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Economists have long noticed that it is difficult to sustain cooperation in large 
groups, especially if third party observability within the group is limited.1 

Nevertheless, even as markets grow and span across geographic and cultural bor-
ders, informal agreements continue to be an important part of markets’ activity. 
A number of empirical studies document interesting patterns of trade within large 
groups. In particular, trade and trust are often concentrated in a subset of all possible 
relationships.2 This paper suggests an explanation to the observed patterns of trade 
and trust.

We consider a market with asymmetric information. In every period, sellers 
with limited supply meet sequentially with buyers with limited demand and decide 
whether to cooperate or to defect and “cheat” a given buyer. Only the buyer cheated 
observes the seller’s deviation. We model active relationships as links in a buyer-
seller network and ask the following question: what structures of networks are con-
sistent with an equilibrium in which every buyer and seller that are connected trade 
and cooperate with each other? The answer defines a set of networks in which a link 

1 See also Kandori (1992), Greif (1993), Ellison (1994), and Araujo (2004).
2 See also Hardle and Kirman (1995); Fafchamps (1996); Weisbuch, Kirman, and Herreiner (1996); McMillan 

and Woodruff (1999); Kirman and Vriend (2000); and Karlan et al. (2009). We review this literature in Section VI.
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between seller s and buyer b implies that b can trust s to cooperate with him when 
they trade.

The scarcity of models of repeated games in networks is often attributed to the 
inherent intractability of the problem.3 Our framework alleviates some of the dif-
ficulties and provides a simple expression that summarizes all the network informa-
tion that seller s uses when deciding whether to cooperate with buyer b or cheat 
him. Consider a seller s and a buyer b that are connected. The immediate benefit 
for s from cheating buyer b is defined by the stage game and does not depend on 
the network. On the other hand, the cost of cheating depends on the entire network 
structure. As a starting point, consider the simple case that s deviates only in an 
interaction with b and cooperates with all other buyers that are connected to her, 
and that none of the other buyers can learn about the deviation of seller s. In this 
simple case, for every period that b “punishes” s by not purchasing from her, s loses 
her expected per-period future value from cooperation with b, which we denote by 
F​V​ s, b​ . If F​V​ s, b​ is large, s does not find it profitable to deviate and lose the option to 
trade with b, even if her intertemporal discount factor is low and the immediate ben-
efit from deviating is large. In Theorem 1, we establish conditions under which the 
following one-deviation-principle holds: F​V​ s, b​ is a sufficient statistic for determin-
ing whether a fully cooperative equilibrium (an equilibrium in which every buyer 
and seller that are connected always cooperate with each other) exists.

Despite the simplification, F​V​ s, b​ still depends on the entire network structure and 
can be difficult to calculate, especially in large networks. To evaluate F​V​ s, b​ , s asks 
the following question: “What is the probability that I will be able to sell a good to 
b and not be able to sell it to any other buyer?” The answer reflects the probability 
that s needs b in a given period, and depends on the network structure in two ways. 
First, the network structure determines the frequency of interactions between s and 
b; when their frequency of interaction rises, s needs b more, and values more their 
connection. Second, the network structure determines the outside options of s if she 
were not connected to b. When other buyers with whom s is connected are more 
likely to buy from s, seller s needs b less. For illustration, assume that in every 
period meetings between buyers and sellers occur in an order chosen uniformly at 
random, and let each seller produce one unit of a good and each buyer have demand 
for one unit of a good. Then, in a fully cooperative equilibrium, successful interac-
tions between seller s and buyer b in Figure 1A are more frequent than in Figure 1B 
(in the latter there is a probability of 1/4 that in a given period s does not sell at all). 
However, in Figure 1A s has a guaranteed outside option because buyer b′ cannot 
transact with any other seller, whereas in Figure 1B, there is a positive probability 
that b is the only buyer who offers to buy from s, which raises the value of this con-
nection for seller s. Focusing on Figure 1B, if we eliminate the link between s′ and b, 
the connection between s and b becomes more valuable due to higher frequency of 

3 Recently, several researchers take on different approaches to modeling repeated games in networks (see Ali 
and Miller 2009; Mihm, Toth, and Lang 2009; Nava and Piccione 2011; Jackson, Rodriguez-Barraquer, and Tan 
2011; and Lippert and Spagnolo 2011). As their approach and research questions differ significantly from ours, we 
defer the discussion of these papers to Section VI.
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interactions, and the connection between s and buyer b′ becomes less valuable due 
to an improved outside option for s.

The expectations of seller s with respect to F​V​ s, b​ depend on what s knows about 
the network. In our model, sellers and buyers know who they are connected to, and 
the number of connections (degree) of each of the buyers or sellers that they are con-
nected to. Additionally, they know the number of buyers and sellers in the network 
(​n​b​ and ​n​s​ respectively), as well as some aggregate information regarding the net-
work structure, such as the degree distribution of buyers and sellers in the network, 
and the probability of sharing more than one neighbor with the same individual.

Focusing on a family of equilibria in simple strategies, which excludes equilib-
ria that rely on community enforcement through contagion,4 we find that in any 
(asymptotically) large network and for every seller s and buyer b that are connected, 
F​V​ s, b​ can be summarized by a simple expression that captures F​V​ s, b​ in a correspond-
ing random tree. Using this insight, we show that three network features increase 
the values of links: (i) moderate and balanced competition: the degrees of all buyers 
and sellers are similar; (ii) sparseness: the degrees of sellers and buyers are small; 
and (iii) segregation: sellers who have one buyer in common, have connections to 
similar sets of buyers overall. For fixed intertemporal discount factors, our results 
describe systematic constraints on the structure of networks that can sustain coop-
eration. In contrast with much of the existing literature, the constraints are not due 
to exogenous costs of creating or sustaining links.

Ignoring the incentive constraints and assuming that sellers always cooperate, 
networks that maximize the expected volume of trade are dense—the exact opposite 
of (ii) above. This difference leads to inefficiencies and is especially robust in sto-
chastic environments, in which sellers’ supply is subject to exogenous fluctuations. 
Noting that previous theoretical results find endogeneously formed buyer-seller net-
works to be efficient in facilitating trade, highlights that the inefficiencies are due to 
the incentive constraints imposed by moral hazard.5

We consider three social and formal institutions: Reputation Networks, Litigation, 
and Third-Party Evaluation Services. The direct effect of each of these institutions 

4 Consider a seller s that cheats a buyer b. Contagion via the network requires buyer b to refuse to buy from 
competitors of seller s.

5 For example, Kranton and Minehart (2001) offer a model in which buyers decide whether to costly connect to 
sellers before auctions take place and find that the resulting network facilitates the efficient outcome.
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on cooperation is well studied. However, the integration of reduced-form models of 
these institutions into our framework highlights a new insight: in the presence of either 
of these institutions, denser networks can sustain cooperation (i.e., these institutions 
complement the network rather than substitute for it in enforcing cooperation).

Methodologically, we extend prior literature on games in networks in sev-
eral ways. Most notably, with the exception of a few papers that are discussed in 
Section VI, most of the literature focuses on static games (for extensive surveys, see 
Goyal 2007 and Jackson 2008). In addition, the current literature focuses either on 
complete information of the network structure, or on incomplete information where 
an agent knows only her own degree and the degree distribution of others in the net-
work.6 We allow for incomplete yet richer knowledge of the network structure. By 
doing so, we achieve tractability in large networks, while maintaining the ability to 
analyze complex changes in the network structure.

Finally, most related to our paper is Fainmesser and Goldberg (2011)—hereafter 
FG—who analyze how the structure of an informational network between buyers 
affects the ability to sustain cooperation between buyers and sellers. FG show that 
the impact of the entire structure of the buyer-seller network on the incentives of a 
seller to cooperate can be approximated by focusing on the seller’s local neighbor-
hood—a small network that includes only buyers and sellers that are close to the 
seller. Furthermore, when sellers have a sufficiently high level of uncertainty with 
respect to the network structure, FG find that a seller expects her local neighborhood 
to look approximately like a random tree—a network that has no cycles and in which 
the degrees of buyers and sellers in the network are drawn independently at random 
from some degree distribution.7 We make use of these graph-theoretic results in our 
characterization of large networks for which fully cooperative equilibria exist.

The paper is organized as follows. The following section offers two motivating 
examples. In Section II, we present the model, and in Section III we character-
ize the future value of links in large networks and derive conditions to determine 
whether a network admits a fully cooperative equilibrium. Section IV characterizes 
differences in the future values of links within and across networks and relates these 
differences to the constraints on the structure of networks that admit fully coopera-
tive equilibria. Section V investigates the trade-off between sustaining cooperation 
and maximizing trade volumes. Section VI offers a discussion of related literature 
and empirical evidence, as well as several institutions that affect the ability to sus-
tain cooperation. Section VII offers concluding remarks.

I.  Examples

To motivate our analysis, we briefly describe two examples of relevant applications.

6 See Jackson and Yariv (2007), and Galeotti et al. (2010).
7 Also related is Campbell (2010) who applies percolation theory (physics) to the study of monopoly pricing 

in the presence of WOM. Notably, percolation theory relies on the close connection between random graphs and 
tree-like networks.
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Example 1 (job recommendations):8

Consider a group of recommenders (mentors/past employers) that have workers 
(mentees/past employees) to recommend and a group of firms that are seeking to 
hire. A recommender receives a positive payoff from getting a job for her worker. A 
worker’s ability can be either high or low, and is observed by the firm only after the 
worker is hired (the recommender knows the ability of the worker). Assuming that 
firms want to hire only high quality workers, a recommender who has a low abil-
ity worker can benefit from recommending the worker to the firm as having high 
ability. In a one-recommender-one-firm setup, it is easy to solve for the minimal 
firm’s discount factor that will allow to support an equilibrium in which the firm 
provides accurate recommendations. This paper studies an environment with many 
recommenders and many firms, and allows each recommender to condition her 
recommendation on the targeted firm.

Example 2 (catering and food deliveries):
Consider a group of food suppliers (caterers/restaurants) and a group of repeated 

clients that order food frequently. Providing high quality service and food costs 
more than providing low quality. In the absence of sufficient future payoffs that are 
contingent on providing high quality, a food supplier may shirk and provide low 
quality. We study how the patterns of interactions in this market affect the level of 
future payoffs that are contingent on providing high quality.9

II.  Model

Consider a market with a set S = {1, 2, … ,  ​n​s​} of sellers (recommenders/caterers) 
and a set B = {1, 2, … , ​n​b​} of buyers (firms/clients). Time is discrete. Sellers live 
forever and seller s has a discount factor ​δ​ s​ . Periods are ex-ante identical. In every 
period, any seller s has the capacity to produce one unit: with probability μ seller s 
can choose whether to produce a high quality good at a cost of ​c​ s​ ≥ 0, or a low qual-
ity good at no cost, whereas with probability (1 − μ) seller s can only produce a low 
quality good (at no cost). μ is common knowledge and the realization of μ is i.i.d. 
across sellers and periods. Goods are nondurable and cannot be transferred across 
periods. Buyers live forever and have unit demand in every period. Each seller s has 
an active relationship with only a subset of buyers, denoted by ​B​ s​ . We first define 
a buyer-seller network that captures the active relationships of all sellers and later 
provide the activity rules that define the notion of an active relationship.

Let m = 〈S, B, E 〉 be a network, where E is a set of seller-buyer pairs such that 
(s, b) ∈ E if and only if there is an edge (or link) connecting seller s and buyer 
b. Let ​B​ s​(m) be the set of buyers that are (directly) connected to seller s, and let ​

8 The importance of social networks for getting jobs has been long recognized. Granovetter (1974) documents 
that more than half of (white-collar) workers use personal connections to obtain jobs. Bewley (1999) summarizes 
24 other US studies that point to similar results. Fainmesser (2011) shows that transmission of information over 
social networks can affect the timing of hiring in entry-level labor markets.

9 Admittedly, eating is a social experience, so one might expect that clients share among themselves some infor-
mation about past experiences. In Section VIB, we follow FG and allow for information sharing between buyers and 
consider its effect on market structure and cooperation.
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S​b​(m) be the set of sellers that are connected to buyer b. The degree of seller s, ​d​s​  
= ​d​s​(m) = | ​B​ s​(m)| is the number of buyers that are connected to s; and the degree 
of buyer b, ​d​b​, is the number of sellers that are connected to b. A node is an agent 
(buyer or seller) in the network. A path between node x and node x′ in network m 
is a sequence of nodes (x = ​x​0​ , ​x​1​, ​x​2​ , … , ​x​n​ = x′ ) such that for every i ∈ {1, 2, … , n}, 
(​x​i−1​ , ​x​i​) ⊂ E. The length of a path is the number of edges along the path. The dis-
tance between two nodes is the length of the shortest path between the two nodes. A 
path (x = ​x​0​ , ​x​1​, ​x​2​ , … , ​x​n​ = x′ ) is also a cycle if x = x′. A tree is a network that has 
no cycles. A rooted tree is a tree in which one node is marked as the root. A node in 
a tree is called a leaf if its degree equals 1. The depth of a rooted tree is the largest 
distance between the root and any of the leafs in the tree. A network (tree) m′ is a 
subnetwork (subtree) of m if m′ ⊂ m. The network (tree) m′ is a strict subnetwork 
(subtree) of m if m′ ⊊ m. A node x is called a child of a node x′ in a rooted tree m if 
x and x′ are connected AND x is at a larger distance from the root than x′.

The degree distribution in a network specifies for any d the fraction of buyers with 
degree d and the fraction of sellers with degree d. We use the degree distribution to 
express sellers’ expectations with respect to the degrees of the buyers connected 
to them, sellers connected to the buyers connected to them, and so forth. Thus, for 
several of our results it is more convenient to denote the degree distribution in the 
following way: let g = 〈​g​ S​, ​g​ B​ 〉 be a pair of probability distributions such that if 
we choose a link (s, b) ∈ E uniformly at random (u.a.r.), ​g​ B​(d) is the probability 
that buyer b has degree d, and ​g​ S​(d) is the (unconditional) probability that seller s 
has degree d.10 We say that a probability distribution g is admissible if (i) for any 
d, ​g​ S​(d), and ​g​ B​(d) are rational numbers, and (ii) g has a finite support.

