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Abstract

We present a model of repeated games in large two-sided networks between clients
and agents in the presence of reputation networks via which clients share information
about past transactions. The model allows us to characterize cooperation networks -
networks in which each agent cooperates with every client that is connected to her. To
this end, we show that: [1] the incentives of an agent a to cooperate depend only on
her beliefs with respect to her local neighborhood - a subnetwork that includes agent
a and is of a size that is independent of the size of the entire network; and [2] when an
agent a observes the network structure only partially, the incentives of a to cooperate
can be calculated as if the network was a random tree with agent a at its root. Our
characterization sheds light on the welfare costs of relying only on repeated interactions
for sustaining cooperation, and on how to mitigate such costs.

Keywords: Networks, trust, graph theory, repeated games.

1 Introduction

In many markets, successful execution of mutually bene�cial economic transactions relies on

informal contracts that are enforced by social pressure and reputation.1 Informal enforcement
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1Macaulay (1963) points out that social pressure and reputation are perhaps more widely used than
formal contracts and enforcement.
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mechanisms include personal and community enforcement mechanisms.2 It is by now widely

recognized that when transactions between two parties are su¢ ciently frequent, personal

enforcement is highly e¤ective.3 Community enforcement can overcome the limitations of

personal enforcement when transactions between two parties are infrequent, yet transactions

in the population are frequent. In large markets, community enforcement is e¤ective if third-

party observability is available.4 However, despite the abundance of research on repeated

games and community enforcement, the frequency of interactions, as well as the level of third-

party observability are mostly treated as �black boxes�or modeled for highly specialized cases.

For example, in much of the literature, either any two parties interact in every period or

random matching is assumed. In contrast, it is well known that in many two-sided markets

with buyers and sellers, or investors and entrepreneurs, each "client" has access to a di¤erent

subset of the "agents" in the market, and chooses to interact with even a smaller subset.

Moreover, each client often learns about the outcomes of a di¤erent subset of the interactions

in the market.5

To address these issues, we develop a model of repeated interactions in networked markets

with clients and agents. Consider groups of agents and clients, each with limited capacities.

Initially, each client can interact with (e.g. purchase a good from, or make a loan to) only

a subset of agents to whom he is connected. The initial connections between clients and

agents de�ne a two-sided interaction network G0. Clients can also decide to eliminate their

connections with agents who they do not trust. As a result, the interaction network may

evolve over time. In every period, agents meet sequentially with clients who are connected

to them and decide whether to cooperate or defect. The interaction outcome between an

agent a and a client c is observable to a subset of the clients (including c); such clients

are said to be connected to client c. The connections between clients de�ne a reputation

network R that captures the level of third-party observability in the market. The combined

2In personal enforcement mechanisms cheating triggers retaliation by the victim, whereas in community
enforcement mechanisms dishonest behavior against one partner causes sanctions by several members in the
society.

3For a good survey on long term relationships see Mailath and Samuelson (2006).
4See Kandori (1992), Greif (1993), and Ellison (1994).
5The economic literature o¤ers extensive evidence for the presence of networks of cooperation and trust

within markets. For example, see Fafchamps (1996), McMillan and Woodru¤ (1999), Hardle and Kirman
(1995), Kirman and Vriend (2000), Weisbuch et al. (1996), and Karlan et al. (2009).
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network, N = (G;R) captures the market structure. We then ask the following questions

for any �xed level of agents�patience: what structures of the network N can be sustained

inde�nitely in equilibria in which all interactions end in cooperation? For what structures

of the interaction network G there exists a reputation network R such that N = (G;R)

can be sustained inde�nitely and allows for an equilibrium with full cooperation? What is

the optimal network structure that allows for the maximal number of mutually bene�cial

interactions, and can we do better with formal contracts? The answers de�ne a set of network

in which a connection between client c and agent a has the meaning that c is able and willing

to interact with a, and that a always cooperates with c.

Analyzing a model of repeated games in networks poses several di¢ culties. In particular,

the incentives of an agent to cooperate depend on the entire network structure, as well as

on the strategies of all clients and agents in the market. This problem is exacerbated when

the interaction network evolves over time and when the reputation network may be di¤erent

from the interaction network. Another source of di¢ culty is that each agent can serve a

limited number of clients in every period, and each client has demand for a limited number

of services in every period. This implies that even on the path of a cooperative equilibrium,

the future payo¤ of an agent depends on the entire network structure (as opposed to only

the o¤ path payo¤). We alleviate these di¢ culties in two steps.

