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Community Structure and Market Outcomes:
A Repeated Games-in-Networks Approach

By ITAY P. FAINMESSER™

Consider a large market with asymmetric information, in which
sellers have the option to “cheat” their buyers, and buyers decide
whether to repurchase from different sellers. We model active trade
relationships as links in a buyer-seller network and study repeated
games in such networks. Endowing sellers with incomplete knowl-
edge of the network, we derive conditions that determine whether
a network is consistent with cooperation between every buyer and
seller that are connected. Three network features reduce the minimal
discount factor sufficient for cooperation: moderate and balanced

competition, sparseness, and segregation. Incentive constraints are
binding and rule out efficient networks. (JEL C73, D82, D85, Z13)

conomists have long noticed that it is difficult to sustain cooperation in large

groups, especially if third party observability within the group is limited."
Nevertheless, even as markets grow and span across geographic and cultural bor-
ders, informal agreements continue to be an important part of markets’ activity.
A number of empirical studies document interesting patterns of trade within large
groups. In particular, trade and trust are often concentrated in a subset of all possible
relationships.” This paper suggests an explanation to the observed patterns of trade
and trust.

We consider a market with asymmetric information. In every period, sellers
with limited supply meet sequentially with buyers with limited demand and decide
whether to cooperate or to defect and “cheat” a given buyer. Only the buyer cheated
observes the seller’s deviation. We model active relationships as links in a buyer-
seller network and ask the following question: what structures of networks are con-
sistent with an equilibrium in which every buyer and seller that are connected trade
and cooperate with each other? The answer defines a set of networks in which a link
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between seller s and buyer b implies that b can trust s to cooperate with him when
they trade.

The scarcity of models of repeated games in networks is often attributed to the
inherent intractability of the problem.’ Our framework alleviates some of the dif-
ficulties and provides a simple expression that summarizes all the network informa-
tion that seller s uses when deciding whether to cooperate with buyer b or cheat
him. Consider a seller s and a buyer b that are connected. The immediate benefit
for s from cheating buyer b is defined by the stage game and does not depend on
the network. On the other hand, the cost of cheating depends on the entire network
structure. As a starting point, consider the simple case that s deviates only in an
interaction with b and cooperates with all other buyers that are connected to her,
and that none of the other buyers can learn about the deviation of seller s. In this
simple case, for every period that b “punishes” s by not purchasing from her, s loses
her expected per-period future value from cooperation with b, which we denote by
FV,,. If FV,, is large, s does not find it profitable to deviate and lose the option to
trade with b, even if her intertemporal discount factor is low and the immediate ben-
efit from deviating is large. In Theorem 1, we establish conditions under which the
following one-deviation-principle holds: FV, , is a sufficient statistic for determin-
ing whether a fully cooperative equilibrium (an equilibrium in which every buyer
and seller that are connected always cooperate with each other) exists.

Despite the simplification, F'V, , still depends on the entire network structure and
can be difficult to calculate, especially in large networks. To evaluate F'V, ,, s asks
the following question: “What is the probability that I will be able to sell a good to
b and not be able to sell it to any other buyer?” The answer reflects the probability
that s needs b in a given period, and depends on the network structure in two ways.
First, the network structure determines the frequency of interactions between s and
b; when their frequency of interaction rises, s needs b more, and values more their
connection. Second, the network structure determines the outside options of s if she
were not connected to b. When other buyers with whom s is connected are more
likely to buy from s, seller s needs b less. For illustration, assume that in every
period meetings between buyers and sellers occur in an order chosen uniformly at
random, and let each seller produce one unit of a good and each buyer have demand
for one unit of a good. Then, in a fully cooperative equilibrium, successful interac-
tions between seller s and buyer b in are more frequent than in|Figure 1B]
(in the latter there is a probability of 1/4 that in a given period s does not sell at all).
However, in Figure 1A s has a guaranteed outside option because buyer b’ cannot
transact with any other seller, whereas in Figure 1B, there is a positive probability
that b is the only buyer who offers to buy from s, which raises the value of this con-
nection for seller s. Focusing on Figure 1B, if we eliminate the link between s"and b,
the connection between s and b becomes more valuable due to higher frequency of

3Recently, several researchers take on different approaches to modeling repeated games in networks (see Ali
and Miller 2009; Mihm, Toth, and Lang 2009; Nava and Piccione 2011; Jackson, Rodriguez-Barraquer, and Tan
2011; and Lippert and Spagnolo 2011). As their approach and research questions differ significantly from ours, we
defer the discussion of these papers to Section V1.
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interactions, and the connection between s and buyer b’ becomes less valuable due
to an improved outside option for s.

The expectations of seller s with respect to F'V, , depend on what s knows about
the network. In our model, sellers and buyers know who they are connected to, and
the number of connections (degree) of each of the buyers or sellers that they are con-
nected to. Additionally, they know the number of buyers and sellers in the network
(n, and n respectively), as well as some aggregate information regarding the net-
work structure, such as the degree distribution of buyers and sellers in the network,
and the probability of sharing more than one neighbor with the same individual.

Focusing on a family of equilibria in simple strategies, which excludes equilib-
ria that rely on community enforcement through contagion,! we find that in any
(asymptotically) large network and for every seller s and buyer b that are connected,
FV, , can be summarized by a simple expression that captures F'V, , in a correspond-
ing random tree. Using this insight, we show that three network features increase
the values of links: (i) moderate and balanced competition: the degrees of all buyers
and sellers are similar; (ii) sparseness: the degrees of sellers and buyers are small;
and (iii) segregation: sellers who have one buyer in common, have connections to
similar sets of buyers overall. For fixed intertemporal discount factors, our results
describe systematic constraints on the structure of networks that can sustain coop-
eration. In contrast with much of the existing literature, the constraints are not due
to exogenous costs of creating or sustaining links.