In every period, connected buyers and sellers meet at a random sequencing 
(i.i.d. across periods), or until their demand (if buyers) or supply (if sellers) has 
been exhausted. Formally, in every period, all of the links in E are ordered u.a.r. 
and then the links are chosen one by one according to that order. When a link (s, b) 
is chosen, s and b meet and get an opportunity to engage in trade unless either s 
or b has already traded (with anyone else) in the same period. Buyers and sell-
ers observe only their own meetings, i.e., they do not observe the order in which 
links are chosen and meetings by other buyers and sellers occur. Hence, thinking 
of a period as a segment of time (e.g., a day) the random component in the order 
of meeting captures the idea that buyers and/or sellers do not know exactly when 
during a given segment of time they are going to meet and who their partner is 
going to meet before their meeting.11

Remark 1: We remain agnostic with respect to the formation of the network 
and treat the network as exogenous. It will become clear that by allowing sell-
ers and buyers not to cooperate with each other we essentially allow them to 
eliminate links. Not allowing for the creation of new links captures the idea that 

10 Conditional on ​n​b​ and ​n​s​ , there is a one-to-one mapping between g and the aforementioned fractions.
11 The idea that interactions in markets have a random component is not new and is formalized in many models 

of market activity. As our focus is on the network structure and not on transient and irregular frictions in markets, 
we follow much of the networks literature and take the random component as exogenous (see also Bala and Goyal 
2000; Pongou and Serrano 2011; and Manea 2011).
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the formation of new relationships is a longer term process than the decision 
not to cooperate in a given period. Notably, we consider in our analysis also 
the complete buyer-seller network, so we do not a priori restrict the cooperation 
relationships that might persist. A suggested interpretation for our results is that 
given any physical or social underlying network, observed patterns of repeated 
trade are expected to take the form of a network that is consistent with trade and 
cooperation, e.g., an active trade network may be a strict subnetwork of a physical 
network that captures trade opportunities.

A. Trade

When seller s meets buyer b, seller s decides whether to invest in producing 
high quality (if possible) and whether to tell b that the good is of high quality or 
of low quality.12 Buyer b decides whether to purchase the good from s or not. If b 
purchases the good, seller s receives a payoff of π (minus any production costs). 
Buyer b receives a positive net payoff if the good is of high quality, and a negative 
net payoff otherwise.13 Payoffs are realized at the end of the period, and buyers 
and sellers who do not manage to trade in a given period have utility 0. Payoffs 
(and interaction outcomes) are privately observed and cannot be credibly com-
municated to a third party.14

Definition 1: We say that buyer b and seller s cooperate if when they meet:

	 (1)	 If s does not have high-quality capacity, she truthfully conveys that to b, and 
if s has high-quality capacity she invests in producing high quality (if b pur-
chases the good).

	 (2)	 Buyer b chooses to purchase the good if and only if s claims to have high 
quality capacity.

Note that the profit for seller s from not cooperating depends on the application 
through μ and ​c​ s​ . Let ​​

_
 Π​​ s​ be the maximal additional payoff that s can ever gain from 

deviation. In the adverse selection problem in Example 1, seller (recommender) s 
cannot choose the quality of the good and deviates by saying that a worker is of 

12 For some applications it is more natural to assume that a seller makes her quality decision at the beginning of 
a period, rather than upon meeting a buyer. This limits further the strategy space of sellers. Thus, for given discount 
factors, any network that supports cooperation in our setup does so in this alternative setup as well. The reverse 
claim is not correct. However, our results do not change much qualitatively.

13 Our results can be extended to a setup in which there is also a market for low quality goods for a price that 
is lower than π as long as the difference between buyers’ valuations for the high and low quality goods is greater 
than the difference in the production costs of the goods. One possible construction is by setting prices to leave buy-
ers indifferent between purchasing a high quality good for ​π​H​ and a low quality good for ​π​L​ . If seller s ever sells a 
low quality good to buyer b for ​π​H​ , then buyer b agrees to pay only ​π​L​ to seller s in any of their future transactions.

Moreover, the model and all of the results extend immediately to games in which both parties have incentives to 
deviate (e.g., the standard prisoner’s dilemma) as well as to stochastic games in which payoffs vary across periods.

14 Section VIB considers credible communication between buyers so that more than one buyer can learn about 
a seller’s deviation.
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high quality when she is not.15 As a result, s receives benefits of trade that would 
not have occurred had she told the truth, and ​​

_
 Π​​ s​ = π. In the moral hazard problem 

in Example 2, a deviation by a seller (caterer) is saving on effort costs, and ​​
_

 Π​​ s​ = ​c​ s​ .

Remark 2: We assume that the payoff for a seller from a single transaction (π) 
does not depend on the network structure. Introducing endogenous bargaining 
increases the complexity significantly.16 However, we note that (i) if we allow π to 
depend on ​d​s​ , any model in which the slope of π(​d​s​ , ⋅) is not too steep (at least for a 
large enough ​d​s​) preserves the main insights of this paper; and (ii) in a bargaining 
procedure in which sellers make take-it-or-leave-it offers, it is straightforward to 
construct equilibria for which our analysis goes through without changes.

B. Large Networks and the Knowledge of the Network

Our goal is to provide a framework for the analysis of large markets. This has 
proven to be a difficult task even in the study of static games, and especially when 
agents have complete knowledge of the network structure. Several authors suggest 
studying environments in which agents have incomplete information of the network 
structure. In particular, Jackson and Yariv (2007), and Galeotti et al. (2010) focus 
on static network games in which agents know only their own degree and the degree 
distribution in the network. We introduce an approach that is similar yet less restric-
tive, and derive conditions under which this approach simplifies the analysis of 
repeated games in networks. Assumption 1 is illustrated in Figure 2.

Assumption 1: Seller s (buyer b) knows: (i) her own degree ​d​s​ (​d​b​), (ii) the degrees 
of all buyers (sellers) connected directly to her {​d​​b​ ′​​​}​​b​ ′​∈​B​ s​​ ({​d​​s​ ′​​​}​​s​ ′​∈​S​b​​), (iii) the number of 
buyers and sellers in the network (​n​b​ and ​n​s​ respectively), and (iv) the degree distri-
bution g. We denote by ​K​s​ ≜ 〈​d​s​ , {​d​​b​ ′​​​}​​b​ ′​∈​B​ s​​ , ​n​s​ , ​n​b​ , g 〉 (​K​b​ ≜ 〈​d​b​ , {​d​​s​ ′​​​}​​s​ ′​∈​S​b​​ , ​n​s​ , ​n​b​ , g 〉) the 
knowledge that seller s (buyer b) has of the network structure.

While stylized, Assumption 1 captures the idea that participants in the market 
have some knowledge of alternative trading opportunities of their trading partners. 
Restricting further the knowledge of the sellers and buyers does not change our anal-
ysis.17 However, our results indicate that outside opportunities of trading partners 
have a first order effect on the incentives to cooperate. Extending the knowledge 
of sellers and buyers beyond ​K​s​ and ​K​b​ is an interesting exercise that we leave for 
future research.

To capture the idea that ​K​s​ and ​K​b​ contain all of the information that sellers and 
buyers have with respect to the network structure, we make the following assumption.

15 Formally, suppose that ​c​ s​ = 0 for all sellers. Then, a seller with high quality capacity always chooses to pro-
duce high quality and might benefit from a deviation only by misrepresenting her capacity to produce high quality.

16 For models of bargaining in networks see Corominas-Bosch (2004); Abreu and Manea (2011); Elliott 
(2011a); Manea (2011); Nava (2010); and Gofman (2011).

17 Our analysis holds for the informational assumptions used by Jackson and Yariv (2007), and Galeotti et al. 
(2010), as well as for intermediate levels of knowledge, in which buyers and sellers have imperfect knowledge of 
the degrees of sellers and buyers that are connected to them.
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Assumption 2: At any period t, seller s (buyer b) attaches identical probability 
to the network being any of the possible networks conditional on ​K​s​ (​K​b​).18

Remark 3: The knowledge that individuals are expected to have in a repeated 
games setup deserves further discussion. Clearly, repeated interactions provide 
sellers and buyers with opportunities to learn about their environment. However, 
even excluding purely behavioral considerations as well as complexity issues, there 
are several reasons for market participants not to be able to learn beyond their 
close local network and some aggregate characteristics of the global environment. 
In Appendix C, we provide further discussion of our informational assumptions 
as well as an example of an environment in which our specification of incomplete 
knowledge of the network structure persists even if buyers and sellers use their own 
patterns of past interactions to learn the network structure.

Large networks: To facilitate the study of large markets, consider the following 
notion of an increasing sequence of networks.19

Definition 2: Consider an admissible degree distribution g, and let m(​n​b​ , g) be a 
network with ​n​b​ buyers and a degree distribution g. We say that ​{m(​n​ b​ i

 ​ , g)}​ i=1​ 
∞
 ​ is an 

increasing sequence of networks if for every j > i, ​n​ b​ j
 ​ > ​n​ b​ i

 ​ .

For some (​n​b​ , g) a network m (​n​b​ , g) may not exist. In particular, for m (​n​b​ , g) to exist 
two conditions must be satisfied: (i) ​n​b​ must be such that ​g​ B​ can be induced by some 
vector (​d​ b​ 1​ , ​d​ b​ 2​ , … , ​d​ b​ ​n​b​​); and (ii) there must exist some ​n​s​ and a vector (​d​ s​ 1​, ​d​ s​ 2​, … , ​d​ s​ ​n​s​​) 
such that (​d​ s​ 1​ , ​d​ s​ 2​ , … , ​d​ s​ ​n​s​​) is consistent with g and ​∑ i=1​ 

​n​s​
  ​ ​d​ s​ i ​​ = ​∑ i=1​ 

​n​b​
  ​ ​d​ b​ i

 ​​ . However, for 
every admissible g, and starting from some ​n​b​ , there exists an increasing sequence 

18 Assumptions 1 and 2 are consistent with a seller (buyer) having a uniform prior over the set of all networks 
given ​n​s​ and ​n​b​ and updating her prior using ​K​s​ (​K​b​).

19 See Golub and Jackson (2010), and Ozsoylev and Walden (2011) for a similar formulation of large networks 
in the context of information diffusion in networks.

Figure 2. 

Note: The network from the point of view of seller s who is connected to buyers b and b′.

Sellers

Buyers b b′

s

g
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as required.20 In fact, given ​n​b​ and g, ​n​s​ is uniquely determined (and is an increasing 
function of ​n​b​ given g).

III.  Equilibrium

In this section, we define a notion of a per-period future value (FV) of a connec-
tion that correspond to the following “simple-minded” calculation: assume that in 
all networks all buyers and sellers always cooperate and let the future value of the 
connection (s, b) in network m be the difference between the expected payoff of 
seller s in network m and her expected payoff in network m\(s, b). Theorem 1 estab-
lishes conditions under which: (i) the naively calculated future values of links are 
sufficient statistics for determining whether a fully cooperative equilibrium exists, 
and (ii) the future values of links in a network m can be calculated as if m is a ran-
dom tree. The following example demonstrates the simple conditions for coopera-
tion in our model in a market with a single seller and a single buyer.

Example 3 (a market with one seller and one buyer): 
Consider a single seller s who has unit capacity with probability μ and a single 

buyer b. Conditional on cooperation, with probability μ, s needs b in order to trade 
with a payoff π − ​c​ s​ . Note that (​δ​ s​/(1 − ​δ​ s​)) ⋅ μ ⋅ (π − ​c​ s​) equals the maximal pun-
ishment that b can inflict on s (by not purchasing goods from s in subsequent peri-
ods). Therefore, an equilibrium in which seller s and buyer b cooperate exists if and 
only if (​δ​ s​/(1 − ​δ​ s​)) ⋅ μ ⋅ (π − ​c​ s​) ≥ ​​

_
 Π​​ s​.

In networked markets with multiple sellers and buyers, the analysis is no lon-
ger straightforward. The maximal effective punishment that could be imposed on 
a seller s by a given buyer b depends on: (i) the outside option of the seller, and 
(ii) the frequency of interaction between s and b. Both (i) and (ii) depend on the 
entire network structure as well as on the strategies of all of the buyers and seller in 
the market. To acheive tractability without directly constraining the set of networks 
considered, we restrict attention to equilibria in which buyers and sellers use “trig-
ger strategies”.

Definition 3: We say that buyer b and seller s that are connected in the network 
use trigger strategies if there exists T ∈ ​핑​+​ such that when s and b meet they cooper-
ate as long as neither deviated in an interaction with the other in the last T periods, 
and deviate otherwise.21

Definition 4: A strict trigger Nash equilibrium (STNE) is a strict Nash equilib-
rium in which all buyers and sellers employ trigger strategies.22

20 This follows from the Gale-Reyser Theorem (see Krause 1996), and (in our particular setting) Theorem 1.3 
of Greenhill, McKay, and Wang (2006).

21 If T = ∞, a deviation effectively leads to the elimination of a link. By allowing T to be infinite we avoid 
imposing any constraint on the memory of buyers and sellers. Our results remain the same if we restrict T to be finite.

22 In a strict Nash equilibrium, all players play a strict best response.
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In the remainder of the paper, we focus on STNE unless stated otherwise. 
Limiting attention to trigger strategies rules out equilibria involving two families of 
strategies: (i) strategies in which a buyer b who is cheated by seller s responds by 
modifying her behavior in meetings with other sellers; and (ii) strategies in which 
a seller or a buyer respond to punishment spells between other buyers or sellers. As 
a result, our analysis does not consider contagion, which is not realistic in the mar-
kets motivating this paper.23 Extending the analysis to a corresponding version of 
subgame perfect equilibrium (SPE) complicates the analysis significantly, but does 
not alter our results.24

Note that by definition, in any STNE, every buyer and seller that are connected 
cooperate with each other. Thus, on the equilibrium path, periods are ex-ante identi-
cal. For each seller s and buyer b, let ​I​ m​ t

  ​(s, b) denote the indicator of the event that 
s sold a good to b in period t in a STNE in network m. We note that (i) ​I​ m​ t

  ​(s, b) is 
fully determined by the realizations of who of the sellers are active in period t and 
of the order of meetings in period t; and (ii) ex-ante Pr(​I​ m​ t

  ​(s, b)) is independent of 
t. A “simple-minded” calculation of the per-period future value of the link (s, b) 
for seller s is based on the difference in the probability of seller s selling a good in 
period t in network m and in the network m\(s, b).