At the core of our methodological contribution is a new method for reducing questions

about the global properties of a network (e.g. characterizing payo¤s that depend on the

entire network) to questions about the local properties of the network. This allows us to

provide conditions under which the incentives of an agent a to cooperate with client c depend

only on her beliefs with respect to her local neighborhood - a subnetwork that includes agent

a and is of a size that is independent of the size of the entire network (Theorem 1). Thus, we

are able to analyze large networks as if they were small. To derive these �local conditions�we

make use of recent results in the graph theory literature by Gamarnik and Goldberg (2010) -

hereby GG - who study a simple matching algorithm and ask the following question: �When

does the performance of the algorithm depend only on the local properties of the network?�

By relating our market dynamics to the dynamics of the same algorithm, we are able to use

3



the tools developed in GG to analyze market equilibria.6

A second step along the same lines proposes a natural model of beliefs over the network

structure that captures the idea that: [1] there is a strong random component in the forma-

tion of networks, and [2] each agent (client) knows more about her immediate neighborhood

than about the rest of the network. For this model of beliefs, we prove that if the network N

is large and all other agents always cooperate, then the incentives of agent a to cooperate in

N can be approximated by the incentives of a to cooperate in a simpler network - a random

tree with known distributions over the numbers of connections of clients and agents in the

network. The approximation improves as the network grows and the error goes asymptot-

ically to zero (Theorem 2). This result is based on a key graph theoretic lemma that we

prove: consider a large bipartite graph G that is chosen uniformly at random (u.a.r.) condi-

tional on the (�nite support) distributions of the number of links attached to nodes in the

graph, then G is asymptotically locally like a random tree (Lemma 3). Although results of a

similar �avor are known in the random-graph community (see Wormald 1999 and references

therein), they have not received attention in the economics literature.7

We focus on equilibria in ostracizing strategies: on the equilibrium path, agents always

cooperate and clients cut their links with (and only with) agents who they observe to defect.

Using our random tree characterization, we provide conditions under which an asymptoti-

cally large network N can be sustained inde�nitely and facilitate cooperation in all of the

interactions in the network. As expected, we �nd that adding a large number of links to

a reputation network R increases the set of interaction networks G that can be sustained

inde�nitely and facilitate full cooperation (Proposition 1). When R is su¢ ciently dense we

�nd that networks in which there are fewer agents, each having more connections (in G),

and more clients, each having fewer connections (in G), can be sustained inde�nitely and

6The question of when the global properties of a graph are determined by the graph�s local structure
(a.k.a. a decay of correlation phenomenon) has a long history in the graph theory literature. E.g. Lauer
and Wormald (2007) and Goring et al. (2009) study localization phenomenon for greedy algorithms, and
Bayati et al. (2007) study the correlation decay phenomenon for the matchings of a graph. We also note
that several recent works study related questions pertaining to when an (approximate) Nash equilibrium can
be computed in a distributed / local manner using the tools of correlation decay, see e.g. Weber (2010) and
Kanoria et al. (2010).

7An exception is Campbell (2011) who applies percolation theory (physics) to the study of monopoly
pricing in the presence of WOM. This is related because percolation theory relies on insights that are
directly related to the claim we prove in Lemma 3.
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facilitate cooperation for a larger set of discount factors (Proposition 2). The implications

of the latter are quite surprising. Consider an agent a and an agent a0 that are parts of

networks N and N 0 respectively. Suppose further that the immediate neighborhoods of a

and a0 are identical �i.e. they are connected to the same numbers of clients, each connected

to the same number of agents. Now assume that the distribution of the numbers of connec-

tions in N and N 0 are such that agents (clients) are more (less) connected in N than in N 0.

Then, the expected on path payo¤ of a is higher than of a0, and if the reputation network is

su¢ ciently dense then the incentives of a to cooperate are stronger than the incentives of a0

to cooperate.

