractable about  the part i-  
tion function is now computing the ground states. 

THEOREM 3. Consider the Ising model with interaction 
energies {0, + J } .  For every non-planar crystal lattice, com- 
puting the highest energy states for its finite sublattices is 
NP-eomplete. Therefore, computing the partition function 
for the finite sublattiees is also NP-complete. 

P r o o f  o f  t h e  T h e o r e m .  Let us consider L a non-planar 
crystal lattice, and let K:' be its Uniform Kuratowskian. Let 
us assign weight 0 to every edge of L tha t  is not in /C. 
I t  is easy to see tha t  computing the highest energy states 
is equivalent to the computat ion of the largest cut in the 
graph. Due to uniform universality of embedding, for every 
3-regular graph G, we can find an uniform subdivision G' 
of G contained in K:'. Let us assign weight 0 to every edge 
tha t  is not in G',  and weight + J  to every edge in G'.  The 
Lemma 4 shows tha t  computing the maximum cut on these 
uniformly dialated 3-regular graphs is reducible to comput-  
ing the maximum cut in 3-regular graphs, and therefore, it 
is NP-complete.  As computing the highest energy states is 
NP-complete,  the part i t ion function is also intractable.  

For a positive integer k, the  k-dialat ion of a graph G is a 
subdivision of the graph in which every edge of G is replaced 
by a vertex disjoint pa th  of with k new nodes, i.e., having 
(k + 1) edges. 

LEMMA 4. For every 3-regular graph G, let k be an even 
number, and let G (k) be the k-dialation subdivision of G. 
Then G has a cut of size >_ c if  and only if G (k) has a cut 
of size > c + k I E ( a )  I. 

Proof .  
Let G be an arbi t rary  3-regular graph, and G (k) its k-dialation 
subdivision. 
• Clearly, if G has a cut C with c edges, then G (k) has a cut 
C'  of size c + k  I E(G)  I. Indeed, every edge e of G is dialated 
to a pa th  pc of odd size, because k is even. For each edge of 
G in C, the  edges of the pa th  pc will al ternate in the cut C'  
crossing from one side to another in the cut. For every edge 
e of G not in C, with exactly one exception, all the edges 
of its pa th  pc, will a l ternate in the cut C' .  Therefore, for 
every edge e of G, every pa th  pc contributes with k edges in 
the cut C ' ,  a total  of k ] E(G)  [ edges. For each edge in C, 
its pa th  contributes with one more edge in C' ,  a total  of c 
more edges. 

• Suppose tha t  G (k) has a cut C'  of size c + k I E(G) I. Let 
us consider for every e the  pa th  Pc and its s tructure with 
respect to the cut. Let A, B be the set of edges e of G for 
which their  pc is with both  endpoints on the same side of 
the cut, and respectively, with one endpoint  in one side, and 
the other in the other side. Suppose I B I< c. As each edge 
in A can contr ibute to at most k edges, and only edges in 
B can contr ibute with k + 1 edes, we have tha t  the size of 
the cut C'  is < k [ A I + k  I B [ + c  = k [ E(G)  I +c which is 
a contradiction. So I B [> c. But each pa th  pc now can be 
contracted to the edge connecting its endpoints,  such that  
we have all paths  in A giving rise to edges not in the cut, 
and all paths  in B giving rise to edges in the cut. The result- 
ing graph is G and the cut is a legitimate cut of G of size > c. 

5.3 Ising Models with {-J, +J} Interactions 
The analysis of this case reveals similar intractabil i ty results. 
The constructions axe involved and will presented in the final 
version of the paper.  
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