(1)  	F​V​ s, b​(m)  ≜  [ ​ ∑ 
​b​ ′​∈​B​ s​(m)

​ 
 

  ​ Pr​(​I​ m​ t
  ​(s, b′ ))  −  ​  ∑ 

​b​ ′​∈​B​ s​(m)\b

​ 
 

  ​ Pr​(​I​ m\(s, b)​ t
  ​(s, b′ ))]  ⋅  (π  − ​ c​ s​).

It is not at all obvious that we can extend the logic of Example 3 to claim that 
seller s cooperates with buyer b as long as (​δ​ s​/(1 − ​δ​ s​)) ⋅ F​V​ s, b​(m) > ​​

_
 Π​​ s​. For exam-

ple, it is not clear that the best strategy of a seller s after deviating in an interaction 
with buyer b is to always cooperate with all other buyers in ​B​ s​\b. Moreover, even if  
F​V​ s, b​(m) is a sufficient statistic for the existence of a STNE, Pr(​I​ m​ t

  ​(s, b)) is a com-
plex mathematical object, making it costly to compute and analyze F​V​ s, b​(m), both 
for the modeler and for an expected utility maximizing seller s. In fact, given the 
information set ​K​s​ , a direct calculation requires the computation of Pr(​I​ m​ t

  ​(s, b)) for 
each network m that is possible given the information of seller s, and then calculat-
ing the average over all such networks. Theorem 1 resolves this issue.

Consider a network m with a degree distribution g, and a seller s with degree ​d​s​ . 
Let ​​

_
 b​​s​ ∈ (​핑​+​​)​​d​s​​ be a sorted vector of the degrees of all buyers in ​B​ s​(m). Now, let ​

T​ d​(m, s) denote the random depth −d tree such that the root r has degree ​d​s​ , the 
sorted vector of degrees of the children of r is ​​

_
 b​​s​ , all subsequent nonleaf nodes at an 

even depth have a degree drawn i.i.d. according to ​g​ S​, all subsequent nonleaf nodes 
at an odd depth have a degree drawn i.i.d. according to ​g​ B​. Let F​V​ s, b​(​T​ ∞​(m, s))  
≜ ​ lim   

d→∞
​ F​V​ s, b​(​T​ d​(m, s)). Theorem 1 establishes that ​{F​V​ s, b​(​T​ ∞​(m, s))}​(s, b)∈E​ exist 

23 Section VIB discusses the implications of relaxing the assumption that payoffs are privately observed and 
allowing for community enforcement.

24 Extending the analysis to a corresponding version of SPE requires an explicit assumption on whether buyers 
and sellers can detect punishment spells between other buyers and sellers. The analysis goes through with SPE if we 
assume that sellers and buyers do not update from the pattern of interaction about punishment spells in other parts 
of the network. This assumption is especially reasonable in large networks, and given incomplete knowledge of the 
network, private information of the payoffs, and random and unobserved order of interactions.
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and are sufficient statistics to determine whether there exists an STNE with a large 
network m.

Theorem 1: For any network m, {F​V​ s, b​(​T​ ∞​(m, s))​}​(s, b)∈E​ exist. Moreover, let g be 
any admissible degree distribution. Then, for any increasing sequence of networks ​
{m(​n​ b​ i

 ​ , g)}​ i=1​ 
∞
 ​ there exists ​

_
 i​ such that for any i > ​

_
 i​ a STNE with network m(​n​ b​ i

 ​ , g) 
exists if and only if for every seller s and buyer b that are connected in m(​n​ b​ i

 ​ , g),

(2) 	​  
​δ​ s​ _ 

1  − ​ δ​ s​
 ​  ⋅  F​V​ s, b​(​T​ ∞​(m(​n​ b​ i

 ​, g), s))  > ​​
_

 Π​​ s​ .

Theorem 1 implies that we can approximate the analysis of an STNE in any large 
network by focusing on a simple auxiliary network—a random tree. The proof con-
sists of three main parts:

	 (i)	 In any network m, F​V​ s, b​(m) can be approximated by F​V​ s, b​(​m​Δ​(s, m)) where ​
m​Δ​(s, m) is the subnetwork of m that consists of the links that are at a distance of 
no more than some constant Δ (independent of the size of the network m) from 
seller s in m (and only those links). This step holds for any network structure 
and is therefore independent of our informational assumptions (Assumptions 1 
and 2). Intuitively, the random order of meetings in every period implies that 
links that are “far” from seller s in the network have only a small impact on the 
probability that seller s trades with any buyer b. This is because a link (s′, b′ ) 
can influence the trade between s and b only if (i) (s′, b′ ) is chosen before (s, b), 
and (ii) there exists at least one path connecting (s′, b′ ) and (s, b) such that all 
of the links along the path are chosen before (s, b) and after (s′, b′ ). The prob-
ability of (ii) is decreasing in the length of the aforementioned path.

	 (ii)	 Consider a large network m that is chosen u.a.r. conditional on an admis-
sible degree distribution. Then (asymptotically on the size of the network) 
for any fixed Δ, the distribution ruling the shape of the local neighborhood of  
any seller s (​m​ Δ​(s, m)) converges to the underlying distribution of a random 
tree of the same depth (Δ) as the local neighborhood considered. This step 
relies on the requirement that the degree distribution has finite support.

	 (iii)	 In any tree (not necessarily random), eliminating one of a seller’s links weakly 
increases the future values of her remaining links. Consider a tree T and a 
seller s who is connected to buyers b and b′ (and maybe some additional buy-
ers). Then, F​V​ s, b​(T) ≤ F​V​ s, b​(T\(s, b′ )). Intuitively, the tree structure implies 
that the only connections between two links (s, b) and (s, b′ ) is via seller s. As 
a result, having less links affects the future values of remaining links only by 
decreasing the outside option of the seller.

Combining (i) and (ii) allows us to focus in our analysis on random trees. Given the 
focus on a tree structure, (iii) implies a one-deviation principle. The complete proof 
of Theorem 1 makes use of recent results by FG and is deferred to Appendix A.
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We now take a closer look at the implications of Theorem 1. Consider a network 
m with a degree distribution g, and a link (s, b) ∈ E. Let ​T​ d​(m, s, b) denote the ran-
dom depth−d tree such that the root r has degree 1, the degree of the only child of r 
is ​d​b​ , all subsequent nonleaf nodes at an even depth have a degree drawn i.i.d. from ​
g​ S​, all subsequent nonleaf nodes at an odd depth have a degree drawn i.i.d. from ​g​ B​. 
In words, ​T​ d​(m, s, b) is constructed in the same way as the subtree of ​T​ d​(m, s) that 
results from disconnecting all buyers (except from b) from seller s. In the context of 
the bigger network ​T​ d​(m, s), Pr(​I​ ​T​ d​(m, s, b)​ t

  ​(s, b)) captures the probability that seller s 
has the ability to produce a high quality good, and buyer b does not purchase a good 
before meeting seller s. Then, the future value of a link in a random tree ​T​ d​(m, s) 
can be rewritten as

(3)  	 F​V​ s, b​(​T​ d​(m, s))  =  (π  − ​ c​ s​)  ·  Pr(​I​ ​T​ d​(m, s, b)​ t
  ​(s, b)) 

	 · ​ Π​​b​ ′​∈​B​ s​\b​[1  − ​  1 _ µ ​ · Pr(​I​ ​T​ d​(m, s, ​b​ ′​ )​ t
  ​(s, b′ ))].

With respect to ​T​ d​(m, s), the expression

(4) 	  Pr(​I​ ​T​ d​(m, s, b)​ t
  ​(s, b))  · ​ Π​​b​ ′∈​B​s​\b​​[1  − ​  1 _ µ ​ · Pr(​I​ ​T​ d​(m, s, ​b​ ′​ )​ t

  ​(s, b′ ))]
captures the probability that in period t, seller s has the ability to produce high qual-
ity good, AND buyer b has demand for a good when he meets seller s, AND no other 
buyer b′ ∈ ​B​ s​\b has demand when their link with seller s is chosen. Thus, seller s 
sells a good if she is connected to b, but would not have been able to sell a good had 
she not been connected to buyer b. The simple expression is due to the tree structure 
that guarantees the independence of ​{​I​ ​T​ d​(m, s, b)​ t

  ​(s, b)}​b∈​B​ s​
​ of each other. Moreover, 

for every seller s and buyer b′ ∈ ​B​ s​ , the tree structure and the independence of the 
degrees across subtrees guarantee that comparative statics over Pr(​I​ ​T​ d​(m, s, b)​ t

  ​(s, b)) 
are governed by the following simple graph-theoretic rule.

Lemma 1: Suppose that for all d ≥ 1, the random tree ​T​ 2​ d​ = ​T​ d​(m, s, b) can be 
constructed (on the same probability space) from the random tree ​T​ 1​ d​ = ​T​ d​(m′, s′, b′ ) 
by performing only the two operations: 1. appending (as children) subtrees to  
seller nodes in an arbitrary way, and 2. removing (as children) subtrees from 
buyer nodes in an arbitrary way. Then the probability that seller s sells to 
buyer b in a given period in ​T​ 2​ d​ is at least as big as the equivalent probability in  ​ 
T​ 1​ d​(Pr(​I​ ​T​ 2​ 

d​​ t
  ​(s, b)) ≥ Pr(​I​ ​T​ 1​ 

d​​ t
  ​ (s, b))).

Note that any change to the degree of a node in the network can be captured by 
appending or removing subtrees from the corresponding random tree. E.g., append-
ing (as children) subtrees to seller nodes in the corresponding random tree can cap-
ture: (i) adding a link between s and some buyer; and/or (ii) increasing the degree 
distribution of sellers in the network as a whole. Lemma 1 shows that the effects of 
(i) and (ii) on Pr(​I​ ​T​ d​(m, s, b)​ t

  ​(s, b)) are qualitatively the same. Given Theorem 1 and 
equation (3) this simplifies the analysis of the effect of the same changes to the net-
works structure on sellers’ incentives to cooperate.
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Consider a seller s that is connected only to one buyer b and is at the root of a tree 
T′. Lemma 1 implies that eliminating any seller s′ ≠ s from the tree weakly increases 
the probability that s sells a good in any period, and that eliminating any buyer b from 
the tree weakly decreases the probability that s sells a good in any period. Figure 3 
provides an example.

In the following section, we rely on Theorem 1 and Lemma 1 to characterize the 
set of networks for which STNE exist in terms of economically meaningful network 
parameters such as degree distribution and segregation.

IV.  Network Structure and Cooperation

We now examine the relationship between the structure of network m and 
F​V​ s, b​(​T​ ∞​(m, s)). A higher F​V​ s, b​(​T​ ∞​(m, s)) implies more cooperation in a large net-
work m in two ways: (i) holding the immediate payoff from deviation (​​

_
 Π​​ s​) fixed, 

a higher F​V​ s, b​(​T​ ∞​(m, s)) means that a lower discount factor (​δ​ s​) is sufficient to 
support sustained cooperation on the link (s, b), and (ii) holding ​δ​ s​ fixed, a higher  
F​V​ s, b​(​T​ ∞​(m, s)) implies that cooperation can be sustained over the link (s, b) even 
if ​​
_

 Π​​ s​ is higher. We relate our results to the level of competition between sellers in m, 
the density of m, and the level of segregation exhibited by m. All proofs are deferred 
to Appendix A.

A. Competition: The Relative Degrees of Buyers and Sellers

Competition is imbalanced if many sellers with low degrees are connected to 
buyers with high degrees (fierce and imbalanced competition), or if sellers with high 
degrees are connected to many buyers with low degrees (weak and imbalanced com-
petition). Competition is moderate and balanced if buyers and sellers have degrees 

Figure 3.

Notes: The tree ​T​2​ can be constructed from ​T​1​ by appending (as a child) the subtree rooted at b′ to the seller node 
s′. Similarly, ​T​ 2​ ′ ​ can be constructed from ​T​1​ (or from ​T​2​ ) by removing (as a child) the subtree rooted at s′ from the 
buyer node b. It is easy to verify that the probability that seller s sells to buyer b in a given period is larger in ​T​ 2​ ′ ​ than 
in ​T​2​ and larger in ​T​2​ than in ​T​1​, i.e., Pr(​I​ ​T​ 2​ ′ ​​ 

t
  ​(s, b)) > Pr(​I​ ​T​2​​ t

  ​(s, b)) > Pr(​I​ ​T​1​​ t
  ​(s, b)).
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that are similar and not too large. We find that the future values of links are highest 
in networks that exihibit moderate and balanced competition.

To see why, first note that in a given network m, F​V​ s, b​(​T​ ∞​(m, s)) is lower for 
links in which the buyer (seller) has a high degree than for links in which the buyer 
(seller) has a low degree, i.e., each link is more valuable the fewer outside options 
both sides of the link have. For example, in Figure 1B, sellers s and s′ have identical 
information sets with the only exception that seller s′ is connected to one less buyer. 
Then, F​V​​s​ ′​, b​(​T​ ∞​(m, s′ )) > F​V​ s, b​(​T​ ∞​(m, s)). Intuitively, seller s has connections to 
buyers with the same degrees as the buyers that s′ is connected to and is also con-
nected to an additional buyer. As a result, s has a better outside option in the case 
that buyer b does not purchase the good from her (compared with the outside option 
of seller s′ in case that buyer b does not purchase the good from her). Similarly, 
consider a seller s who is connected to two buyers. Seller s has a higher value for 
the link with the buyer that has the lower degree of the two. This is because seller 
s expects fewer periods with demand from the buyer with the higher degree than 
periods with demand from the buyer with the lower degree (see Proposition 1 in 
Appendix B for details).

On the other hand, if the degrees of buyers in ​B​ s​\b are large, s is more likely to 
need buyer b in order to make a sale in period t. For example, in Figure 1A, if we 
add a connection between buyer b and some seller s′ that we add to the figure, the 
connection (s, b) becomes less valuable, whereas the connection (s, b′ ) becomes 
more valuable. This example, which is generalized in Proposition 2 in Appendix B, 
captures the positive externality of links: if ​d​​b​ 1​ ′ ​​ > ​d​​b​1​​ seller s′ expects less periods 
with demand from ​b​ 1​ ′ ​ than seller s expects periods with demand from ​b​1​. As a result, 
s′ (more than s) is likely to need her other connections in order to sell the good.

Theorem 1 and Lemma 1 also allow us to evaluate the effect of differences in the 
degree distribution across networks. Consider the minimal value of any link of seller 
s as defined by

(5)	​​ FV _​​ s​(m)  = ​ min   
b∈​B​ s​

 ​{F​V​ s, b​(​T​ ∞​(m, s))}.