Finally, we show that a su¢ ciently dense reputation network R guarantees that the

fraction of interactions lost due to the incentive constraints goes to zero as the size of the

market grows to in�nity (Corollary 2). This is despite the fact that the optimal network

that facilitates full cooperation achieves only a fraction (< 1) of the number of interactions

that formal contracts could achieve in any �nite market with signi�cantly more agents than

clients - a fact that is driven by the observation that in every network that facilitates full

cooperation some agents are permanently excluded from the market.

Networks have been used to model market structure in many recent works in economics

(see Jackson 2008 and Goyal 2007 for extensive surveys). When considering games in net-

works, much of the previous work analyzes static network games (e.g. Galeotti et al. 2010,

Ballester et al. 2006, and Bramoullé, D�Amours, and Kranton 2010). In static network

games a player�s payo¤ depends only on the actions taken by her immediate neighbors. As

a result, beliefs on the network structure are used by a player only to establish a prior over

the actions that her neighbors will take, and Galeotti et al. (2010) �nd that assuming that a

player has incomplete knowledge of the network structure simpli�es the analysis. In contrast,

in our framework, due to the dynamic nature of the interactions and the limited capacities,

an agent�s incentives to cooperate generally depend on the entire network structure and on

the actions taken by all of the clients and agents in the network. In large markets this makes

the problem prohibitively complex, and prior to establishing Lemma 3 there was no reason to

expect that assuming incomplete knowledge of the network structure simplify the problem.

In fact, one would expect that an agent who has incomplete knowledge of the network is
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required to compute her incentives in every network that has positive probability according

to her prior.

This paper is also related to recent developments in the study of repeated games in

networks (see Vega-Redondo 2006, Kinateder 2008, Lippert and Spagnolo 2006, Mihm et al.

2009, Jackson et al. 2011, Ali and Miller 2012, and Nava and Piccione 2012) and to the

literature on trust and social collateral (see Karlan et al. 2009). An important di¤erence

from this literature is that we separate the analysis of the trade network from that of the

communication network and allow both to vary in economically meaningful ways.

We note that the source and degree of third-party observability among traders in real-

world markets varies widely across contexts.8 We propose our notion of a reputation network

as a reduce form that captures Word-Of-Mouth, reputation systems, or any other form of

observability. A similar approach is taken by Balmaceda and Escobar (2011) who study a

related enforcement problem in a market with one agent and many clients. They ask what

reputation networks can sustain cooperation by the agent with all of the clients.

Finally, an application of the methodology developed in this paper can be found in Fain-

messer (2012a). In particular, Fainmesser (2012a) characterizes the patterns of interactions

in markets with buyers and sellers of experience goods in which third-party observability

is nonexistent (in the language of our model: R is the empty reputation network), such

as markets in which strategic considerations prevent the di¤usion of information. In such

markets, incentives for the provision of high quality goods require that networks be sparse

and that there is a similar number of buyers and sellers with similar (and low) degrees.

We present a more general framework and �nd that the limits on cooperation under any

patterns of third-party observability are di¤erent. In particular, we are able to show that in

the presence of third-party observability, dense networks facilitate cooperation better. The

comparison between the results in the two papers provides insights on the limits of coopera-

tion and on the types of ine¢ ciencies that can (and those that cannot) be circumvented by

improving observability in a market.

The following section o¤ers two motivating examples. Section 3 follows with a model of

a networked market, and the notion of a Totally Cooperative strict Bayes-Nash Equilibrium

8See also Esfahani and Salehi-Isfahani (1989) and Banerjee and Newman (1993).
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with Ostracizing strategies (TCEO) is de�ned in section 4. In section 5, we derive our �rst

main result and provide conditions under which the incentives of an agent to cooperate

depend only on her local network structure. In section 6 we propose a speci�c model of

beliefs with respect to the network structure, and in section 7 we characterize the structure

of cooperation networks in this model. The welfare implications of our results are derived

in section 8. Section 9 o¤ers a discussion of the main methodological contributions of the

paper, and suggests additional economic implications. Section 10 o¤ers concluding remarks.

2 Motivating examples

To motivate our analysis, we brie�y describe two examples of relevant applications.