Ignoring the incentive constraints and assuming that sellers always cooperate,
networks that maximize the expected volume of trade are dense—the exact opposite
of (ii) above. This difference leads to inefficiencies and is especially robust in sto-
chastic environments, in which sellers’ supply is subject to exogenous fluctuations.
Noting that previous theoretical results find endogeneously formed buyer-seller net-
works to be efficient in facilitating trade, highlights that the inefficiencies are due to
the incentive constraints imposed by moral hazard.’

We consider three social and formal institutions: Reputation Networks, Litigation,
and Third-Party Evaluation Services. The direct effect of each of these institutions

*Consider a seller s that cheats a buyer b. Contagion via the network requires buyer b to refuse to buy from
competitors of seller s.

°For example, Kranton and Minehart (2001) offer a model in which buyers decide whether to costly connect to
sellers before auctions take place and find that the resulting network facilitates the efficient outcome.
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on cooperation is well studied. However, the integration of reduced-form models of
these institutions into our framework highlights a new insight: in the presence of either
of these institutions, denser networks can sustain cooperation (i.e., these institutions
complement the network rather than substitute for it in enforcing cooperation).

Methodologically, we extend prior literature on games in networks in sev-
eral ways. Most notably, with the exception of a few papers that are discussed in
Section VI, most of the literature focuses on static games (for extensive surveys, see
Goyal 2007 and Jackson 2008). In addition, the current literature focuses either on
complete information of the network structure, or on incomplete information where
an agent knows only her own degree and the degree distribution of others in the net-
work.” We allow for incomplete yet richer knowledge of the network structure. By
doing so, we achieve tractability in large networks, while maintaining the ability to
analyze complex changes in the network structure.

Finally, most related to our paper is Fainmesser and Goldberg (2011)—hereafter
FG—who analyze how the structure of an informational network between buyers
affects the ability to sustain cooperation between buyers and sellers. FG show that
the impact of the entire structure of the buyer-seller network on the incentives of a
seller to cooperate can be approximated by focusing on the seller’s local neighbor-
hood—a small network that includes only buyers and sellers that are close to the
seller. Furthermore, when sellers have a sufficiently high level of uncertainty with
respect to the network structure, FG find that a seller expects her local neighborhood
to look approximately like a random tree—a network that has no cycles and in which
the degrees of buyers and sellers in the network are drawn independently at random
from some degree distribution.” We make use of these graph-theoretic results in our
characterization of large networks for which fully cooperative equilibria exist.

The paper is organized as follows. The following section offers two motivating
examples. In Section II, we present the model, and in Section III we character-
ize the future value of links in large networks and derive conditions to determine
whether a network admits a fully cooperative equilibrium. Section IV characterizes
differences in the future values of links within and across networks and relates these
differences to the constraints on the structure of networks that admit fully coopera-
tive equilibria. Section V investigates the trade-off between sustaining cooperation
and maximizing trade volumes. Section VI offers a discussion of related literature
and empirical evidence, as well as several institutions that affect the ability to sus-
tain cooperation. Section VII offers concluding remarks.

I. Examples

To motivate our analysis, we briefly describe two examples of relevant applications.

6See Jackson and Yariv (2007), and Galeotti et al. (2010).

7 Also related is Campbell (2010) who applies percolation theory (physics) to the study of monopoly pricing
in the presence of WOM. Notably, percolation theory relies on the close connection between random graphs and
tree-like networks.
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Example 1 (job recommendations):*

Consider a group of recommenders (mentors/past employers) that have workers
(mentees /past employees) to recommend and a group of firms that are seeking to
hire. A recommender receives a positive payoff from getting a job for her worker. A
worker’s ability can be either high or low, and is observed by the firm only after the
worker is hired (the recommender knows the ability of the worker). Assuming that
firms want to hire only high quality workers, a recommender who has a low abil-
ity worker can benefit from recommending the worker to the firm as having high
ability. In a one-recommender-one-firm setup, it is easy to solve for the minimal
firm’s discount factor that will allow to support an equilibrium in which the firm
provides accurate recommendations. This paper studies an environment with many
recommenders and many firms, and allows each recommender to condition her
recommendation on the targeted firm.

Example 2 (catering and food deliveries):

Consider a group of food suppliers (caterers /restaurants) and a group of repeated
clients that order food frequently. Providing high quality service and food costs
more than providing low quality. In the absence of sufficient future payoffs that are
contingent on providing high quality, a food supplier may shirk and provide low
quality. We study how the patterns of interactions in this market affect the level of
future payoffs that are contingent on providing high quality.”

II. Model

Consider a market with aset S = {1,2, ..., n,} of sellers (reccommenders/ caterers)
and a set B={1,2,...,m,} of buyers (firms/clients). Time is discrete. Sellers live
forever and seller s has a discount factor ;. Periods are ex-ante identical. In every
period, any seller s has the capacity to produce one unit: with probability y seller s
can choose whether to produce a high quality good at a cost of ¢, > 0, or a low qual-
ity good at no cost, whereas with probability (1 — p) seller s can only produce a low
quality good (at no cost). u is common knowledge and the realization of i is i.i.d.
across sellers and periods. Goods are nondurable and cannot be transferred across
periods. Buyers live forever and have unit demand in every period. Each seller s has
an active relationship with only a subset of buyers, denoted by B,. We first define
a buyer-seller network that captures the active relationships of all sellers and later
provide the activity rules that define the notion of an active relationship.

Let m = (S,B,E) be a network, where E is a set of seller-buyer pairs such that
(s,b) € E if and only if there is an edge (or link) connecting seller s and buyer
b. Let B(m) be the set of buyers that are (directly) connected to seller s, and let

8The importance of social networks for getting jobs has been long recognized. Granovetter (1974) documents
that more than half of (white-collar) workers use personal connections to obtain jobs. Bewley (1999) summarizes
24 other US studies that point to similar results. Fainmesser (2011) shows that transmission of information over
social networks can affect the timing of hiring in entry-level labor markets.