Recall that if ​d​b​ is large, F​V​ s, b​(​T​ ∞​(m, s)) is small. This is mitigated if for every  
b′ ∈ ​B​ s​\b, ​d​​b​ ′​​ is also very large. Thus, networks in which buyers have “similar” 
degrees have a larger ​{​​FV _​​ s​(m)}​s∈S​ .

More generally, consider two networks m and ​  m​ with degree distributions g and ​  g​ 
respectively. Suppose that ​

ˆ
 ​g​​  B​​ ​ first order stocastically dominates (FOSD) ​g​ B​ and ​g​ S​ 

FOSD ​
ˆ

 ​g​​  S​​ ​, and consider two sellers s ∈ m and ​  s ​ ∈ ​  m​ with identical local neighbor-
hoods, so that the only difference between their information sets (​K​s​ and ​K​​  s ​​) is the 
difference in the degree distributions g and ​  g​. Theorem 2 shows that (i) if s and ​  s ​ are 
connected to many buyers (large ​d​s​ and ​d​​  s ​​) then the fact that sellers are overall more 
connected, and buyers are overall less connected in m relative to ​  m​, implies that 
seller ​  s ​ has higher incentives to cooperate relative to seller s; and (ii) if s and ​  s ​ are 
connected to a small number of buyers (small ​d​s​ and ​d​​  s ​​), then the same difference in 
degree distributions implies that seller ​  s ​ has lower incentives to cooperate relative 
to seller s. The differences in degree distribution that are analyzed in Theorem 2 are 
illustrated in Figure 4.
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Theorem 2: Let ​
ˆ

 ​g​​  B​​ ​ FOSD ​g​ B​, and ​g​ S​ FOSD ​
ˆ

 ​g​ ​  S​​ ​, and let m = 〈S, B, E 〉 and ​  m​  
= 〈​  S​, ​  B​, ​  E​ 〉 be two networks with degree distributions g and ​  g​ respectively. Consider 
sellers s ∈ S and ​  s ​ ∈ ​  S​ with identical local neighborhoods (equal degrees, ​d​​  s ​​ = ​d​s​ , 
and identical vectors of neighbors’ degrees, {​d​​  b​​​}​​  b​∈​B​​  s ​​​ ≡ {​d​b​​}​b∈​B​ s​​). Then, there exist 
thresholds ​

_
 ​d​s​​(m, ​  m​) and ​​d​s​ _​(m, ​  m​), such that

	 (1)	 if the degrees of s and ​  s ​ are below ​​d​s​ _​ , then ​​FV _​​ ​  s ​​(​T​ ∞​(​  m​, ​  s ​)) ≤ ​​FV _​​ s​(​T​ ∞​(m, s)), 
and

	 (2)	 if the degrees of s and ​  s ​ are above ​
_

 ​d​s​​ , then ​​FV _​​ ​  s ​​(​T​ ∞​(​  m​, ​  s ​)) ≥ ​​FV _​​ s​(​T​ ∞​(m, s)).

If ​g​ S​ FOSD ​
ˆ

 ​g​ ​  S​​ ​, the aggregate demand per seller in network m is larger than 
in ​  m​. This difference in effective demand affects the difference between the  
probability that ​  s ​ gets an opportunity to sell to ​  b​ (Pr(​I​ ​T​ d​(​  m​, ​  s ​, ​  b​ )​ t

  ​(​  s ​, ​  b​))), and the prob-
ability that s gets an opportunity to sell to b (Pr(​I​ ​T​ d​(m, s, b)​ t

  ​(s, b))). In particular,  
Pr(​I​ ​T​ d​(m, s, b)​ t

  ​(s, b)) ≥ Pr(​I​ ​T​ d​(​  m​, ​  s ​, b)​ t
  ​(​  s ​, ​  b​)), and generically the inequality is strict. This 

is true even if the local environments around (s, b) and around (​  s ​, ​  b​) are identical.
The difference between Pr(​I​ ​T​ d​(m, s, b)​ t

  ​(s, b)) and Pr(​I​ ​T​ d​(​  m​, ​  s ​, ​  b​ )​ t
  ​(​  s ​, ​  b​)) affects the value 

of links in two ways: (i) s has a better outside option than ​  s ​ in case one of her links 
is lost; and (ii) s has higher frequency of interactions with each one of the buyers 
connected to her. If sellers s and ​  s ​ are connected to many buyers, outside options 
are affected strongly by the difference in degree distributions, and (i) dominates. 
Consequently, seller s has lower values of links because she is very likely to sell 
even if she had less connections. On the other hand, if sellers s and ​  s ​ have only few 
connections (e.g., suppose that each is connected to only one buyer), the outside 
option is hardly affected by the degree distribution. However, the frequency of inter-
actions is affected and (ii) dominates. The impact of differences in buyers’ degree 
distributions follow a similar logic.

Summarizing our results so far, a network admits a STNE if: (i) buyers have 
degrees that are similar enough, (ii) sellers have degrees that are similar enough, and 
(iii) buyers’ degrees are not too small or too large relative to those of the sellers that 
are connected to them. An immediate implication is that there exists a “bliss point” 

Sellers

Buyers

s1

b1

s1′ s2 s2′ s3 s3′

b1′ b2 b2′ b3 b3′
m1(n1b, g1) m2(n2b, g2) m3(n3b, g3)

Figure 4.

Notes: In networks ​m​1​, ​m​ 2​ , and ​m​ 3​ above, the broken lines represent links to buyers and sellers that are not in the 
diagram. Counting only the buyers and sellers in the figure, ​g​ 2​ S​ FOSD ​g​ 1​ S​ and ​g​ 3​ B​ FOSD ​g​ 1​ B​. At the same time, sellers ​
s​1​, ​s​2​ , and ​s​3​ have identical local neighborhoods.
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to the ratio of buyers to sellers in any small neighborhood in the network, as well 
as in the network as a whole. We interpret our results in this section as suggesting 
that networks that exhibit moderate and balanced competition support a STNE for 
a large range of discount factors. The following example illustrates our interpreta-
tion by considering simple networks in which all sellers have the same degrees 
and production costs, and all buyers have the same degrees. In this special case, if 
buyers have degrees that are very small, or very large, relative to the degrees of sell-
ers, the future values of links are low. Example 4 is generalized in Proposition 3 in 
Appendix B.

Example 4 (semi-regular networks):
Let ​c​ s​ = c for every s ∈ S, and consider a network m in which all buyers have 

degree ​d​ B​ and all sellers have degree ​d​ S​. Thus, the values of all of the links in m are 
identical (i.e., for every (s, b), (s′, b′ ) ∈ E, F​V​ s, b​(​T​ ∞​(m, s)) = F​V​​s​ ′​, ​b​ ′​​ (​T​ ∞​(m, s′ ))). 
Denote this value by F​V​ T​(​d​ B​, ​d​ S​ ). As illustrated in Figure 5, for every sellers’ degree ​
d​ S​ there is a closed interval of values of ​d​ B​ that maximizes F​V​ T​(​d​ B​, ​d​ S​ ) and supports 
cooperation for the lowest feasible discount factor given ​d​ S​.

This section shows that networks which facilitate moderate and balanced competi-
tion are better in sustaining cooperation.25 Consequently, one might expect to find 
moderate and balanced competition in networked markets that manage to rely on bilat-
eral cooperation. In the following section, we show that the need to enforce coopera-
tion may also constrain (or be constrained by) the overall connectivity in a network.

B. Connectivity: Network Density

Changes in observed patterns of trade are often attributed to corresponding 
changes in trade opportunities, which are in turn influenced by processes of mod-
ernization that reduce the costs of communication and transportation.26 We now 

25 In a related work on competition and seller’s reputation in an environment with price competition and no 
network, Bar-Isaac (2005) finds that competition can both aid and hinder reputation for quality.

26 See Watts (2003) for a nontechnical survey.

Sellers

Buyers

An increase from a future
value of 0 per link (when the
marginal link is not  needed)
to a positive value

A decrease in links value
when the probability of
interaction with a given
buyer becomes small

Figure 5. 

Notes: When ​d​ B​ is low (e.g., the leftmost network), each of the buyers connected to a seller is likely to have demand 
when meeting the seller, and the seller is likely to sell even if she has fewer connections. Raising ​d​ B​ a little decreases 
the probability of a sale and the seller needs more connections. However, a drastic increase in ​d​ B​ reduces the fre-
quency with which a seller interacts with each buyer and the value of each link decreases.
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evaluate whether such changes are consistent with sustaining cooperation. A nega-
tive result will imply that in an environment with moral hazard one should expect 
to observe such changes to a lesser extent in a network plotted based on data of 
the patterns of trade compared with a network plotted based on data of patterns  
of accessibility or acquaintances.

We consider two changes suggested in the literature: first, an increase in the 
degrees of agents in the network, often attributed to a reduction in the costs of cre-
ating and sustaining (trade) relationships. Second, a decrease in segregation, often 
attributed to a decline in costs of sustaining (trade) relationships across geographi-
cally distant regions.27

The effect of the first change is straightforward: if the degrees of buyers and sell-
ers are “too” large, cooperation becomes impossible to sustain, even with moderate 
and balanced competition. Intuitively, the pivotal probability that seller s manages 
to sell to a specific buyer b, but would not have managed to sell to any other buyer, 
is negligible when sellers and buyers have many connections.

Theorem 3: Let m(α, D) be some network in which mi​n​b​{​d​b​} = D and  
mi​n​s​{​d​s​} = α ⋅ D. For every α, μ, and ​

_
 FV​ > 0 there exist ​

_
 D​(α, μ) such that if D > ​_

 D​ then

(6)	​  min   
(s, b)∈E

​{F​V​ s, b​(​T​ ∞​(m(α, D), s))}  < ​
_
 FV​.

As Theorem 3 reveals, a major value-creating role of the network is to provide 
coordination and specify who cooperates with whom. This necessary coordination 
is lost when sellers and buyers have many links. When anyone can potentially coop-
erate with everyone else, the value of a cooperating partner goes down, as each 
partner has only a small influence on outcomes.

C. Beyond the Degrees: Community Size and Segregation

We now show that, holding all else equal, the ability to define small communities 
according to real (e.g., geographic) or artificial boundaries may increase the future 
values of links and improve the ability to sustain cooperation. Deriving this result 
requires extending our model to allow sellers and buyers to know more about their 
environment. Clearly, if sellers and buyers know that the network is divided to small 
communities their beliefs might be such that their incentives to cooperated cannot 
be approximated by the analysis of the corresponding random tree. Fortunately, we 
can compare the values of links in segregated versus in tree-like networks. Given our 
approximation result this maps to a comparison between networks that are known to 
be segregated and networks that are not.

For simplicity, let ​c​ s​ = c and let ​d​s​ = ​d​ S​, and ​d​b​ = ​d​ B​ for every seller s and buyer 
b throughout this section.28 We extend our analysis to consider networks that are 

27 See also Rosenblat and Mobius (2004).
28 Considering more general degree distributions requires putting additional structure in order to define segrega-

tion properly.
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divided into islands, such that there are no links between buyers and sellers from 
different islands. In each island there are Ψ ⋅ ​d​ B​ sellers, and Ψ ⋅ ​d​ S​ buyers. Ψ ∈ 핅 
represents the size of each “island community.” When comparing across networks 
with different Ψ, we keep ​d​ B​ and ​d​ S​ constant. This allows us to discriminate between 
the effects of differences in community sizes, and the effects of differences in the 
degrees of sellers and buyers. Figure 6 provides an illustration of a sample of net-
works with ​d​ S​ = ​d​ B​ = 2 and different values of Ψ.

Varying Ψ continuously raises technical difficulties and is beyond the scope of 
this paper. Instead, we focus on two interesting limit cases.

Definition 5: We say that a network is segregated if it is divided to small islands 
in which each of a group of ​d​ S​ buyers is connected to each of a group of ​d​ B​ sellers 
(Ψ = 1). We say that a network is global if it is chosen u.a.r. conditional on ​d​ B​, ​d​ S​, ​
n​s​ , and ​n​b​ , and without restrictions on Ψ.

We are interested in the following question: When does the existence of a STNE 
in a segregated network imply that a STNE exists in the corresponding global net-
work and vice versa? Given that sellers’ actions are driven by their expectations of 
future trade, allowing for different network architectures makes a difference for the 
existence of a STNE only if sellers are aware of the differences.

Assumption 3: Sellers know whether the network is segregated or global.29

Consider a segregated network ​m​seg​ . It is still true that a STNE exists if and only 
if for every seller s and buyer b that are connected (​δ​ s​/(1 − ​δ​ s​)) ⋅ F​V​ s, b​(​m​seg​) > ​​

_
 Π​​ s​. 

Consequently, Theorem 4(1a) suggests that in sparse networks that exhibit moderate 

29 A segregated network’s topology is unique (up to permutations on the names of buyers and sellers). 
Consequently, when the network is segregated sellers put probability 1 on the correct network structure and our 
incomplete information environment coincides with one of complete information.

Figure 6.

Notes: If seller s is informed that Ψ = 1, she knows that some seller s′ is connected both to buyer b and to b′. Thus, 
seller s knows that there is perfect overlap between ​B​ s​ and ​B​ s​ ′ ​ and between ​S​b​ and ​S​ b​ ′ ​. If seller s is informed that 
Ψ → ∞, Theorem 1 applies. Thus, seller s behaves as if she knows that apart from herself there is no other seller to 
whom both buyer b and b′ are connected.

Sellers

Buyers

s′

Ψ = 1, dS = dB = 2

s s′s s″ s‴ s″ s′s

b′b b′b b″ b‴ b″b′b

Ψ = 2, dS = dB = 2 Ψ → ∞, dS = dB = 2
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and balanced competition, the following claim is true: if there exists a STNE in a global 
network, a STNE also exists in a segregated network with the same degree distribution.

Theorem 4: Let ​m​seg​(​d​ B​, ​d​ S​ ) be a segregated network with degrees ​d​ B​, ​d​ S​, and let 
F​V​ seg​(​d​ B​, ​d​ S​ ) ≜ F​V​ s, b​(​m​seg​(​d​ B​, ​d​ S​ ), s).30 Then,

	 (1)	 There exists ​
_

 ​d​ S​​ > 1 such that for every ​d​ S​ ≤ ​
_

 ​d​ S​​:

	 (a)	 (Moderate and balanced competition) There exist ​​d​ B​ _​ > 1 such that ​d​ S​ ≤ ​
d​ B​ ≤ ​​d​ B​ _​ implies that F​V​ seg​(​d​ B​, ​d​ S​ ) ≥ F​V​ T​(​d​ B​, ​d​ S​ ).