Investors and entrepreneurs Consider a group of investors and a group of entrepre-

neurs who come up with risky investment opportunities over time. To realize her investment

opportunity, an entrepreneur needs to take a loan which she might not be able to repay if the

investment does not succeed. The realization of the investment is observable to the investor,

but at the same time, the realization of the investment may not be veri�able, and the entre-

preneur can choose to strategically default on her loan (see also Fainmesser 2012c). It is also

reasonable to assume that entrepreneurs have a limited number of investment opportunities

to o¤er, and investors have liquidity constraints. As a result, the patterns of interactions

between investors and entrepreneurs play an important role: if the frequency of interactions

between an investor and an entrepreneur is high enough, and if the outside option for the

entrepreneur is low enough, a threat of punishment from the investor alone may provide the

entrepreneur with the incentives to never strategically default on a loan. Otherwise, if in-

vestors have a way to share information credibly, or if strategic default is observable by other

investors, a threat of ostracizing a defaulting entrepreneur may help to provide the appro-

priate incentives. In this paper we study the relationship between the observability network

and the lending network between investors and entrepreneurs in enforcing repayment.

Experience goods Consider a group of buyers and a group of sellers of experience

goods (e.g. services). A seller can decide whether to supply high or low quality goods, and
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may even provide some buyers with high quality goods and other with low (see also Kirman

and Vriend 2000 and Fainmesser 2012a). If providing high quality goods costs more than

providing low quality, then in the absence of su¢ cient future payo¤s that are contingent on

providing high quality, a seller may provide low quality. This paper studies an environment

with many sellers and many buyers, and consider the possibility that sellers and buyers might

not have complete knowledge of the patterns of interaction in the market.

3 The model

Consider a market with a set of clients C � f1; 2; :::; ncg and a set of agents A � f1; 2; :::; nag.

Time is discrete (t = 1; 2; :::;1). Clients and agents live forever and have a common discount

factor �. In a given period, each client (agent) has the capacity to engage with one agent

(client) in the following simple trust-based interaction with an outcome that depends only

on the action of the agent. If the agent defects, the agent has a positive payo¤ of � and the

client has a negative payo¤ of �'. If the agent cooperates, the agent has a positive (but

lower) payo¤ of � � 
 and the client has a positive payo¤ of � for some � > 
. If a client

(agent) does not engage in any interaction in a given period, her payo¤ is zero.

Figure 1: a trust-based interaction.

3.1 Interaction networks

The patterns of interaction in the market (i.e. which client interacts with which agent in

every period) are determined by exogenous factors (i.e. which agents each client is able to

interacts with) as well as clients�decision (which agents each client trusts). More speci�cally,
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in any period t, clients and agents are connected via a two-sided network of connections

between clients and agents. Intuitively, a connection between a client and an agent implies

that the client is able and willing to interact with the agent. We �rst introduce the notion

of a network and then make the economic notion of a connection more precise by describing

the patterns of interactions in the market given a network, as well as rules governing the

evolution of the network structure over time. We conclude this section with a discussion of

the assumptions imposed by the structure of the game.

We model the network using a bipartite graph Gt = hC;A;Eti where Et � C�A is a set

of client-agent pairs such that (c; a) 2 Et if and only if there is an edge (or link) connecting

client c and agent a in period t. We omit the superscript t when clear from the context. A

node is an individual (client or agent) in the graph. A path of length l in G between node v

and node v0 is a sequence of edges f(v0; v1) ; (v1; v2) ; :::; (vl�1; vl)g such that v0 = v, vl = v0,

and for every i 2 f1; 2; ::; lg, (vi�1; vi) 2 G. We say that the distance between v and v0 in G

is l if the length of the shortest path between node v and node v0 in G equals l. For a given

node v, let N1(v) be the set of nodes connected to v, let dv � jN1 (v)j denote the degree

(number of neighbors) of v in G. Similarly, let N2(v) denote the set that includes the set of

nodes in N1(v) as well as the set of nodes connected to the nodes in N1(v). More generally,

a node v0 is in Nd(v) if and only if the distance in G between v and v0 does not exceed d. A

cycle is a path f(v0; v1) ; (v1; v2) ; :::; (vl�1; vl)g such that v0 = vl. A graph that has no cycle is

also called a tree. A rooted tree is a tree in which one node is marked as the root. A node in

a tree is called a leaf if its degree equals 1. The depth of a rooted tree is the largest distance

between the root and any of the leafs in the tree. A node v is called a child of a node v0 in

a rooted tree if v and v0 are connected AND v is at a larger distance from the root than v0.