° Admittedly, eating is a social experience, so one might expect that clients share among themselves some infor-
mation about past experiences. In Section VIB, we follow FG and allow for information sharing between buyers and
consider its effect on market structure and cooperation.
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S,(m) be the set of sellers that are connected to buyer b. The degree of seller s, d;
= d,(m) = | B(m)| is the number of buyers that are connected to s; and the degree
of buyer b, d,, is the number of sellers that are connected to b. A node is an agent
(buyer or seller) in the network. A path between node x and node x in network m
is a sequence of nodes (x = xg,x, X, ...,x, = x') such that for every i € {1,2,...,n},
(x;_1,x;) C E. The length of a path is the number of edges along the path. The dis-
tance between two nodes is the length of the shortest path between the two nodes. A
path (x = x4, x,,X,, ...,x, = x') is also a cycle if x = x". A tree is a network that has
no cycles. A rooted tree is a tree in which one node is marked as the root. A node in
a tree is called a leaf if its degree equals 1. The depth of a rooted tree is the largest
distance between the root and any of the leafs in the tree. A network (tree) m'is a
subnetwork (subtree) of m if m’ C m. The network (tree) m'’is a strict subnetwork
(subtree) of m if m’ C m. A node x is called a child of a node x'in a rooted tree m if
x and x" are connected AND x is at a larger distance from the root than x".

The degree distribution in a network specifies for any d the fraction of buyers with
degree d and the fraction of sellers with degree d. We use the degree distribution to
express sellers’ expectations with respect to the degrees of the buyers connected
to them, sellers connected to the buyers connected to them, and so forth. Thus, for
several of our results it is more convenient to denote the degree distribution in the
following way: let g = (g% ¢®) be a pair of probability distributions such that if
we choose a link (s,b) € E uniformly at random (u.a.r.), g%(d) is the probability
that buyer b has degree d, and g*(d) is the (unconditional) probability that seller s
has degree d.[% We say that a probability distribution g is admissible if (i) for any
d, g°(d), and g%(d) are rational numbers, and (ii) g has a finite support.

In every period, connected buyers and sellers meet at a random sequencing
(i.i.d. across periods), or until their demand (if buyers) or supply (if sellers) has
been exhausted. Formally, in every period, all of the links in E are ordered u.a.r.
and then the links are chosen one by one according to that order. When a link (s, b)
is chosen, s and b meet and get an opportunity to engage in trade unless either s
or b has already traded (with anyone else) in the same period. Buyers and sell-
ers observe only their own meetings, i.e., they do not observe the order in which
links are chosen and meetings by other buyers and sellers occur. Hence, thinking
of a period as a segment of time (e.g., a day) the random component in the order
of meeting captures the idea that buyers and /or sellers do not know exactly when
during a given segment of time they are going to meet and who their partner is
going to meet before their meeting.'’

REMARK 1: We remain agnostic with respect to the formation of the network
and treat the network as exogenous. It will become clear that by allowing sell-
ers and buyers not to cooperate with each other we essentially allow them to
eliminate links. Not allowing for the creation of new links captures the idea that

19Conditional on 1, and n,, there is a one-to-one mapping between g and the aforementioned fractions.

""'The idea that interactions in markets have a random component is not new and is formalized in many models
of market activity. As our focus is on the network structure and not on transient and irregular frictions in markets,
we follow much of the networks literature and take the random component as exogenous (see also Bala and Goyal
2000; Pongou and Serrano 2011; and Manea 2011).
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the formation of new relationships is a longer term process than the decision
not to cooperate in a given period. Notably, we consider in our analysis also
the complete buyer-seller network, so we do not a priori restrict the cooperation
relationships that might persist. A suggested interpretation for our results is that
given any physical or social underlying network, observed patterns of repeated
trade are expected to take the form of a network that is consistent with trade and
cooperation, e.g., an active trade network may be a strict subnetwork of a physical
network that captures trade opportunities.

A. Trade

When seller s meets buyer b, seller s decides whether to invest in producing
high quality (if possible) and whether to tell b that the good is of high quality or
of low quality.'? Buyer b decides whether to purchase the good from s or not. If b
purchases the good, seller s receives a payoff of 77 (minus any production costs).
Buyer b receives a positive net payoff if the good is of high quality, and a negative
net payoff otherwise.'” Payoffs are realized at the end of the period, and buyers
and sellers who do not manage to trade in a given period have utility 0. Payoffs
(and interaction outcomes) are privately observed and cannot be credibly com-
municated to a third party.'*

DEFINITION 1: We say that buyer b and seller s cooperate if when they meet:

(1) If s does not have high-quality capacity, she truthfully conveys that to b, and
if s has high-quality capacity she invests in producing high quality (if b pur-
chases the good).

(2) Buyer b chooses to purchase the good if and only if s claims to have high
quality capacity.

Note that the profit for seller s from not cooperating depends on the application
through 4 and c,. Let I’ be the maximal additional payoff that s can ever gain from
deviation. In the adverse selection problem in Example 1, seller (recommender) s
cannot choose the quality of the good and deviates by saying that a worker is of

!2For some applications it is more natural to assume that a seller makes her quality decision at the beginning of
a period, rather than upon meeting a buyer. This limits further the strategy space of sellers. Thus, for given discount
factors, any network that supports cooperation in our setup does so in this alternative setup as well. The reverse
claim is not correct. However, our results do not change much qualitatively.

130ur results can be extended to a setup in which there is also a market for low quality goods for a price that
is lower than 7 as long as the difference between buyers’ valuations for the high and low quality goods is greater
than the difference in the production costs of the goods. One possible construction is by setting prices to leave buy-
ers indifferent between purchasing a high quality good for 75 and a low quality good for ;. If seller s ever sells a
low quality good to buyer b for 7y, then buyer b agrees to pay only 7, to seller s in any of their future transactions.