	 (b)	 (Fierce competition) For every 0 << μ < 1/2 there exists ​
_

 ​d​ B​​(μ) such 
that ​d​ B​ ≥ ​

_
 ​d​ B​​ implies that F​V​ seg​(​d​ B​, ​d​ S​ ) ≤ F​V​ T​(​d​ B​, ​d​ S​ ).

	 (2)	 (Weak competition) If ​d​ S​ > ​d​ B​ then F​V​ seg​(​d​ B​, ​d​ S​ ) ≤ F​V​ T​(​d​ B​, ​d​ S​ ).

Sketch of the Proof: Theorem 4 is driven by two countervailing forces that can be 
demonstrated in Figure 7. On the one hand, without the link (s, b) in both networks, 
the segregated network in Figure 7B provides s with a higher probability of trading 
than the global network in Figure 7A. This is because in Figure 7B seller s′ does not 
face any competition for selling to b, whereas in Figure 7A s′ faces competition for 
selling to buyer b″. Therefore, s′ is more likely not to sell to b′ in Figure 7B. This 
causes the value of (s, b) in the segregated network (Figure 7B) to be lower than in 
the global network (Figure 7A).

Now consider “adding back” (s, b) to both networks. In the global network in 
Figure 7A, the opportunity for seller s to sell the good to buyer b is independent of her 
opportunity to sell the good to buyer b′. On the other hand, in Figure 7B, the oppor-
tunity of seller s to sell the good to b is negatively correlated with her opportunity 
to sell the good to b′. In fact, in the segregated network in Figure 7B, s is guaranteed  
to trade if she has a link to b. This causes the value of (s, b) in the segregated network 
(Figure 7B) to be higher than in the global network (Figure 7A). In the specific 

30 Due to the symmetry across sellers, buyers, and islands, the future value of a link in a segregated network does 
not depend on the size of the network (​n​s​ and ​n​b​) and is identical across links in the network.

Figure 7.
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networks in Figure 7, the second force dominates and the value of the link between 
s and b is higher in the segregated network.

If ​d​ B​ is large, the negative correlation is weak; not being able to trade with b 
implies only that s has at most one less competitor for trading with any buyer 
b′ ∈ ​B​s​\b. However, it is still the case that a seller with a missing link has higher 
probability of trading in the segregated network.

The second part of Theorem 4 is straightforward. In a segregated network 
with more buyers than sellers, a seller is guaranteed to trade with or without her 
marginal link. Consequently, the value of each link is zero. This is not true in a  
global network.

V.  Welfare

In this section, we pose the following questions. When can cooperation that 
is supported only by repeated interaction in the network achieve the social opti-
mum? What networks maximize aggregate welfare? What networks maximize con-
strained aggregate welfare when maximal welfare is not attainable? We express the 
answers to these questions in terms of solutions for two design problems. Let Δm 
be any probability distribution over network structures. In the unconstrained net-
work design problem, a planner chooses Δm and compels all sellers (and buyers) 
to always cooperate. In the cooperation constrained network design problem, the 
planner chooses Δm and recommends that all sellers (and buyers) always cooperate. 
Sellers and buyers are then informed of Δm (as well as of their own degrees and the 
degrees of buyers and sellers that are connected to them) and follow the planner’s 
recommendation if and only if Δm admits a STNE.

For a given network m, let E[V(m)] = E[​∑ s∈S​ 
 
  ​ ​∑ b∈​B​ s​(m)​ 

 
  ​ Pr​​(​I​ m​ t

  ​(s, b))] denote the  
expected volume of trade (number of transactions) in high quality goods that  
is achieved in a given period if all sellers (and buyers) always cooperate. Denote by 
E[V(Δm)] the corresponding value given a probability distribution Δm over net-
works. Let ​N​ uc​(B, S, μ, ​{​c​ s​, ​δ​ s​}​s∈B​ , π) (​N​ c​(B, S, μ, ​{​c​ s​, ​δ​ s​}​s∈B​ , π)) be the solution to the 
unconstrained (constrained) network design problem. Then,

(7)	​ N​ uc​(⋅)  = ​ arg max    
Δm

  ​ E[V(Δm)]

and

(8)	​ N​ c​(⋅)  = ​   arg max      
Δm | Δm admits a STNE

​ E[V(Δm)].

Recall that transactions in high-quality goods are mutually beneficial. Thus, the 
proportion of the per-period welfare loss due to the constraints on the structure of 
networks that support STNE is

(9)	 L(B, S, μ, ​{​c​ s​, ​δ​ s​}​s∈B​ , π)  =  1  − ​ 
E[V(​N​ c​(⋅))]  _  
E[V(​N​ uc​(⋅))] ​ .
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If L(⋅) = 0, then repeated interactions support the social optimum in every period.31 
The following definition is useful for interpreting our results.

Definition 6: An environment is constantly over- (under-) demanded if there 
are weakly more (less) buyers than sellers with high quality unit capacity in every 
period. We call an environment stationary if it is constantly over- (under-) demanded 
and stochastic otherwise.

Recall that each buyer has unit demand in every period. Therefore, an environ-
ment is stationary if either there are less sellers than buyers (​n​s​ ≤ ​n​b​), or if there are 
more sellers than buyers (​n​s​ > ​n​b​) and each seller has high quality capacity in every 
period (μ = 1). In a stochastic environment there are more sellers than buyers (​n​s​ > ​
n​b​) and each seller’s high quality capacity is determined randomly in every period 
(μ < 1). Theorem 5 shows that there exist a trade-off between sustaining coopera-
tion and maximizing the volume of trade in stochastic environments, but not in 
stationary ones.32

Theorem 5:

	 (1)	 Assume that for every s ∈ S, (​δ​ s​/(1 − ​δ​ s​)) ⋅ μ ⋅ (π − ​c​ s​) > ​​
_

 Π​​ s​. Then, if the 
environment is stationary, there is no welfare loss imposed by the need to 
sustain cooperation via repeated interactions (i.e., L(⋅ | μ = 1) = 0 and 
L(⋅ | ​n​s​ ≤ ​n​b​) = 0).

	 (2)	 Consider a stochastic environment and assume that for every seller s ∈ S, ​
δ​ s​ ∈ (0, 1). Then,

	 (a)	 there exists ​​
_
 n​​b​ ∈ ​핑​+​ such that for all ​n​b​ > ​​

_
 n​​b​  , the proportion of welfare 

loss is positive (L(⋅ | ​n​b​ , ​n​s​ , μ) > 0 ); and

	 (b)	 for any ​n​b ∈ ​핑​+​​ there exists ​​
_
 n​​s​ ∈ ​핑​+​ such that for all ​n​s​ > ​​

_
 n​​s​  , the propor-

tion of welfare loss is positive.

If (​δ​ s​/(1 − ​δ​ s​)) ⋅ μ ⋅ (π − ​c​ s​) < ​​
_

 Π​​ s​, no network supports a STNE. Now suppose 
that (​δ​ s​/(1 − ​δ​ s​)) ⋅ μ ⋅ (π − ​c​ s​) > ​​

_
 Π​​ s​. Then, a network that consists of pairs of buy-

ers and sellers that are connected only to each other supports a STNE. In station-
ary environments, such a “pairs network” is optimal—it guarantees the maximal 
expected volume of trade. On the other hand, in stochastic environments, only 
the complete network (in which each seller is connected to all buyers) provides  

31 As long as buyers’ discount factors are not too high relative to sellers’ discount factors, supporting the per-
period optimum maximizes also the long term optimum. If buyers’ discount factors are significantly higher, one 
could conceive a program in which sellers deviate in the first few periods and cooperate thereafter. Such a program 
may increase the long term welfare. See also Lehrer and Pauzner (1999).

32 In related work, Lee and Schwarz (2009) analyze interviewing decisions in labor markets. In their setup, the 
decision to interview is made after knowing that workers are of at least some minimal quality. Thus, there are no 
demand and supply fluctuations. Lee and Schwarz find that complete overlap in the interviewing decisions among 
groups of firms maximizes the number of positions filled.
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the maximal expected volume of trade. However, the complete network is dense 
and potentially imbalanced, and may not support a STNE. In such circumstances, a 
constrained efficient network is sparse and balanced enough to support a STNE, yet 
dense enough to facilitate volumes of trade that are higher than the expected in the 
aforementioned “pairs network.”

Existing literature on buyer-seller networks finds that in the absence of moral 
hazard, buyers and sellers form efficient trade networks (e.g., Kranton and Minehart 
2001). Theorem 5 shows that moral hazard can prevent efficient networks from 
being created and sustained even when links are costless. In Section VIB we discuss 
institutions that complement networks in facilitating efficient trade.

VI.  Discussion

In this section, we summarize the predictions of the model, review evidence, and 
discuss further the relation to existing literature.

A. Community Structure and Cooperation

Our model predicts that networks that are especially good in sustaining coop-
eration are: (i) balanced and moderately competitive: the degrees of a buyer and a 
seller that are connected are similar; (ii) sparse: the degrees of sellers and buyers in 
the network are small; and (iii) segregated: sellers who have one buyer in common, 
have connections to similar sets of buyers overall.

The result that networks facilitate cooperation when they are sparse is in contrast 
with existing theoretical literature. In Mihm, Toth, and Lang (2009), and Lippert 
and Spagnolo (2011) increasing the number of links increases the number of bilat-
eral games that a player plays in every period. Consequently, adding links improves 
the ability to sustain cooperation over previously existing links. Kinateder (2008) 
offers a model in which all of the players play a common multiplayer game, and a 
network is used for transferring information about deviations. As before, adding 
links helps to sustain cooperation. Our focus is different. First, we separate between 
the network structure and the capacity of any seller or buyer. Second, we focus on 
buyer-seller networks in which contagion equilibria are not realistic nor feasible. As 
a result, our framework allows links to be substitutes or complements and additional 
links can improve or harm cooperation. This allows us to explain why cooperation 
is limited to sparse networks without assuming exogenous costs of creating and 
maintaining links.

A slightly more familiar result is that networks facilitate cooperation when they 
are segregated. However, the explanation suggested in this paper is new. Ali and 
Miller (2009), and Jackson, Rodriguez-Barraquer, and Tan (2011), highlight the 
role of cliques in providing the proper incentives for a sufficient number of agents 
to punish, whereas Kinateder (2008) focuses on the idea that small cycles shorten 
the delay between a deviation and the community punishment that follows. Haag 
and Lagunoff (2006) consider a different model in which an agent is restricted to 
take the same action with all of her neighbors and find that cliques facilitate coop-
eration when agents have similar (and sufficiently high) discount factors. In our 
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model an agent can take different actions in interactions with different neighbors 
and contagion is ruled out. Thus, segregation is driven only by the negative correla-
tion between the demands of different buyers in segregated networks—a correlation 
that is absent from models that do not separate between the network structure and 
the capacities of agents.

The empirical literature provides ample evidence on the role of networks in mar-
kets. Hardle and Kirman (1995); Weisbuch, Kirman, and Herreiner (1996); and 
Kirman and Vriend (2000) document a network of consistent loyalty and preferential 
treatment between buyers and sellers within the fish market in Marseille. Kirman and 
Vriend (2000) assert that the standard asymmetric information model “seems a too 
loose application of the textbook argument.” They explain that this is because there 
is a fixed population of buyers and sellers in this market and “every buyer (loyal or 
not) is a potential repeat buyer” so “a seller would have an incentive to deliver good 
quality to every single buyer.” Notably, the selective supply of high quality by sellers 
to only a subset of the population of buyers is consistent with our model—sellers do 
not have the incentives to maintain reputation with all of the buyers, even if all are 
potential repeated customers. Research in many markets in developing and transition 
economies provides further evidence consistent with the prevalence of networks of 
cooperation, and the requirement that they should be sparse.33

B. Institutions and Networks

Technological progress and decreasing communication and transportation costs 
are often considered the drivers of the growth and “globalization” of trade networks. 
Reinforcing this view, existing literature on buyer-seller networks finds that in the 
absence of moral hazard, buyers and sellers form efficient trade networks (e.g., 
Kranton and Minehart 2001). However, our results indicate that moral hazard may 
constrain the efficiency of trade networks.

Focusing on three well-studied institutions, we now demonstrate that institutions 
that help to sustain bilateral cooperation also increase the set of networks that facili-
tate STNE. This simple result implies that markets that lack trust-facilitating insti-
tutions suffer from a disadvantage because they are forced to compromise on the 
volume of trade in order to improve the enforcement of informal contracts.34

Community Based Institutions–Reputation Networks.—In addition to any buyer-
seller network m, FG consider a network  that connects different buyers in B. 

33 Fafchamps (1996) surveys manufacturing and trading firms in Ghana and finds that firms rely on repeated 
bilateral interactions to enforce contracts. McMillan and Woodruff (1999) study trading networks in Vietnam and 
find that a firm trusts its customer enough to offer credit only when the customer has difficulty locating alterna-
tive suppliers. Chaudhury and Matin (2002) and McIntosh and Wydick (2005) find that strategic default occurs 
when many lending institutions offer loans to the same borrowers and cannot condition the loan on repayment 
to other lenders.

34 The prediction that trust-enhancing institutions allow for denser networks to sustain STNE is consistent with 
empirical evidence. Fafchamps (1996) finds that the absence of reputation mechanisms limits the economic reach 
of manufacturing and trading firms in Ghana, and Johnson, McMillan, and Woodruff (2002) show that the main 
effect of belief in the court system is to encourage the formation of new relationships. The complementarity of 
networks and institutions in the context of the transition to market economies in Eastern Europe is also documented 
in Woodruff (2002).
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Buyers that are connected in  share with each other information about their past 
interactions with sellers. For simplicity, assume that a seller s knows whether any 
two buyers b, b′ ∈ ​B​s​ are connected in . When we add links to , seller s can lose 
more than the future value of one link after deviating. As a result, adding a suf-
ficient number of links to  expands the set of buyer-seller networks for which a 
STNE exists (see also Proposition 4 in Appendix B). Interestingly, FG show also 
that not all buyer-seller networks admit a STNE even when the reputation network 
is complete.