We now describe the patterns of interaction given a network. We defer the discussion

of what clients and agents observe with respect to the outcomes of bilateral interactions in

the market and with respect to the network structure to sections 3.2 and 3.3 respectively.

During period t, all connected clients and agents meet at a random sequencing �all of the

links in Et are ordered uniformly at random (u.a.r.) and then the links are chosen one by

one according to that order.9 When a link (c; a) is chosen, c and a meet and engage in

9Our analysis is independent of whether clients and agents learn the order after it is chosen.
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the aforementioned trust-based interaction unless either c or a has already interacted (with

anyone else) during the same period.

The network evolves over time in the following way. Before period 1, there is an initial

network G0. Subsequently, at the beginning of any period t, before any interaction takes

place, clients make simultaneously the following decision: each client decides which of his

connections (edges) he keeps and which connections he deletes permanently �the resulting

network is Gt. Thus, clients can decide who they interact with by a¤ecting the structure of

the network, i.e. by deciding who they trust.

Several restrictions are imposed on the patterns of interaction by the structure of the

game. First, an agent cannot decline an interaction, but rather only cooperate or defect.

Allowing agents to refuse an interaction increases the complexity of the analysis without

adding much insight. More speci�cally, there can be two reasons for an agent to refuse

to interact: [1] in order to meet a client who she is planning to cheat; or [2] as a part of

a collusive strategy with other agents. The earlier changes the timing of cheating, rather

than introduce a new set of networks that can sustain permanent cooperation. The latter is

unreasonable in our setup due to the large numbers of clients and agents and the incomplete

knowledge of the network that we discuss below.

Second, we do not consider the formation of new links, but only the dissolution of links.

This embodies the idea that the formation of new relationships is a longer-term process, and

that the decision to cooperate and/or punish an agent (by disconnecting a trust relationship)

can be taken more quickly (see Jackson et al. 2011 for a similar assumption in the context

of favor exchange, as well as Fainmesser 2012c for a similar assumption in the context of

�nancial lending networks). It is important to note that we do cover the case where the

market starts with the initial network G0 being the complete network as well as any other

network, so we do not a priori restrict the links that might be formed, and so our results

do make predictions about which networks can be sustained in a market.10 The important

restriction is that an agent who has lost a relationship cannot (quickly) replace it with a

newly formed one.

In the same spirit, once a client disconnects from an agent the relationship cannot be

10In the complete network all of the clients are connected to all of the agents in the economy.
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revived. This captures the idea that trust is more easily broken than restored. When we

introduce the notion of reputation network below, it will become clear that this simpli�es

our analysis in that it eliminates complicated forms of punishment that take into account

the possibility that an agent defects in order to make sure that she meets certain clients

in the following period. Thus introducing via the back door the idea that an agent might

choose not to interact with a given client in a given period.

Finally, we did not discuss the formation of the initial network G0. Instead we take a

di¤erent approach; we consider any initial network and ask whether it can be sustained, and

sustain full cooperation inde�nitely.

3.2 Reputation networks

Each client has access to information about the outcomes of all of his past transactions, as

well as limited information about other clients�past transactions which he learns through

his reputation network (e.g. via Word-Of-Mouth, reputation systems, or other mechanisms

for third-party observability). Formally, there is a (reputation) graph R on the set of clients,

where edge (c; c0) is present in R if and only if client c is informed when any agent a defects

in an interaction with client c0. Without loss of generality, we assume that the graph R

is undirected (and thus (c; c0) 2 R if and only if (c0; c) 2 R). Let R(c; c0) denote the

indicator for whether or not (c; c0) 2 R. We also let NR
1 (c)

�
=
S
c0:R(c;c0)=1 c

0 denote the

set of clients whose past transactions client c observes (or is informed of credibly), and

EaR(c)
�
=
S
c02NR

1 (c)\N1(a)
(a; c0) denote the set of edges (in G) between agent a and clients who

observe past transactions of client c.