Moreover, the model and all of the results extend immediately to games in which both parties have incentives to
deviate (e.g., the standard prisoner’s dilemma) as well as to stochastic games in which payoffs vary across periods.

14Section VIB considers credible communication between buyers so that more than one buyer can learn about
a seller’s deviation.
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high quality when she is not.' As a result, s receives benefits of trade that would

not have occurred had she told the truth, and II' = 7. In the moral hazard Ilroblem
in Example 2, a deviation by a seller (caterer) is saving on effort costs, and IT" = .

REMARK 2: We assume that the payoff for a seller from a single transaction ()
does not depend on the network structure. Introducing endogenous bargaining
increases the complexity significantly.'S However, we note that (i) if we allow 7 to
depend on d;, any model in which the slope of w(d,, ) is not too steep (at least for a
large enough d,) preserves the main insights of this paper; and (ii) in a bargaining
procedure in which sellers make take-it-or-leave-it offers, it is straightforward to
construct equilibria for which our analysis goes through without changes.

B. Large Networks and the Knowledge of the Network

Our goal is to provide a framework for the analysis of large markets. This has
proven to be a difficult task even in the study of static games, and especially when
agents have complete knowledge of the network structure. Several authors suggest
studying environments in which agents have incomplete information of the network
structure. In particular, Jackson and Yariv (2007), and Galeotti et al. (2010) focus
on static network games in which agents know only their own degree and the degree
distribution in the network. We introduce an approach that is similar yet less restric-
tive, and derive conditions under which this approach simplifies the analysis of
repeated games in networks. Assumption 1 is illustrated in

ASSUMPTION 1: Seller s (buyer b) knows: (i) her own degree d, (d,), (ii) the degrees
of all buyers (sellers) connected directly to her {d,,},cp ({d,};'cs,), (iii) the number of
buyers and sellers in the network (n,, and n, respectively), and (iv) the degree distri-
bution g We denote by Ks < <dv’{db/}h/63\,’ns’nb’g> (Kh = <db’ {dv/}v/esb’nmnh’g» the
knowledge that seller s (buyer b) has of the network structure.

While stylized, Assumption 1 captures the idea that participants in the market
have some knowledge of alternative trading opportunities of their trading partners.
Restricting further the knowledge of the sellers and buyers does not change our anal-
ysis.!! However, our results indicate that outside opportunities of trading partners
have a first order effect on the incentives to cooperate. Extending the knowledge
of sellers and buyers beyond K; and K, is an interesting exercise that we leave for
future research.

To capture the idea that K, and K,, contain all of the information that sellers and
buyers have with respect to the network structure, we make the following assumption.

15 Formally, suppose that ¢, = 0 for all sellers. Then, a seller with high quality capacity always chooses to pro-
duce high quality and might benefit from a deviation only by misrepresenting her capacity to produce high quality.

'®For models of bargaining in networks see Corominas-Bosch (2004); Abreu and Manea (2011); Elliott
(2011a); Manea (2011); Nava (2010); and Gofman (2011).

7Our analysis holds for the informational assumptions used by Jackson and Yariv (2007), and Galeotti et al.
(2010), as well as for intermediate levels of knowledge, in which buyers and sellers have imperfect knowledge of
the degrees of sellers and buyers that are connected to them.
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FIGURE 2.

Note: The network from the point of view of seller s who is connected to buyers b and b'".

ASSUMPTION 2: At any period t, seller s (buyer b) attaches identical probability
to the network being any of the possible networks conditional on K, (K,,)."®

REMARK 3: The knowledge that individuals are expected to have in a repeated
games setup deserves further discussion. Clearly, repeated interactions provide
sellers and buyers with opportunities to learn about their environment. However,
even excluding purely behavioral considerations as well as complexity issues, there
are several reasons for market participants not to be able to learn beyond their
close local network and some aggregate characteristics of the global environment.
In Appendix C, we provide further discussion of our informational assumptions
as well as an example of an environment in which our specification of incomplete
knowledge of the network structure persists even if buyers and sellers use their own
patterns of past interactions to learn the network structure.

Large networks: To facilitate the study of large markets, consider the following
notion of an increasing sequence of networks.'”

DEFINITION 2: Consider an admissible degree distribution g, and let m(n,,g) be a
network with ny, buyers and a degree distribution g. We say that {m(n},g)}.", is an
increasing sequence of networks if for every j > i, n’, > nj,.

For some (n,,, g) a network m(n,, g) may not exist. In particular, for m(n,, g) to exist
two conditions must be satisfied: (i) n, must be such that g can be induced by some
vector (d},d3, ...,d}"); and (ii) there must exist some n, and a vector (d!,d?, ...,d")
such that (d ‘1’. dz,....d")is cgnsistent with g and Z?; | d = Z:Zl dj,. However, for
every admissible g, and starting from some 5, there exists an increasing sequence

'8 Assumptions 1 and 2 are consistent with a seller (buyer) having a uniform prior over the set of all networks
given n, and n;, and updating her prior using K (K,).

19See Golub and Jackson (2010), and Ozsoylev and Walden (2011) for a similar formulation of large networks
in the context of information diffusion in networks.
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as required.?" In fact, given n, and g, n, is uniquely determined (and is an increasing
function of n, given g).

III. Equilibrium

In this section, we define a notion of a per-period future value (FV) of a connec-
tion that correspond to the following “simple-minded” calculation: assume that in
all networks all buyers and sellers always cooperate and let the future value of the
connection (s,b) in network m be the difference between the expected payoff of
seller s in network m and her expected payoff in network m\(s, ). Theorem 1 estab-
lishes conditions under which: (i) the naively calculated future values of links are
sufficient statistics for determining whether a fully cooperative equilibrium exists,
and (ii) the future values of links in a network m can be calculated as if m is a ran-
dom tree. The following example demonstrates the simple conditions for coopera-
tion in our model in a market with a single seller and a single buyer.