External Institutions–Litigation and Third-Party Evaluation Services.—Litigation 
allows buyers that were cheated to prosecute the deviating seller. Third-party evalu-
ation services inspect the goods before trade occurs. Let ​β​ L​ be the probability that a 
buyer who was harmed by a deviation succeeds in prosecuting the deviating seller 
and receives a compensation λ (without loss of generality, λ is also the penalty for 
the seller). Let ​β​ E​ be the probability that a third-party evaluation service detects 
that a low quality good is of low quality, in which case, the deviation of the seller is 
exposed even though trade does not occur, and buyers can punish the deviating sell-
er.35 Thus, an increase in the effectiveness of either institution (an increase in ​β​ L​, λ, 
or ​β​ E​ ) increases the set of networks for which a STNE exists (the increase is in the 
sense of set inclusion—see also Proposition 5 in Appendix B).

VII.  Conclusion

This paper presents a framework that greatly simplifies the analysis of repeated 
games in networks and provides intuition relevant in many markets.

In contrast with previous literature on networks and markets (see Kranton 1996 
and references therein), we do not analyze markets and networks as two mutually 
exclusive and competing ways to conduct the same activity. We rather focus on mar-
kets that are networked. We find that even when every agent in the market can poten-
tially approach any other agent, the need to trust one’s partners constrains the trade 
in the market and allows only certain networks to sustain long term cooperation. 
We are motivated by evidence that networks of trust and cooperation are present in 
many markets and suggest that understanding their role improves our understanding 
of these markets.

Our results show that network structure matters. On one hand, dense and global 
networks have the potential to maximize trade. On the other hand, these same net-
works cannot sustain cooperation in environments with asymmetric information and 
moral hazard. Without cooperation in these environments, there is a risk that no 
trade will take place at all (see Akerlof 1970).

Consistent with existing evidence, we show that welfare is maximized when 
proper institutions are in place, and that improving transportation and communica-
tion technologies is not enough to promote markets in the absence of trust-enhanc-
ing institutions.

35 For simplicity, assume that an evaluation service never mistakes a good product to be of low quality.
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Appendix A: Proofs

Proof of Theorem 1:
We note that if there exists any STNE in network m, there also exists an STNE 

in network m in which buyers employ grim trigger strategies (after being cheated, 
buyers do not buy from the cheating seller ever again). Thus, for the reminder of the 
proof, we focus on the case that buyers and sellers employ grim trigger strategies. 
Furthermore, since buyers never have incentives to deviate unilaterally when all 
sellers employ trigger strategies, we are left to prove the conditions for sellers only.

Consider a network m and assume that all buyers and sellers employ grim trigger 
strategies. Consider a seller s who considers whether to deviate or cooperate with all 
of the buyers that are connected to her, or to deviate in interactions with a subgroup 
of the buyers connected to her ​​  B​​s​ ⊆ ​B​ s​ , starting with some buyer b ∈ ​​  B​​s​ . Let ​​

_
 u​​s​(m) 

be the expected utility of seller s from using her best response given her knowledge 
and belief as implied by the network m and assumptions 1 and 2. Let ​u​ s​ c​(m) be the 
expected utility of seller s from using the strategy “always cooperate” given her 
knowledge and belief as implied by the network m and assumptions 1 and 2.

Let seller s meet with buyer b in network m. If seller s deviates in her interaction 
with buyer b, her expected utility is ​​

_
 Π​​ s​ + ​δ​ s​​ ​

_
 u​​s​(m\(s, b)) − ​δ​ s​ ​u​ s​ c​(m). Thus, the strict 

best response of seller s is always cooperate with all buyers connected to her if and 
only if,

(A1)  	 I​C​ s​(m)  ≜ ​ min   
b∈​B​ s​

 ​ {​δ​ s​(​u​ s​ c​(m)  − ​​
_
 u​​s​(m\(s, b)))  − ​​

_
 Π​​ s​}  >  0.

Let ​{m(​n​ b​ i
 ​ , g) | s, d, ​{​d​j​}​ j=1​ d

  ​}​ i=1​ 
∞
 ​ be an increasing sequence of networks such that 

seller s belongs to all networks in m(​n​ b​ i
 ​ , g) and for any i, the degree of seller s in 

m(​n​ b​ i
 ​ , g) is d and the degrees of all of the buyers that are connected to seller s are 

captured by ​{​d​j​}​ j=1​ d
  ​ . Then we note the following observation.

Lemma 2: (FG) Let g be any admissible degree distribution. Then, for any 
increasing sequence of networks ​{m(​n​ b​ i

 ​ , g) | s, d, ​{​​
_
 d​​b​}​b∈​B​ s​​}​ i=1​ 

∞
 ​ and for any l,  

​lim​d→∞​ I​C​ s​(​T​ d​(m(​n​ b​ l
 ​, g))), and ​lim​i→∞​ I​C​ s​({m(​n​ b​ i

 ​ , g) | s, d, ​{​​
_
 d​​b​}​b∈​B​ s​​}) both exist, and 

equal one another.

Note that when g has a finite support there is only a finite combination of ​d​s​ and ​
{​d​b​}​b∈​B​s​​ feasible under g. Therefore, by Lemma 2, there exists ​

_
 i​ such that for any i > ​_

 i​ a STNE with network m(​n​ b​ i
 ​ , g) exists if and only if for every seller s and buyer b 

that are connected in m(​n​ b​ i
 ​ , g),

(A2)  	 I​C​ s​(​T​ ∞​(m(​n​ b​ i
 ​ , g), s)  >  0.

In the final step of the proof we show that for any network m,

(A3)  	sign{​min   
s, b

  ​ ​ 
​δ​ s​ _ 

1 − ​δ​ s​
 ​  ⋅  F​V​ s, b​(​T​ ∞​(m, s))  − ​​

_
 Π​​ s​}  =  sign{​min   

s
  ​ I​C​ s​(​T​ ∞​(m, s)} .
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Noting that

(A4) 	​  u​ s​ c​(m)  = ​   1 _ 
1 − ​δ​ s​

 ​ ​ ∑ 
b∈​B​ s​

​ 
 

  ​ Pr​(​I​ m​ t
  ​(s, b)) .

We can rewrite (1) in the following way

(A5)  	 F​V​ s, b​(m)  = ​ δ​ s​(​u​ s​ c​(m)  − ​ u​ s​ c​(m\(s, b))) .

It follows immediately from (A1) and (A5) that for any s ∈ S, mi​n​ s, b​  
  ​(​δ​ s​/(1 − ​δ​ s​))  

⋅ F​V​ s, b​(​T​ ∞​(m, s)) − ​​
_

 Π​​ s​ < 0 implies that mi​n​ s​   ​ I​C​ s​(​T​ ∞​(m(​n​ b​ i
 ​ , g), s) < 0. We next 

prove that ​min​s​ I​C​ s​(​T​ ∞​(m(​n​ b​ i
 ​ , g), s) < 0 implies that

(A6) 	​  min   
s, b

  ​ ​ 
​δ​ s​ _ 

1 − ​δ​ s​
 ​  ⋅  F​V​ s, b​(​T​ ∞​(m, s))  − ​​

_
 Π​​ s​  <  0.

Assume by contradiction that there exists a seller s such that I​C​ s​(​T​ ∞​(m(​n​ b​ i
 ​ , g), s) <  

0 and ​min​b∈​B​ s​​(​δ​ s​/(1 − ​δ​ s​)) ⋅ F​V​ s, b​(​T​ ∞​(m, s)) − ​​
_

 Π​​ s​ ≥ 0. If the optimal strategy of seller s 
involves a deviation in an interaction with a single buyer b and cooperation with anyone 
else thereafter then I​C​ s​(​T​ ∞​(m(​n​ b​ i

 ​ , g), s) = ​min​b∈​B​ s​​(​δ​ s​/(1 − ​δ​ s​)) ⋅ F​V​ s, b​(​T​ ∞​(m, s)) −  
​​
_

 Π​​ s​ < 0 and we’re done. Otherwise, consider a sequence of deviation with all buyers 
in ​​  B​​s​ ⊆ ​B​ s​ , and let ​  b​ ∈ ​​  B​​s​ be the last buyer such that seller s deviates in an interaction 
with ​  b​ and cooperates with anyone else thereafter. Thus,

(A7) 	​  min   
b
  ​ ​ 

​δ​ s​ _ 
1 − ​δ​ s​

 ​  ⋅  F​V​ s, b​(​T​ ∞​(m\(​​  B​​s​\​  b​), s)) − ​​
_

 Π​​ s​  <  0.

Substituting in (3) yields that for the buyer b that solves the minimization problem,   
F​V​ s, b​(​T​ ∞​(m\(​​  B​​s​\​  b​), s)) > F​V​ s, b​(​T​ ∞​(m, s)) which completes the proof.

Proof of Lemma 1:
Consider the following algorithm for matching buyers and sellers in a network 

m = 〈S, B, E 〉. First, choose an ordering σ of E u.a.r. from all of the | E |! possible 
orderings of E. Second, repeat the following action iteratively. Examine the link 
(s′, b′ ) that was chosen first in the ordering among the links that have not been 
removed in a previous step. If s′ is active, match s′ to b′ and remove from the order-
ing all the links (s, b′ ) and (s′, b) for all s ∈ ​S​b​ , b ∈ ​B​ s​ . We note that in any STNE, in 
any period t, the algorithm above can be coupled with the market activity, such that 
(s′, b′ ) are matched if and only if they trade with each other in period t. Consequently, 
we can interpret Pr(​I​ m​ t

  ​(s, b)) as the probability that edge (s, b) is selected by the 
appropriate randomized matching algorithm.

Following this interpretation, Lemma 1 follows immediately from Proposition 1 
of Gamarnik and Goldberg (2010) who study randomized greedy algorithms for 
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matchings in a graph, and the relationship between the local and global properties 
of the set of matchings of a graph.36

Proof of Theorem 2:
If ​g​ S​ FOSD ​

ˆ
 ​g​​  S​​ ​ then by Lemma 1, for every b ∈ ​B​ s​(m) and ​  b​ ∈ ​B​​  s ​​(​  m​) such that ​

d​​  b​​ = ​d​b​ , Pr(​I​ ​T​ d​(m, s, b)​ t
  ​(s, b)) > Pr(​I​ ​T​ d​(​  m​, ​  s ​, ​  b​ )​ t

  ​(​  s ​, ​  b​)). If ​d​s​ = 1 then F​V​​  s ​, ​  b​​(​T​ ∞​(​  m​, ​  s ​)) ≤  
F​V​ s, b​(​T​ ∞​(m, s)) is immediate from Theorem 1 and equation (3). On the other hand,

(A8) 	  li​m​​d​s​  = ​ d​​  s ​​→∞​​ 
{​Π​​b​ ′​∈​B​ s​(m)\b​[1  − ​  1 _ µ ​ · Pr(​I​ ​T​ d​(m, s, ​b​ ′​ )​ t

  ​(s, b′ ))]}
    ___    

{​Π​​​  b​​ ′​∈​B​​  s ​​(​  m​)\​  b​​[1  − ​  1 _ µ ​ · Pr(​I​ ​T​ d​(​  m​, ​  s ​, ​​  b​​ ′​ )​ 
t
  ​(s, ​  b​′ ))]}

 ​  =  0,

and at the same time

(A9) 	  Pr(​I​ ​T​ d​(m, s, b)​ t
  ​(s, b))/Pr(​I​ ​T​ d​(​ ˆ m​, ​  s ​, ​  b​ )​ t

  ​(s, ​  b​)) 

is independent of ​d​s​ and ​d​​  s ​​ . Combining (A8), (A9), and (3), and evaluating  
F​V​ s, b​/F​V​​  s ​, ​  b​​ for any b ∈ ​B​ s​ and ​  b​∈ ​B​ ​  s ​​ such that ​d​b​ = ​d​​  b​​, yields the result that  
​​FV _​​ ​  s ​​(​T​ ∞​(​  m​, ​  s ​)) ≥ ​​FV _​​ s​(​T​ ∞​(m, s)).

Proof of Theorem 3:
Let ​d​ b​ max ​ be the maximal degree of any buyer in network m (so ​d​ b​ max ​ > D), and let

(A10) 	​ I​ ​T​ d​(m, s, b)​ 
min 

  ​  = ​   min    
s∈S,b∈B

​  Pr(​I​ ​T​ d​(m, s, b)​ t
  ​(s, b))  =  (Pr(​I​ ​T​ d​(m, s, b)​ t

  ​(s, b)) | ​d​b​  = ​ d​ b​ max ​).

Consider a seller s′ that is connected to a buyer b′, such that ​d​​b​ ′​​ = ​d​ b​ max​. Then, sub-
stituting (A10) and ​d​s​ = α ⋅ D + k in (3) yields

(A11)  	F​V​ s, b​(​T​ ∞​(m(α, D), s))  ≤  (π  −  c)  ⋅ ​ I​ ​T​ d​(m, s, b)​ 
min 

  ​  ⋅  [1  − ​ I​ ​T​ d​(m, s, b)​ 
min 

  ​​]​α⋅D+k−1​.

Because 0 ≤ ​I​ ​T​ d​(m, s, b)​ 
min 

  ​ ≤ 1 we have that li​m​D→∞​ F​V​ s, b​(​T​ ∞​(m(α, D), s)) ≤ 0 for any 
k ∈ ​핑​+​.

Proof of Theorem 4: 
Part 1a: Consider the case where ​d​ S​ = 2 and ​d​ B​ = 2 that is captured in Figure 7.
We start by analyzing F​V​ seg​(2, 2) in Figure 7B. Assume that both b and b′ are will-

ing to purchase from s conditional on having demand when they meet. Then, (condi-
tional on having a unit supply) s sells in period t with probability 1. Now assume that 
b is unwilling to purchase from s, and that b′ is willing to purchase from s conditional 
on having demand when they meet. The probability that b′ has demand when he 
meets s is (1 − (1/3)μ). To see why, note that b′ has demand when meeting s, unless 
the link (s′, b′ ) is the first one to be chosen among {(s, b′ ), (s′, b′ ), (s′, b)}. Therefore

36 I thank David Goldberg for suggesting this proof. An earlier and much longer proof that introduces an algo-
rithm for approximating Pr(​I​ m​ t

  ​(s, b)) in large networks is available from the author.
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(A12)    	F​V​ seg​(2, 2)  =  [1  −  (1  − ​  1 _ 
3
 ​μ)](π  − ​ c​ s​)  = ​  1 _ 

3
 ​ μ  ⋅  (π  − ​ c​ s​).