3.3 The network structure - knowledge and beliefs

We now develop a general framework of clients�and agents�beliefs about the network struc-

ture. Note that an individual�s global beliefs may be complicated, while her local beliefs may

be more tractable.11 Therefore, we require that our framework be �exible enough to allow

11By global beliefs, we generally refer to an individual�s beliefs about the potential interactions between
clients and agents separated from her in the network by a distance on the same order as the entire network.
By local beliefs, we generally refer to her beliefs about the potential interactions between clients and agents
separated from her in the network by a distance that is some small constant (e.g. 20) whose order is much
smaller than that of the entire network, which may be arbitrarily large.
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for the study of the relative importance of local and global beliefs in calculating clients�

and agents�expected payo¤s. Later we also suggest one particularly natural model in which

individuals have incomplete knowledge of the network structure and stochastic beliefs with

respect to their missing information.

Consider an individual v that can be a client or an agent. Individual v assigns some

probability distribution Dv on the set of all possible networks N , where a member of the

set N is speci�ed by a 2-vector N = (G;R) consisting of both an interaction graph G and a

reputation graph R. We call Dv a belief of individual v.

We now make the notion of local beliefs more formal. Recall that a node v0 is in Nd(v) if

and only if the length of the shortest path in G between v and v0 does not exceed d. For a

given belief Dv, we let Ddv denote the distribution induced by Dv on Nd(v). For example, if

Da (the belief of agent a) places probability 1 on the leftmost network in �gure 2, then D3a
would place probability 1 on the rightmost network in �gure 2.

c

a a’’

c’

a’

c’’
Clients

Agents
a’

c

a

c’

Figure 2: if Da places probability 1 on the leftmost network, then D3a would place probability
1 on the rightmost network.

Finally, for simplicity, we assume throughout that agents�beliefs are stationary, and that

agents do not update their beliefs on the network structure
�
fDaga2A

�
.12 While clearly

restrictive, we believe that the analysis of repeated games with �xed beliefs on the network

structure is an important �rst step and that our results are qualitatively robust. The analysis

of learning the network structure through repeated interactions is beyond the scope of this

paper and is left for future research.13 In addition, Fainmesser (2012a) proposes an example

of a network generating process in which small changes to the network structure over time

12Our analysis goes through without change regardless of whether clients update their beliefs or not.
13For a step in this direction, see Fainmesser (2012c) who studies repeated lending in �nancial networks

with intermediaries and derives an upper bound on players�knowledge of the network when players learn
about the network structure only from their �nancial interactions.
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prevent agents from learning the exact network structure beyond certain comparative statics.

A special case of the general framework that is consistent with the example in Fainmesser

(2012a) is the GF model presented in section 6.

4 Equilibrium

Much of the literature on community enforcement achieves folk theorems using strategies

that involve contagion.14 A contagion strategy is a strategy in which an individual that was

defaulted against defaults in all of her future interactions, regardless of the party with whom

she interacts. While raising signi�cant interest in the game theoretic literature, much of

empirical evidence from economics, social psychology, anthropology, and even biology points

towards the more common practice of ostracism.15 An ostracizing strategy requires any

individual that observes a defection to defect in future interactions with the initial defector.

Ostracism is especially appealing in the large two-sided markets that motivate this paper.

In such market, it is not clear what contagion entails, e.g. can a client spread contagion

by avoiding the market? On the other hand, ostracism is intuitive; if a client observes

a defection by an agent, the client stops to trust the agent and avoids interactions with

that agent. To this end, we focus on Totally Cooperative strict Bayes-Nash Equilibria with

Ostracism de�ned as follows.

De�nition 1 We say that client c uses ostracizing strategies if at any period t and for

any connection (c; a) 2 Et, client c eliminates (c; a) at the beginning of period t + 1 if and

only if agent a defected in period t in an interaction with c or with any client c0 who is

connected to c in the reputation network c0 2 NR
1 (c).