Example 3 (a market with one seller and one buyer):

Consider a single seller s who has unit capacity with probability ;v and a single
buyer b. Conditional on cooperation, with probability u, s needs b in order to trade
with a payoff m — ¢,. Note that (J,/(1 — 6,)) - 1 - (7 — ¢,) equals the maximal pun-
ishment that b can inflict on s (by not purchasing goods from s in subsequent peri-
ods). Therefore, an equilibrium in which seller s and buyer b cooperate exists if and
only if (55/(1 - 53)) e (7T - cs) > .

In networked markets with multiple sellers and buyers, the analysis is no lon-
ger straightforward. The maximal effective punishment that could be imposed on
a seller s by a given buyer b depends on: (i) the outside option of the seller, and
(ii) the frequency of interaction between s and b. Both (i) and (ii) depend on the
entire network structure as well as on the strategies of all of the buyers and seller in
the market. To acheive tractability without directly constraining the set of networks
considered, we restrict attention to equilibria in which buyers and sellers use “trig-
ger strategies”.

DEFINITION 3: We say that buyer b and seller s that are connected in the network
use trigger strategies if there exists T € 7" such that when s and b meet they cooper-
ate as long as neither deviated in an interaction with the other in the last T periods,
and deviate otherwise.”"

DEFINITION 4: A strict trigger Nash equilibrium (STNE) is a strict Nash equilib-
rium in which all buyers and sellers employ trigger strategies.>”

2OThis follows from the Gale-Reyser Theorem (see Krause 1996), and (in our particular setting) Theorem 1.3
of Greenhill, McKay, and Wang (2006).

2f T = oo, a deviation effectively leads to the elimination of a link. By allowing T to be infinite we avoid
imposing any constraint on the memory of buyers and sellers. Our results remain the same if we restrict 7 to be finite.

22In a strict Nash equilibrium, all players play a strict best response.
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In the remainder of the paper, we focus on STNE unless stated otherwise.
Limiting attention to trigger strategies rules out equilibria involving two families of
strategies: (i) strategies in which a buyer b who is cheated by seller s responds by
modifying her behavior in meetings with other sellers; and (ii) strategies in which
a seller or a buyer respond to punishment spells between other buyers or sellers. As
a result, our analysis does not consider contagion, which is not realistic in the mar-
kets motivating this paper.”? Extending the analysis to a corresponding version of
subgame perfect equilibrium (SPE) complicates the analysis significantly, but does
not alter our results.*

Note that by definition, in any STNE, every buyer and seller that are connected
cooperate with each other. Thus, on the equilibrium path, periods are ex-ante identi-
cal. For each seller s and buyer b, let I},,(s,b) denote the indicator of the event that
s sold a good to b in period 7 in a STNE in network m. We note that (i) I},(s,b) is
fully determined by the realizations of who of the sellers are active in period ¢ and
of the order of meetings in period #; and (ii) ex-ante Pr(I4,(s,b)) is independent of
t. A “simple-minded” calculation of the per-period future value of the link (s,b)
for seller s is based on the difference in the probability of seller s selling a good in
period 7 in network m and in the network m\(s, 0).

(1) FVS,b(m) £ Z Pr(Iin(s,b’)) - Z Pr(lin\@’b)(s,b’)) (T = q).

b'eBy(m) b'eBy(m)\b

It is not at all obvious that we can extend the logic of Example 3 to claim that
seller s cooperates with buyer b as long as (J,/(1 — 4,)) - FV, ,(m) > IT". For exam-
ple, it is not clear that the best strategy of a seller s after deviating in an interaction
with buyer b is to always cooperate with all other buyers in B,\b. Moreover, even if
FV, ,(m) is a sufficient statistic for the existence of a STNE, Pr(/,(s, b)) is a com-
plex mathematical object, making it costly to compute and analyze FV, ,(m), both
for the modeler and for an expected utility maximizing seller s. In fact, given the
information set K, a direct calculation requires the computation of Pr(I5,(s,b)) for
each network m that is possible given the information of seller s, and then calculat-
ing the average over all such networks. Theorem 1 resolves this issue.

Consider a network m with a degree distribution g, and a seller s with degree d,.
Let b, € (Z")% be a sorted vector of the degrees of all buyers in B,(m). Now, let
T%m,s) denote the random depth —d tree such that the root r has degree d,, the
sorted vector of degrees of the children of ris by, all subsequent nonleaf nodes at an
even depth have a degree drawn i.i.d. according to g%, all subsequent nonleaf nodes
at an odd depth have a degree drawn i.i.d. according to g”. Let FV, ,(T>(m,s))
£ dhnolo FV, ,(T“(m,s)). Theorem 1 establishes that {FV, ,(T*(m,s))} ;. exist

23Section VIB discusses the implications of relaxing the assumption that payoffs are privately observed and
allowing for community enforcement.

24*Extending the analysis to a corresponding version of SPE requires an explicit assumption on whether buyers
and sellers can detect punishment spells between other buyers and sellers. The analysis goes through with SPE if we
assume that sellers and buyers do not update from the pattern of interaction about punishment spells in other parts
of the network. This assumption is especially reasonable in large networks, and given incomplete knowledge of the
network, private information of the payoffs, and random and unobserved order of interactions.
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and are sufficient statistics to determine whether there exists an STNE with a large
network m.