We now turn to consider F​V​ T​(2, 2) in Figure 7A. Let x be the probability that when 
s′ and b′ meet, b′ has demand. More generally, for any seller and buyer that are con-
nected, x is the probability that the buyer has demand when they meet. Then

(A13)  	 F​V​ T​(2, 2)  =  x(1  −  x)(π  − ​ c​ s​).

Focusing on the link (s′, b′ ) we note that 1 − x can be rewritten as the union of the 
two following mutually exclusive events:

	 (i)	 The event that s produces in period t; when s and b meet, b does not have 
demand; and s and b′ meet before s′ and b′ meet.

	 (ii)	 The event that s produces in period t; when s and b meet, b has demand; 
s and b′ meet before s and b meet; and s and b′ meet before s′ and  
b′ meet.

The probability of the former is (1/2)μ(1 − x) whereas the probability of the 
latter is μ(1/3 − ε)x for some ε > 0. The addition of ε accounts for the fact that b 
has demand when he meets s indicates that (s, b) is more likely to have been chosen 
early. Thus,

(A14) 	  1  −  x  = ​  1 _ 
2
 ​ μ(1  −  x)  +  μ(​ 1 _ 3 ​  −  ε)x

and

(A15)  	F​V​ T​(2, 2)  = ​ 
6  −  3μ  __  

6  −  μ  −  6εμ ​ (1  − ​ 
6  −  3μ  __  

6  −  μ  −  6εμ ​)(π  − ​ c​ s​).

We conclude that F​V​ T​(2, 2) < F​V​ seg​(2, 2) if

(A16) 	​  
6  −  3μ  __  

6  −  μ  −  6εμ ​ (1  − ​ 
6  −  3μ  __  

6  −  μ  −  6εμ ​)  < ​  1 _ 
3
 ​ μ,

which holds for every 0 ≤ μ and ε ≤ 1. To complete the proof of part 1, note that 
F​V​ T​(1, 2) = F​V​ seg​(1, 2) and F​V​ T​(1, 1) = F​V​ seg​(1, 1) because when ​d​ B​ = 1 the 
global and segregated networks are identical.

Part 1b: Consider the case where ​d​ S​ = 2 and ​d​ B​ → ∞. Let the definition of x 
carry over from the proof of Part 1.

Consider a seller s that is connected to buyers b and b′. In the segregated network, 
the probability that b′ does not have demand when meeting s and b has demand 
when meeting s is the probability that: (i) s is the first to meet b and not the first to 
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meet b′ ; or that (ii) s is the second to meet b and seller s′ who met b before s was the 
first to meet b′. When ​d​ B​ → ∞ this can be shown to equal

(A17) 	  (1  − ​   1 __  
μ  ⋅  (​d​ B​  −  1)

 ​)  ⋅ ​   1 __  
μ  ⋅  (​d​ B​  −  2)

 ​ .

In the global network (in the limit when ​d​ B​ → ∞) a seller has μ ⋅ (​d​ B​ − 1) 
⋅ [(1 − x)+ x ⋅ ((1/2) − ε)] distinct competitors for selling to each of the buyers 
she is connected to. A competitor is an active seller who is connected to the same 
buyer and that cannot sell to their other connected buyer. Therefore,

(A18)  	 x  = ​   1  ___    
μ  ⋅  (​d​ B​  −  1)  ⋅  [1  − ​  1 _ 

2
 ​ x  −  εx] ​

 .

Again, ε > 0 because the fact that a competitor’s other link was useful, implies that 
it was chosen early, so the probability that the relevant link was chosen before is less 
than 1/2. Therefore,

(A19)  	F​V​ T​(​d​ B​, 2)  = ​   1  ___    
μ  ⋅  (​d​ B​  −  1)  ⋅  [1  − ​  1 _ 

2
 ​ x  −  εx] ​

 

	 .  (1  − ​   1  ___    
μ  ⋅  (​d​ B​  −  1)  ⋅  [1  − ​  1 _ 

2
 ​ x  −  εx] ​)(π  − ​ c​ s​) .

As μ ↛ 0 and ​d​ B​ → ∞, x is small (and in particular x < 1/2), so a lower bound 
on x provides a lower bound on x(1 − x) and we can focus on demonstrating that

(A20)  	 x(1  −  x)  ≥  (1  − ​   1 __  
μ  ⋅  (​d​ B​  −  1)

 ​)  ⋅ ​   1 __  
μ  ⋅  (​d​ B​  −  2)

 ​

for 0 << μ < 1/2.
From x = 1/(μ ⋅ (​d​ B​ − 1) ⋅ [1 − (1/2) x − εx]) we get that 1 + ε​x​2​ ⋅ μ ⋅ (​d​ B​ − 1)  

= x ⋅ μ ⋅ (​d​ B​ − 1) − (1/2)​x​2​ ⋅ μ ⋅ (​d​ B​ − 1) and ε = 0 provides a lower bound on x. 
Denote this lower bound as ​x _​ such that 1/(μ ⋅ (​d​ B​ − 1)) = ​x _​ − (1/2) ​​x _​​ 2​ and ​x _​ = 1/(μ  
⋅ (​d​ B​ − 1)) + (1/2) ​​x _​​ 2​ ≥ 1/(μ ⋅ (​d​ B​ − 1)). Consequently,  ​x _​ ≥ 1/(μ ⋅ (​d​ B​ − 1)) +  
(1/2)(1/(μ ⋅ (​d​ B​ − 1))​)​2​. Plugging ​​x _​ _​ = 1/(μ ⋅ (​d​ B​ − 1)) + (1/2)(1/(μ ⋅ (​d​ B​ − 1))​)​2​  
into x(1 − x) yields that

(A21) 	 (1  −  x)x  ≥  [1  −  (​  1 __  μ  ⋅  (​d​ B​  −  1) ​  + ​  1 _ 
2
 ​ (​  1 __  μ  ⋅  (​d​ B​  −  1) ​​)​

2

​)]
	 ⋅  (​  1 __  μ  ⋅  (​d​ B​  −  1) ​  + ​  1 _ 

2
 ​ (​  1 __  μ  ⋅  (​d​ B​  −  1) ​​)​

2

​)
and it is sufficient to show that



62	 American Economic Journal: Microeconomics� February 2012

(A22) 	  [1  −  (​  1 __  μ  ⋅  (​d​ B​  −  1) ​  + ​  1 _ 
2
 ​ (​  1 __  μ  ⋅  (​d​ B​  −  1) ​​)​

2

​)] 

 	  ⋅  (​  1 __  μ  ⋅  (​d​ B​  −  1) ​  + ​  1 _ 
2
 ​ (​  1 __  μ  ⋅  (​d​ B​  −  1) ​​)​

2

​) 

	 ≥  (1  − ​   1 __  
μ  ⋅  (​d​ B​  −  1)

 ​)  ⋅ ​   1 __  
μ  ⋅  (​d​ B​  −  2)

 ​

for every μ < 1/2.
With some algebra, this becomes

(A23) 	 μ  + ​  1 _ 
2
 ​  ⋅ ​ 

(​d​ B​  −  2) _ 
(​d​ B​  −  1)

 ​  + ​  1 _ μ ​  ⋅ ​ 
(​d​ B​  −  2) _ 
​(​d​ B​  −  1)​2​

 ​  + ​   1 _ 
4​μ​2​

 ​  ⋅ ​ 
(​d​ B​  −  2) _ 
​(​d​ B​  −  1)​3​

 ​  ≤  1.

Recalling that μ > 0 and d → ∞ this is simplified to μ + 1/2 + 0 + 0 ≤ 1 which 
hold for every μ < 1/2.

Part 2: In a segregated network with more buyers than sellers, a seller is guaran-
teed to trade with or without her marginal link. Consequently, the value of each link 
is zero. This is not true for a global network.

Proof of Theorem 5: 
Part 1: consider a network ​m​1​ in which all agents on the short side of the mar-

ket have degree one and the maximal degree of any agent in the network is 1 (e.g., 
if ​n​s​ > ​n​b​ than all buyers have degree 1, ​n​b​ sellers have degree one, and ​n​s​ − ​n​b​ 
sellers have degree 0). By definition, for every (s, b) ∈ E, (​δ​ s​/(1 − ​δ​ s​)) ⋅ F​V​ s, b​(​m​1​)  
= (​δ​ s​/(1 − ​δ​ s​)) ⋅ μ ⋅ (π − ​c​ s​) > ​​

_
 Π​​ s​. Applying Theorem 1 and noting that 

E[V(​m​1​ | μ = 1)] = min {​n​b​ , ​n​s​} and E[V(​m​1​ | ​n​s​ < ​n​b​)] = μ ⋅ ​n​s​ completes the proof.
Part 2a: Assume by contradiction that for any ​​

_
 n​​b​ there exists ​n​b​ > ​​

_
 n​​b​ and ​n​s​ > ​

n​b​ such that L(⋅| ​n​b​ , ​n​s​ , μ) = 0. Let ​n​ s​ t ​ be the number of sellers that are able to pro-
duce in period t. The contradiction assumption implies that there exists Δm such 
that in every period min {​n​b​, ​n​ s​ t ​} trades take place and that mi​n​ s∈S​   ​[(​δ​ s​/(1 − ​δ​ s​)) 
⋅ F​V​ s, b​(Δm) − ​​

_
 Π​​ s​ ] > 0. In particular, in every period t such that ​n​ s​ t ​ < ​n​b​ the number 

of trades need be ​n​ s​ t ​ , independent of which are the sellers that produce. The only 
network m that guarantees that ​n​ s​ t ​ take place is the complete network in which for 
every s, ​d​s​ = ​n​b​ , and for every b, ​d​b​ = ​n​s​ . Consider such a network. When ​n​b​ → ∞, 
the probability that in period t a seller s sells if all of the buyers are willing to buy 
from her, and does not sell if all but one of the buyers is ready to buy from her is 
bounded above by

(A24) 	  min {​  ​n​b​ _ μ ⋅ ​n​s​ ​, 1}  −  min {​ ​n​b​  −  1
 _ μ  ⋅ ​ n​s​ ​ , 1}.

To see why (A24) is an upper bound, recall that in network m all seller are symmetric 
and note that min {​n​b​/(μ ⋅ ​n​s​), 1} is the probability that any seller manages to sell in 
a network m when μ ⋅ ​n​s​ produce. We claim that min {(​n​b​ − 1)/(μ ⋅ ​n​s​), 1} is smaller 
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than the probability that s sells in period t if only ​n​b​ − 1 of the buyers are willing to 
buy from her. This is because there is a positive probability that some seller s′ sells 
to b before meeting any other buyer. Conditional on that event, the probability that 
seller s sells in period t is min {(​n​b​ − 1)/(μ ⋅ ​n​s​ − 1), 1} > min {(​n​b​ − 1)/(μ ⋅ ​n​s​), 1}.

To conclude the proof, let ​n​s​ = f (​n​b​). Then, for any function f : ​핑​+​ → ​핑​+​ such 
that f (k) > k for all k ∈ ​핑​+​,

(A25) ​  lim   
​n​b​→∞​ F​V​ s, b​(m) 

= ​  lim   
​n​b​→∞​{​  ​δ​ s​ _ 1  − ​ δ​ s​

 ​  ⋅  (π  − ​ c​ s​)  ⋅  [min {​  ​n​b​
 _ μ  ⋅ ​ n​s​ ​ , 1}  −  min {​ ​n​b​  −  1

 _ μ  ⋅ ​ n​s​  ​ , 1}]}  =  0,

which contradicts the assumption that ​min​s∈S​[(​δ​ s​/(1 − ​δ​ s​)) ⋅ F​V​ s, b​(Δm) − ​​
_

 Π​​ s​] > 0.

Part 2b: Fix ​n​b​ and assume by contradiction that for any ​​
_
 n​​s​ there exists ​

n​s​ > ​​
_
 n​​s​ such that L(⋅| ​n​b​ , ​​

_
 n​​s​ , μ) = 0. Let ​n​ s​ t ​ be the number of sellers that are 

able to produce in period t. The contradiction assumption implies that there 
exists Δm such that in every period min {​n​b​ , ​n​ s​ t ​ } trades take place and that  
​min​s∈S​[(​δ​ s​/(1 − ​δ​ s​)) F​V​ s, b​(Δm) − ​​

_
 Π​​ s​ ] > 0. However, given that μ < 1, to satisfy 

that in every period min {​n​b​ , ​n​ s​ t ​} trades take place, Δm must provide each seller with 
a positive probability of selling in every period that she produces. Thus,

(A26) 	​  min   
s∈S

 ​ [​  ​δ​ s​ _ 1  − ​ δ​ s​
 ​ F​V​ s, b​(Δm)  − ​​

_
 Π​​ s​ ] 

	 < ​ min   
s∈S

 ​ [ ​  ​δ​ s​ _ 
1  − ​ δ​ s​

 ​  ⋅ ​ 
​n​b​ _ ​n​s​ ​  ⋅  (π  − ​ c​ s​)  − ​​

_
 Π​​ s​ ]  <  0

and for ​n​s​/​n​b​ > ​max​s∈S​[​δ​ s​(π − ​c​ s​)]/[(1 − ​δ​ s​) ⋅ ​​
_

 Π​​ s​ ], we have that

(A27) 	​  min   
s∈S

 ​ [​  ​δ​ s​ _ 1 − ​δ​ s​
 ​  ⋅ ​ 

​n​b​ _ ​n​s​ ​  ⋅  (π  − ​ c​ s​)  − ​​
_

 Π​​ s​ ]  <  0.

This completes the proof by contradiction to ​min​s∈S​[(​δ​ s​/(1 − ​δ​ s​))F​V​ s, b​(Δm) −  
​​
_

 Π​​ s​] > 0.

Appendix B: Additional Results

Proposition 1:

	 (1)	 Consider buyers b, b′ ∈ B such that ​d​​b​ ′​​ ≥ ​d​b​  . Then, F​V​s, ​b​ ′​​ (​T​ ∞​(m, s)) ≤  
F​V​ s, b​(​T​ ∞​(m, s)).

