The Market for Pollution Permits: A Review of Allocation Considerations

Daniel Goldberg

Why Cap and Trade?

- Command and Control vs. Tax vs. Cap and Trade
 - Economically efficient
 - Simple
 - Politically easy

Types of Cap and Trade Systems

- Pollution offsets
- Banking and borrowing
- Auctioning versus grandfathering

I will examine a market in which there are no offsets or banking allowed. Auctioning and grandfathering will both be discussed.

The Independence Property

 Neither the final allocation of permits nor the final permit price will be affected by the initial allocation of permits.

In reality, the independence principle doesn't always hold.

- There are six conditions in which the independence principle can be violated in theory (Stavins and Hahn):
 - Transaction costs
 - Market power
 - Uncertainty
 - Conditional allowance allocations
 - Non-cost-minimizing behavior by firms
 - Differential regulatory treatment of firms

In reality, the independence principle doesn't always hold.

- There are six conditions in which the independence principle can be violated in theory (Stavins and Hahn):
 - Transaction costs
 - Market power
 - Uncertainty
 - Conditional allowance allocations
 - Non-cost-minimizing behavior by firms
 - Differential regulatory treatment of firms

Market Power

- "Market Power and Transferable Property Rights" (Hahn 1984)
 - There are m firms. Firm I has market power.
 - There are L permits.
 - Q_i⁰: the number of permits allocated to firm i.
 - Q_i: the number of permits that firm i holds after trading.
 - The equilibrium permit price is P.
 - Each firm has a downward sloping demand curve, $P_i(Q_i)$, where P_i is the firm's WTP.
 - $^{\circ}$ C_i(Q_i) is the abatement cost of emitting (Q_i) units. Marginal abatement costs are positive and increasing.

The problem for firms 2-m (without market power):

- Choose the number of permits that minimizes costs on abatement and permits.
 - $^{\circ}$ Mathematically, min: $C_i(Q_i) + P(Q_i Q_i^{\,0})$ for Q_i
 - FOC: $C_{i}(Q_{i}) + P = 0$
- The firm will adjust the quantity of permits demanded until marginal abatement cost equals price.

The problem for firm I (with market power):

- Choose a price that minimizes costs on abatement and permits such that the market clears.
 - min: $C_1(Q_1) + P(Q_1 Q_1^0)$ for P
 - Subject to $Q_1 = L \sum_{i=2}^{m} Q_i(P)$

• FOC
$$\left(-C_1' - P\right) \sum_{i=2}^{m} Q_i' + \left(L - \sum_{i=2}^{m} Q_i(P) - Q_1^0\right) = 0$$

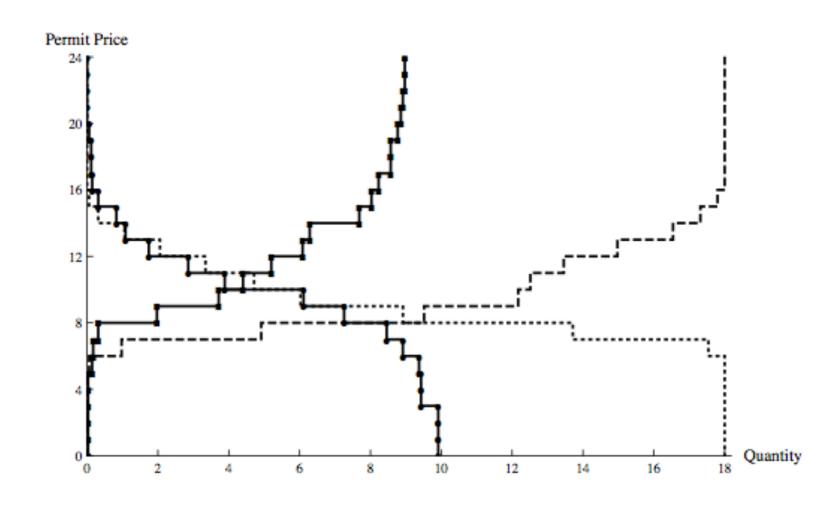
• Firm I's MAC will equal the equilibrium price only when its initial allocation of permits equals what it chooses to use. That is, if firm I doesn't receive the perfect number of permits, the total expenditure will exceed the cost minimizing solution.

Is market power a problem in real actual markets for pollution permits?

- CFC allowances
- SO₂ allowances
- Lab experiments

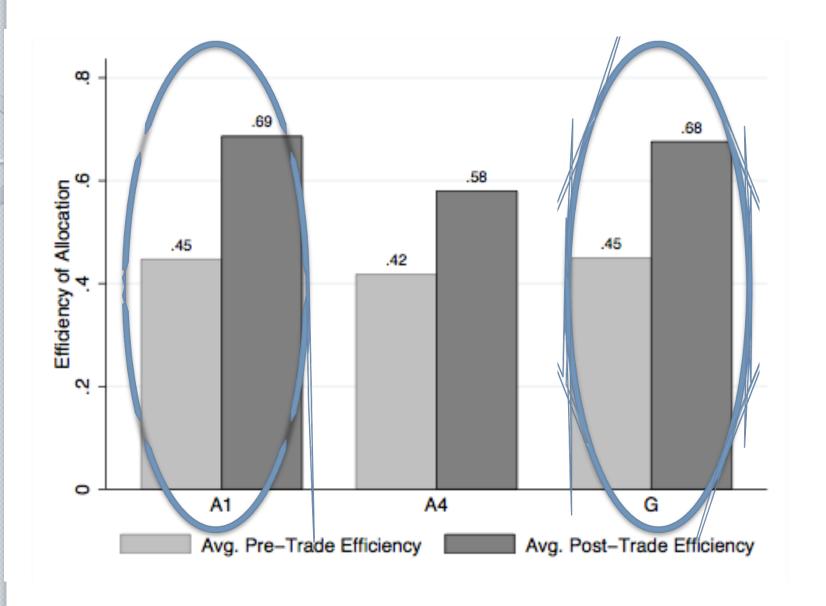
Can using auctions or grandfathered allocations prevent firms from developing market power?

Auctions vs. Grandfathering


- "An Experimental Study of Auctions versus Grandfathering to Assign Pollution Permits," Goeree et al (2009).
 - Lab experiment comparing the results of grandfathering permits to auctioning permits
 - Found that grandfathering led to monopolistic behavior and raised overall compliance costs

Experimental Procedure

- Three stages: assignment stage, spot market, product market
- Subjects played in groups of 6. Each group had three "high emitters" and three "low emitters"
 - High emitters had higher costs
 - When permits were grandfathered, they were awarded in a 2:1 ratio to high emitters
- Half of the rounds had grandfathered permits, half had auctions


Results

- Auctions
 - The permit price was too low (7.2 compared to 8.0).
 - Too few permits were won by low emitters (9.3 compared to 12).
 - Trading volume was very low in the spot market.
- Grandfathering
 - The permit price was too high (11.2 compared to 8.0)
 - Too few permits were won by low emitters (8.2 compared to 12)
 - Trading volume was higher in the spot market.
- "The reason that the spot market does not fully correct the initial misallocation under grandfathering is that high emitters exercise their market power in the permit market."

Auctions vs. Grandfathering

- "An Experiment on Emissions Trading: The Effect of Different Allocation Mechanisms," Grimm et al (2010).
 - Similar experimental design to Goeree et al
 - Allocative efficiency of grandfathering was exogenously set to be equal to that of auctions

Future Research

- What is the effect of auctions in the field?
 - EU ETS rule changes (2012)
- Political considerations:
 - Which markets are at a greater risk of developing market power?
 - When grandfathering, what are the right proxies for high MAC?