THEOREM 1: For any network m, {FV, ,(T>(m,s))}, <z exist. Moreover, let g be
any admissible degree distribution. Then, for any increasing sequence of networks
{m(n},g)}.=, there exists i such that for any i >1i a STNE with network m(n},g)
exists if and only if for every seller s and buyer b that are connected in m(nj,, g),

2) o (T (m(n)g).) > T

)

Theorem 1 implies that we can approximate the analysis of an STNE in any large
network by focusing on a simple auxiliary network—a random tree. The proof con-
sists of three main parts:

(i) In any network m, FV, ,(m) can be approximated by FV, ,(m"(s,m)) where
m* (s, m) is the subnetwork of m that consists of the links that are at a distance of
no more than some constant A (independent of the size of the network m) from
seller s in m (and only those links). This step holds for any network structure
and is therefore independent of our informational assumptions (Assumptions 1
and 2). Intuitively, the random order of meetings in every period implies that
links that are “far” from seller s in the network have only a small impact on the
probability that seller s trades with any buyer b. This is because a link (s’,5")
can influence the trade between s and b only if (i) (s,0") is chosen before (s,b),
and (ii) there exists at least one path connecting (s',0") and (s,b) such that all
of the links along the path are chosen before (s,b) and after (s',b"). The prob-
ability of (ii) is decreasing in the length of the aforementioned path.

(ii) Consider a large network m that is chosen u.a.r. conditional on an admis-
sible degree distribution. Then (asymptotically on the size of the network)
for any fixed A, the distribution ruling the shape of the local neighborhood of
any seller s (m*(s,m)) converges to the underlying distribution of a random
tree of the same depth (A) as the local neighborhood considered. This step
relies on the requirement that the degree distribution has finite support.

(iii) Inany tree (not necessarily random), eliminating one of a seller’s links weakly
increases the future values of her remaining links. Consider a tree T and a
seller s who is connected to buyers b and b’ (and maybe some additional buy-
ers). Then, FV, ,(T) < FV, ,(T\(s,#")). Intuitively, the tree structure implies
that the only connections between two links (s, ) and (s,5") is via seller s. As
a result, having less links affects the future values of remaining links only by
decreasing the outside option of the seller.

Combining (i) and (ii) allows us to focus in our analysis on random trees. Given the
focus on a tree structure, (iii) implies a one-deviation principle. The complete proof
of Theorem 1 makes use of recent results by FG and is deferred to Appendix A.
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We now take a closer look at the implications of Theorem 1. Consider a network
m with a degree distribution g, and a link (s,b) € E. Let T“(m,s,b) denote the ran-
dom depth—d tree such that the root r has degree 1, the degree of the only child of r
is d,,, all subsequent nonleaf nodes at an even depth have a degree drawn i.i.d. from
g%, all subsequent nonleaf nodes at an odd depth have a degree drawn i.i.d. from g%.
In words, T“(m, s,b) is constructed in the same way as the subtree of 7(m, s) that
results from disconnecting all buyers (except from b) from seller s. In the context of
the bigger network 7(m, 5), Pr(!d(m,, »)(s, b)) captures the probability that seller s
has the ability to produce a high quality good, and buyer b does not purchase a good
before meeting seller s. Then, the future value of a link in a random tree T%(m, s)
can be rewritten as

(3) FVs,b(Td(m’s)) = (7T - cs) ’ Pr(ltTd(m,s,b)(s’b))
’ Hb'eBs\b[l - % : Pr(Ile(m,s,h/)(S’b/))]‘

With respect to 7“(m, 5), the expression

(4) Pr(I[Td(m,s,b)(S’b)) ' Hb/EBs\b[l - % ) Pr(ItTd(m,s,b/)(s’b,))]

captures the probability that in period ¢, seller s has the ability to produce high qual-
ity good, AND buyer » has demand for a good when he meets seller s, AND no other
buyer b’ € B\b has demand when their link with seller s is chosen. Thus, seller s
sells a good if she is connected to b, but would not have been able to sell a good had
she not been connected to buyer b. The simple expression is due to the tree structure
that guarantees the independence of {I Td(m,5,5)(S, b)}b B, of each other. Moreover,
for every seller s and buyer b’ € B,, the tree structure and the independence of the
degrees across subtrees guarantee that comparative statics over Pr(l Td(m,5,b)(S> b))
are governed by the following simple graph-theoretic rule.

LEMMA 1: Suppose that for all d > 1, the random tree T4 = T“(m,s,b) can be
constructed (on the same probability space) from the random tree T¢ = T“(m’,s",b")
by performing only the two operations: 1. appending (as children) subtrees to
seller nodes in an arbitrary way, and 2. removing (as children) subtrees from
buyer nodes in an arbitrary way. Then the probability that seller s sells to
buyer b in a given period in T$ is at least as big as the equivalent probability in
Ti(Pr(I'd(s,b)) > Pr(I44(s,b))).

Note that any change to the degree of a node in the network can be captured by
appending or removing subtrees from the corresponding random tree. E.g., append-
ing (as children) subtrees to seller nodes in the corresponding random tree can cap-
ture: (i) adding a link between s and some buyer; and/or (ii) increasing the degree
distribution of sellers in the network as a whole. Lemma 1 shows that the effects of
(i) and (ii) on Pr(/74m ; »(s,b)) are qualitatively the same. Given Theorem 1 and
equation (3) this simplifies the analysis of the effect of the same changes to the net-
works structure on sellers’ incentives to cooperate.
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T

FIGURE 3.

Notes: The tree T, can be constructed from T, by appending (as a child) the subtree rooted at b’ to the seller node
s". Similarly, T can be constructed from T, (or from T,) by removing (as a child) the subtree rooted at s’ from the
buyer node b. It is easy to verify that the probability that seller s sells to buyer b in a given period is larger in T4 than
in T, and larger in T, than in T}, i.e., Pr(I'yy(s, b)) > Pr(I',(s, b)) > Pr(I’y,(s,b)).

Consider a seller s that is connected only to one buyer b and is at the root of a tree
T’. Lemma 1 implies that eliminating any seller s’ # s from the tree weakly increases
the probability that s sells a good in any period, and that eliminating any buyer b from
the tree weakly decreases the probability that s sells a good in any period.
provides an example.