	 (2)	 Consider sellers s, s′ ∈ S such that ​d​​s​ ′​​ ≥ ​d​s​ and ​{​d​b​}​b∈​B​s​​ ⊆ ​{​d​​b​ ′​​}​b∈​B​​s​ ′​​​  , and con-
sider buyers ​b​1​ ∈ ​B​ s​ and ​b​ 1​ ′ ​ ∈ ​B​​s​ ′​​ such that ​d​​b​ 1​ ′ ​​ = ​d​​b​1​​ . Then, F​V​​s​ ′​, ​b​ 1​ ′ ​​(​T​ ∞​(m, s′ )) ≤  
F​V​ s, ​b​1​​(​T​ ∞​(m, s)).
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Proof: 
By Lemma 1, as ​d​​b​ ′​​ > ​d​b​ we have that Pr(​I​ ​T​ d​(m, s, ​b​ ′​ )​ t

  ​(s, b′ )) ≤ Pr(​I​ ​T​ d​(m, s, b)​ t
  ​(s, b)), 

which when combined with Theorem 1 and equation (3) completes the proof of 
Part 1. Part 2 follows directly from Theorem 1 and equation (3).

Proposition 2: Consider two sellers s and s′ such that (i) ​d​​s​ ′​​ = ​d​s​  ; and (ii) there 
exist ​b​1​ ∈ ​B​s​ and ​b​ 1​ ′ ​ ∈ ​B​​s​ ′​​ such that ​d​​b​ 1​ ′ ​​ ≥ ​d​​b​1​​ and ​{​d​b​}​b∈​B​S​\​b​1​​ ≡ ​{​d​​b​ ′​​}​b∈​B​​s​ ′​​ \​b​ 1​ ′ ​​ . Then, for 
every b ∈ ​B​s​ and b′ ∈ ​B​​s​ ′​​ such that ​d​​b​ ′​​ = ​d​b​ , F​V​​s​ ′​, ​b​ ′​​ (​T​ ∞​(m, s′ )) ≥ F​V​ s, b​(​T​ ∞​(m, s)).

Proof: 
By Lemma 1, if ​d​​b​ 1​ ′ ​​ > ​d​​b​1​​, Pr(​I​ ​T​ d​(m, ​s​ ′​, ​b​ 1​ ′ ​)​ 

t
  ​(s′, ​b​ 1​ ′ ​)) < Pr(​I​ ​T​ d​(m, s, ​b​1​)​ t

  ​(s, ​b​1​)). Plugging 
this inequality into equation (3) for some b ∈ ​B​s​ and b′ ∈ ​B​​s​ ′​​ such that ​d​​b​ ′​​ = ​d​b​ 
yields that F​V​​s​ ′​, ​b​ ′​​ (​T​ ∞​(m, s′ )) ≥ F​V​ s, b​(​T​ ∞​(m, s)).

Proposition 3: Let ​c​ s​ = c for all s ∈ S. Hold fixed ​d​ B​, ​d​ S​, and μ. There 
exist ​

_
 ​d​ S​​(​d​ B​, μ), ​

_
 ​d​ B​​(​d​ S​, μ), ​_ μ​(​d​ S​, ​d​ B​), and ​​d​ S​ _​(​d​ B​, μ), ​​d​ B​ _​(​d​ S​, μ), ​μ _​(​d​ S​, ​d​ B​) such that

	 (1)	 If ​d​ S​ > ​
_

 ​d​ S​​ then F​V​ T​(​d​ B​ + 1, ​d​ S​ ) > F​V​ T​(​d​ B​, ​d​ S​ ) > F​V​ T​(​d​ B​, ​d​ S​ + 1) and if ​
d​ S​ < ​​d​ S​ _​ then F​V​ T​(​d​ B​ + 1, ​d​ S​ ) < F​V​ T​(​d​ B​, ​d​ S​ ).

	 (2)	 If ​d​ B​ < ​​d​ B​ _​ then F​V​ T​(​d​ B​ + 1, ​d​ S​ ) > F​V​ T​(​d​ B​, ​d​ S​ ) > F​V​ T​(​d​ B​, ​d​ S​ + 1) and if ​
d​ B​ > ​

_
 ​d​ B​​ then F​V​ T​(​d​ B​ + 1, ​d​ S​ ) < F​V​ T​(​d​ B​, ​d​ S​ ).

	 (3)	 If μ < ​μ _​ then F​V​ T​(​d​ B​ + 1, ​d​ S​ ) > F​V​ T​(​d​ B​, ​d​ S​ ) and if μ > ​
_
 μ​ then F​V​ T​(​d​ B​ + 1, ​

d​ S​)< F​V​ T​(​d​ B​, ​d​ S​ ).37

Proof: 
We prove first all of the inequality that involve a comparison of F​V​ T​(​d​ B​, ​d​ S​ ) and 

F​V​ T​(​d​ B​, ​d​ S​ + 1). Since

(B1)  	 F​V​ T​(​d​ B​, ​d​ S​ )  =  (π − c)  ⋅  Pr(​I​ ​T​ ∞​(m, s, b)​ t
  ​(s, b)) 

	 ⋅  [1  − ​  1 _ µ ​  ⋅  Pr(​I​ ​T​ ∞​(m, s, b)​ t
  ​(s, b))​]​​d​ S​−1

​,

Lemma 1 implies that when ​d​ S​ is large and when ​d​ B​ and μ are small, an increase in ​d​ S​ 
decreases F​V​ T​(​d​ B​, ​d​ S​) by both increasing Pr(​I​ ​T​ ∞​(m, s, b)​ t

  ​(s, b)) and the power argument.
We now prove the inequalities that involve a comparison of F​V​ T​(​d​ B​, ​d​ S​ ) and  

F​V​ T​(​d​ B​ + 1, ​d​ S​ ). To see that when ​d​ S​ > 1 there exist small enough ​d​ B​ ≥ 1 for which 
the result for small ​d​ B​ hold, it is immediate that for any ​d​ S​ > 1, (F​V​ T​ | ​d​ B​ = 1) <  
(F​V​ T​ | ​d​ B​ = 2). The result for small μ follows the same reasoning. Similarly, to see 

37 Part 3 of Proposition 3 sheds light on the role of μ. We illustrate that using our job recommendations example. 
Recall that a low μ implies that only a small fraction of the teachers have high ability students in every period. 
Hence, more teachers are required to be connected to every firm to prevent the competition from being “too weak.” 
On the other hand, high μ implies that a large fraction of the teachers have high ability students in every period and 
in order to restrain the fierce competition a low degree for firms or a high degree for teachers is required.
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that there exists small enough ​d​ S​ for which the result for small ​d​ S​ hold, it is immedi-
ate that for ​d​ S​ = 1, (F​V​ T​ | ​d​ B​ = 1) > (F​V​ T​ | ​d​ B​ = 2).

For the remainder of the proof, we treat ​d​ B​ as a continuous variable. We show 
that ∂F​V​ s, b​/∂​d​ B​ < 0 for large μ and ​d​ B​, and that ∂F​V​ s, b​/∂​d​ B​ < 0 for large ​d​ S​. First, 
note that

(B2) ​  ∂F​V​ T​ _ 
∂​d​ B​

 ​   =  [1  − ​  1 _ µ ​ ⋅ Pr(​I​ ​T​ ∞​(m, s, b)​ t
  ​(s, b))​]​​d​ S​−2​  ⋅  [∂ Pr(​I​ ​T​ ∞​(m, s, b)​ t

  ​(s, b))/∂​d​ B​ ] 
	 ⋅  {1  − ​  1 _ µ ​ ⋅ Pr(​I​ ​T​ ∞​(m, s, b)​ t

  ​(s, b))  ⋅ ​ d​ S​ }  ⋅  (π  −  c).

Thus, the sign of ∂F​V​ T​/∂​d​ B​ is determined as the opposite of the sign of 1 −   
(1/µ) ⋅ Pr(​I​ ​T​ ∞​(m, s, b)​ t

  ​(s, b)) ⋅ ​d​ S​ (recall that Pr(​I​ ​T​ ∞​(m, s, b)​ t
  ​(s, b)) is decreasing in ​d​ B​ by 

Lemma 1). If Pr(​I​ ​T​ ∞​(m, s, b)​ t
  ​(s, b)) and ​d​ S​ are small, 1 − (1/µ) ⋅ Pr(​I​ ​T​ ∞​(m, s, b)​ t

  ​(s, b)) 
⋅ ​d​ S​ > 0 and ∂F​V​ T​/∂​d​ B​ < 0, and vice versa. It is only left to note that by Lemma 1, 
(1/µ) ⋅ Pr(​I​ ​T​ ∞​(m, s, b)​ t

  ​(s, b)) is decreasing in ​d​ B​ and μ, and increasing in ​d​ S​.

Proposition 4: (FG) Consider a market with S, B, μ, ​{​c​ s​}​s∈S​ , ​{​δ​ s​}​s∈S​ , and ​{ ​​
_

 Π​​ s​ }​s∈S​ . 
For a given  let ​M​​ be the set of buyer-seller networks for which a STNE exists. 
Let ​​1​ be the reputation network in which every two buyers are connected. Then, 
for any , ​M​​ ⊆ ​M​​​ 1​​.

Proposition 5: Consider a market with S, B, μ, ​{​c​ s​}​s∈S​ , ​{​δ​ s​}​s∈S​ , and ​{ ​​
_

 Π​​ s​ }​s∈S​ . Let ​
M​ ​β​ L​, λ, ​β​ E​​ be the set of buyer-seller networks for which a STNE exists given ​β​ L​, λ, and ​
β​ E​. If ​̂  ​β​ L​ ​ ≥ ​β​ L​, ​  λ​ ≥ λ, and ​̂  ​β​ E​ ​ ≥ ​β​ E​ then ​M​ ​β​ L​, λ, ​β​ E​​ ⊆ ​M​​̂  ​β​ L​ ​, ​  λ​, ​  ​β​ E​ ​​.

Proof:
The proof is immediate and therefore omitted.

Appendix C: Repeated Games and Incomplete 
Knowledge of the Network

In this section, we suggest that studying environments in which individuals have only 
incomplete knowledge of the network is insightful beyond the tractability it provides. 
Clearly, repeated interactions provide sellers and buyers with opportunities to learn 
about their environment. However, even excluding purely behavioral considerations, 
there are several reasons why market participants may not be able to learn beyond their 
close local network and some aggregate characteristics of the global environment.

First, much of the economic literature suggests that learning is costly. Consider 
market participants that learn optimally given the information that they acquire 
and process, but have costs of information acquisition and processing.38 Assume 
that market participants learn directly about the network structure (e.g., viewing 

38 Non-network examples include models of search with memory constraints (e.g., Dow 1991), or limited atten-
tion (e.g., Schwartzstein 2010), as well as models of costly information acquisition (e.g., Verrecchia 1982).
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a person’s links in social networking websites, going through old call or shipment 
records, or gathering other information on past interactions of a seller or buyer). It 
is easy to write a model in which assumption 1 is a result, for example, if there are 
increasing costs of learning information on participants that are at a large distance. 
On the other hand, if participants focus on frequencies of their own trade to infer 
the network structure, it is not clear what sellers’ beliefs are likely to converge to. In 
the latter case, assumption 1 is a stylized approximation of the knowledge held by 
market participants in the long run.

Second, real world networks are dynamic structures, links are added and removed, 
and buyers’ demand changes over time. Nevertheless, the aggregate attributes of 
networks (such as the degree distribution) seem to be stable over time. Moreover, 
the local environments of most individuals change only infrequently. The study of 
agents’ ability to learn the network structure in a changing environment poses many 
interesting open questions that are beyond the scope of this paper. For now, we sug-
gest that there are market environments in which incomplete knowledge of the net-
work persists over time even for Bayesian agents. We offer below an example of one 
such environment. While the description of the environment requires more notation, 
it relies on simple assumptions: (i) buyers are divided into separate groups (buyers 
from the same group can be connected to different subsets of sellers); (ii) only a 
small subset of the buyers in each group have demand in a given period; (iii) all of the 
buyers that belong to the same group share information about past transactions; and 
(iv) a seller s is connected to buyers from ​d​s​ groups. Under these assumptions, as the 
market becomes large, it is impossible for buyers and sellers to learn much beyond ​ 
K​s​ (​K​b​). At the same time, the repeated nature of the interactions remains intact.

A Market Environment in which Incomplete Knowledge of the Network Persists 
over Time even for Bayesian Agents.—Let buyers live in different locations, in every 
location l ∈ L there is a set ​B​ l​ of buyers. A buyer from location l is connected to ​d​l​ 
sellers. A seller s has connections to buyers from ​d​s​ locations. For each location l, 
let the degree distribution of all of the sellers connected to buyers from l be identical 
to the degree distribution of sellers in the market, and be i.i.d. across buyers from l 
and across connections of each buyer b ∈ B′. Denote by ​m​u​ the (fixed) underlying 
network of locations and sellers which is defined as follows: a seller and a location 
are connected if the seller is connected to at least one buyer from location l.

In every period, only a subset of buyers have unit demand. We call such buyers 
active. Let ​b​ l, active​ buyers be active in location l in every period, chosen randomly 
and i.i.d. across locations and periods with the following restriction: a seller s has a 
connection to one active buyer from each location from a (fixed) set of ​d​s​ locations 
in every period. Within a period, sellers and buyers that are connected meet in a 
random order (as described in Section III). After transacting, a buyer learns the true 
quality of the good, and shares it with all of the other buyers in her location.

Note that the degree distribution of the network between sellers and active buyers, 
g = 〈​g​ S​, ​g​ B​ 〉, is constant across periods and is determined by L, ​{​d​l​}​l ∈L​ , S, ​{​d​s​}​s∈S​ , 
and ​{​b​ l, active​}​ l∈L​ .

Holding ​{​b​ l, active​}​ l∈L​ fixed, as | B |, | S |, | L |, | ​B​ l​ | → ∞, the network m that is gener-
ated in every period has a strong random component. Focusing on large markets with 
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random selection of active sellers and buyers creates an environment in which the 
network structure changes over time without changes to agents’ local environments 
or to the degree distribution. Consequently, complete knowledge of the network is 
obsolete, and our analysis holds without any changes for anything between agents 
who know the full network structure in every period and agents who know only basic 
information that includes their own degree, the degree of their direct neighbors, and 
the degree distribution g. Clearly, precise conditions are required to establish that 
the network m is chosen u.a.r. from all of the networks with ​∑ l∈L​ 

 
  ​ ​b​ l, active​​ buyers, | S | 

sellers, and with degree distribution g. We leave the exact conditions necessary as 
an open question for future research. However, as our analysis throughout the paper 
suggest, our results are not sensitive to the small changes in the details of the ran-
domization process behind sellers’ beliefs, and much of the proofs can be replicated 
with alternative randomization schemes for the selection of networks.
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