In the following section, we rely on Theorem 1 and Lemma 1 to characterize the
set of networks for which STNE exist in terms of economically meaningful network
parameters such as degree distribution and segregation.

IV. Network Structure and Cooperation

We now examine the relationship between the structure of network m and
FV, ,(T>(m,s)). A higher FV, ,(T>(m,s)) implies more cooperation in a large net-
work m in two ways: (i) holding the immediate payoff from deviation (ﬁs) fixed,
a higher FV, ,(T>(m,s)) means that a lower discount factor (d;) is sufficient to
support sustained cooperation on the link (s,5), and (ii) holding 4, fixed, a higher
FV, ,(T>*(m,s)) implies that cooperation can be sustained over the link (s,b) even
if IT is higher. We relate our results to the level of competition between sellers in m,
the density of m, and the level of segregation exhibited by m. All proofs are deferred
to Appendix A.

A. Competition: The Relative Degrees of Buyers and Sellers

Competition is imbalanced if many sellers with low degrees are connected to
buyers with high degrees (fierce and imbalanced competition), or if sellers with high
degrees are connected to many buyers with low degrees (weak and imbalanced com-
petition). Competition is moderate and balanced if buyers and sellers have degrees
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that are similar and not too large. We find that the future values of links are highest
in networks that exihibit moderate and balanced competition.

To see why, first note that in a given network m, FV, ,,(Too(m,s)) is lower for
links in which the buyer (seller) has a high degree than for links in which the buyer
(seller) has a low degree, i.e., each link is more valuable the fewer outside options
both sides of the link have. For example, in Figure 1B, sellers s and s" have identical
information sets with the only exception that seller s’ is connected to one less buyer.
Then, FV,,(T™(m,s")) > FV, ,(T>(m,s)). Intuitively, seller s has connections to
buyers with the same degrees as the buyers that s’ is connected to and is also con-
nected to an additional buyer. As a result, s has a better outside option in the case
that buyer b does not purchase the good from her (compared with the outside option
of seller s" in case that buyer b does not purchase the good from her). Similarly,
consider a seller s who is connected to two buyers. Seller s has a higher value for
the link with the buyer that has the lower degree of the two. This is because seller
s expects fewer periods with demand from the buyer with the higher degree than
periods with demand from the buyer with the lower degree (see Proposition 1 in
Appendix B for details).

On the other hand, if the degrees of buyers in B,\b are large, s is more likely to
need buyer b in order to make a sale in period ¢. For example, in Figure 1A, if we
add a connection between buyer b and some seller s’ that we add to the figure, the
connection (s,b) becomes less valuable, whereas the connection (s,b") becomes
more valuable. This example, which is generalized in Proposition 2 in Appendix B,
captures the positive externality of links: if dj,; > d,, seller s’ expects less periods
with demand from b than seller s expects periods with demand from b,. As a result,
s" (more than s) is likely to need her other connections in order to sell the good.

Theorem 1 and Lemma 1 also allow us to evaluate the effect of differences in the
degree distribution across networks. Consider the minimal value of any link of seller
s as defined by

() EV,(m) = min{FV,,(T>(m,s))}.

Recall that if d, is large, FV, ,(T>(m,s)) is small. This is mitigated if for every
b' € B\b, d, is also very large. Thus, networks in which buyers have “similar”
degrees have a larger {FV (m)}__..

More generally, consider two networks m and m with degree distributions g and g
respectively. Suppose that g” first order stocastically dominates (FOSD) g” and g°

FOSD gS , and consider two sellers s € m and § € m with identical local neighbor-
hoods, so that the only difference between their information sets (K, and Kj;) is the
difference in the degree distributions g and g. Theorem 2 shows that (i) if s and § are
connected to many buyers (large d, and d;) then the fact that sellers are overall more
connected, and buyers are overall less connected in m relative to m, implies that
seller § has higher incentives to cooperate relative to seller s; and (ii) if s and § are
connected to a small number of buyers (small d; and d;), then the same difference in
degree distributions implies that seller § has lower incentives to cooperate relative
to seller s. The differences in degree distribution that are analyzed in Theorem 2 are

illustrated in
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FIGURE 4.

Notes: In networks m;, m,, and m; above, the broken lines represent links to buyers and sellers that are not in the
diagram. Counting only the buyers and sellers in the figure, g5 FOSD g7 and g5 FOSD g%. At the same time, sellers
51,85, and s3 have identical local neighborhoods.

THEOREM 2: Let g® FOSD g®, and g° FOSD g°, and let m = (S,B,E) and m
= (S,B,E) be two networks with degree distributions g and g respectively. Consider
sellers s € S and § € S with identical local neighborhoods (equal degrees, d; = d,,
and identical vectors of neighbors’ degrees, {d}jcp. = {d}}yc,). Then, there exist
thresholds d,(m,m) and d,(m,m), such that

(1) if the degrees of s and § are below d,, then FV(T>(m,$)) < FV(T>(m,s)),
and

(2) if the degrees of s and § are above d,, then FV(T>(m, $)) > FV(T>(m,s)).

If g5 FOSD g5, the aggregate demand per seller in network m is larger than
in m. This difference in effective demand affects the difference between the
probability that § gets an opportunity to sell to b (Pr( T 5.5) (5, b))), and the prob-
ability that s gets an opportunity to sell to b Pr(1 Td(m, 5,5)(S> b))) In particular,
Pr(I%dim s »)(5,b)) > Pr(I7du 5 1(5,b)), and generically the inequality is strict. This
is true even if the local environments around (s,b) and around ($,b) are identical.

The difference between Pr(17dqy, , 4)(s. b)) and Pr(I74.; 5 7)(S,b)) affects the value
of links in two ways: (i) s has a better outside option than § in case one of her links
is lost; and (ii) s has higher frequency of interactions with each one of the buyers
connected to her. If sellers s and § are connected to many buyers, outside options
are affected strongly by the difference in degree distributions, and (i) dominates.
Consequently, seller s has lower values of links because she is very likely to sell
even if she had less connections. On the other hand, if sellers s and § have only few
connections (e.g., suppose that each is connected to only one buyer), the outside
option is hardly affected by the degree distribution. However, the frequency of inter-
actions is affected and (ii) dominates. The impact of differences in buyers’ degree
distributions follow a similar logic.

Summarizing our results so far, a network admits a STNE if: (i) buyers have
degrees that are similar enough, (ii) sellers have degrees that are similar enough, and
(iii) buyers’ degrees are not too small or too large relative to those of the sellers that
are connected to them. An immediate implication is that there exists a “bliss point”



48 AMERICAN ECONOMIC JOURNAL: MICROECONOMICS FEBRUARY 2012

An increase from a future A decrease in links value

Sellers value of 0 per link (when the when the probability of
marginal link is not needed) interaction with a given
to a positive value buyer becomes small

—_— _—

Buyers ; )

FIGURE 5.

Notes: When d” is low (e.g., the leftmost network), each of the buyers connected to a seller is likely to have demand
when meeting the seller, and the seller is likely to sell even if she has fewer connections. Raising d” a little decreases
the probability of a sale and the seller needs more connections. However, a drastic increase in d” reduces the fre-
quency with which a seller interacts with each buyer and the value of each link decreases.

to the ratio of buyers to sellers in any small neighborhood in the network, as well
as in the network as a whole. We interpret our results in this section as suggesting
that networks that exhibit moderate and balanced competition support a STNE for
a large range of discount factors. The following example illustrates our interpreta-
tion by considering simple networks in which all sellers have the same degrees
and production costs, and all buyers have the same degrees. In this special case, if
buyers have degrees that are very small, or very large, relative to the degrees of sell-
ers, the future values of links are low. Example 4 is generalized in Proposition 3 in
Appendix B.

Example 4 (semi-regular networks):

Let ¢, = ¢ for every s € S, and consider a network m in which all buyers have
degree d” and all sellers have degree d°. Thus, the values of all of the links in m are
identical (i.e., for every (s,b),(s',b") € E, FV, ,(T>(m,s)) = FV,,(T>(m,s"))).
Denote this value by FV'(d” d®). As illustrated i for every sellers’ degree
d? there is a closed interval of values of d” that maximizes FV(d”,d®) and supports
cooperation for the lowest feasible discount factor given d°.

This section shows that networks which facilitate moderate and balanced competi-
tion are better in sustaining cooperation.” Consequently, one might expect to find
moderate and balanced competition in networked markets that manage to rely on bilat-
eral cooperation. In the following section, we show that the need to enforce coopera-
tion may also constrain (or be constrained by) the overall connectivity in a network.

B. Connectivity: Network Density

Changes in observed patterns of trade are often attributed to corresponding
changes in trade opportunities, which are in turn influenced by processes of mod-
ernization that reduce the costs of communication and transportation.”d We now

>5In a related work on competition and seller’s reputation in an environment with price competition and no
network, Bar-Isaac (2005) finds that competition can both aid and hinder reputation for quality.
26See Watts (2003) for a nontechnical survey.
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evaluate whether such changes are consistent with sustaining cooperation. A nega-
tive result will imply that in an environment with moral hazard one should expect
to observe such changes to a lesser extent in a network plotted based on data of
the patterns of trade compared with a network plotted based on data of patterns
of accessibility or acquaintances.

We consider two changes suggested in the literature: first, an increase in the
degrees of agents in the network, often attributed to a reduction in the costs of cre-
ating and sustaining (trade) relationships. Second, a decrease in segregation, often
attributed to a decline in costs of sustaining (trade) relationships across geographi-
cally distant regions.”’

The effect of the first change is straightforward: if the degrees of buyers and sell-
ers are “too” large, cooperation becomes impossible to sustain, even with moderate
and balanced competition. Intuitively, the pivotal probability that seller s manages
to sell to a specific buyer b, but would not have managed to sell to any other buyer,
is negligible when sellers and buyers have many connections.

THEOREM 3: Let m(c,D) be some network in which minyd{d,}=D and
mindd,} = « - D. For every «, p, and FV > 0 there exist D(«, i) such that if D >
D then

(6) min {FV, ,(T*(m(a,D),s))} < FV.
(s,b)eE
As Theorem 3 reveals, a major value-creating role of the network is to provide
coordination and specify who cooperates with whom. This necessary coordination
is lost when sellers and buyers have many links. When anyone can potentially coop-
erate with everyone else, the value of a cooperating partner goes down, as each
partner has only a small influence on outcomes.

C. Beyond the Degrees: Community Size and Segregation

We now show that, holding all else equal, the ability to define small communities
according to real (e.g., geographic) or artificial boundaries may increase the future
values of links and improve the ability to sustain cooperation. Deriving this result
requires extending our model to allow sellers and buyers to know more about their
environment. Clearly, if sellers and buyers know that the network is divided to small
communities their beliefs might be such that their incentives to cooperated cannot
be approximated by the analysis of the corresponding random tree. Fortunately, we
can compare the values of links in segregated versus in tree-like networks. Given our
approximation result this maps to a comparison between networks that are known to
be segregated and networks that are not.

For simplicity, let ¢, = ¢ and let d, = d®, and d), = d® for every seller s and buyer
b throughout this section.”® We extend our analysis to consider networks that are

%7See also Rosenblat and Mobius (2004).
28 Considering more general degree distributions requires putting additional structure in order to define segrega-
tion properly.
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FIGURE 6.

Notes: If seller s is informed that ¥ = 1, she knows that some seller s’ is connected both to buyer b and to b". Thus,
seller s knows that there is perfect overlap between B, and B and between S, and S}. If seller s is informed that
WU — 00, Theorem 1 applies. Thus, seller s behaves as if she knows that apart from herself there is no other seller to
w