De�nition 2 ATotally Cooperative strict Bayes-Nash Equilibrium with Ostracism

(TCEO) is a strict Bayes-Nash equilibrium in which all clients employ ostracizing strategies

and all agents always cooperate.16

14See also Kandori (1992), Ellison (1994), and Ali and Miller (2012).
15See also Durkheim (1933), Gordon (1975), Francis (1985), Goodall (1986), Gruter and Masters (1986),

Lancaster (1986), Mahdi (1986), Greif (1993), Boehm (1999), Kurzban and Leary (2001), Williams (2001),
Gaspart and Seki (2003), Wiessner (2005), and Karlan et al. (2009).
16In a strict Nash equilibrium, all players play a strict best response.
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Focusing on TCEOs simpli�es the analysis. To see how, note that a strategy of an agent a

must specify the action taken by a in any period t in an interaction with any client c 2 N1 (a)

as a function of agent a�s beliefs with respect to the network structure (Da) and the entire

history of play observed by a. The history of play can in turn depend on the entire network

structure at any period � < t (fG�gt�1�=0 and R). Similarly, a strategy of a client c speci�es

the edges maintained by c at any period t as a function of client c�s beliefs with respect

to the network structure (Dc) and the entire history of play observed by c. On the other

hand, Lemma 1 implies that in a TCEO agent a�s best response depends only on a�s belief

with respect to the network structure (Da). Clients�best responses follow immediately from

agents�cooperation. Consequently, we can ask the following question: "Does a TCEO exist

in an economy with 
, �, �, and fDaga2A)?"

Consider an vectorm �
= (
; �; �; fDaga2A) and letma

�
= (
; �; �;Da) be such that Da puts

probability 1 on the network N = (G;R). Suppose that all agents a0 6= a always cooperate

and all clients use ostracizing strategies, and let ucoopN be the expected present discounted

value of all future payo¤ of agent a from the strategy "always cooperate." Similarly, let uN

be the expected present discounted value of all future payo¤ of agent a from her optimal

strategy. Now consider any belief Da and let EDa [u
coop
N ] and EDa [uN ] be the corresponding

expectation given Da. Finally, recall that for a network N = (G;R) and a set of edges E 0 of

G, N n E 0 denotes (G n E 0; R), and let

IC(ma)
�
= min

c s.t. Pr(c2N1(a)jDa)>0
�(EDa [u

coop
N ]� EDa [uNnEaR(c)])� 
;

and
IC(m)

�
= min

a2A
IC(ma):

The proof of Lemma 1 is deferred to Appendix B.

Lemma 1 (Incentives to Cooperate) In an economy that is consistent with the vector m =

(
; �; �; fDaga2A), there exists a TCEO in the economy if and only if IC(m) > 0.

Lemma 1 suggests that IC(ma) is the (su¢ cient statistic for the) Incentives of an

agent a to Cooperate with all of the clients connected to her, and that in a TCEO agent

a�s best response depends only on a�s belief with respect to the network structure (Da).

Nevertheless, computing the incentives of a seller to cooperate poses signi�cant challenges.
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The obvious di¢ culty is that EDa [uNnEaR(c)] depends on the optimal strategy of agent a

after deviating in an interaction with client c (when the underlying network is N n EaR(c)).

Moreover, even a direct computation of EDa [u
coop
N ] is very complex for any belief Da that

puts positive probability on large networks. The source of the di¢ culty is in evaluating the

probability that a given agent and a given client interact in a given period �a probability

that depends on the entire network structure even given simple cooperative strategies. In

the following sections we alleviate the di¢ culty in two stages. First, we derive conditions

under which EDa [u
coop
N ] and IC(ma) can be approximated by considering the structure of

only small parts of each of the networks that have positive probabilities under the belief Da.

Second, we propose a plausible belief structure (a mapping from a network structure to a

pro�le of agents�and clients�beliefs) such that IC(ma) can be calculated as if the network

was a simple-to-analyze network, i.e. a random tree.

Remark 1 De�nition 2 and Lemma 1 raise two related questions are worth discussing: [1]

what is the role of the real underlying network when best responses depend only on agents�

beliefs? And [2] how restrictive is the focus on TCEOs? Are there networks in which coop-

eration can be sustained using other strategies? The answer to the �rst question is in the

connection between the belief pro�le and the actual network structure. For now, we imposed

no such connection and our �rst main result (Theorem 1) holds for any connection (or dis-

connection) between the underlying network and the belief pro�le. In section 6 impose one

speci�c model of beliefs that ties down the connection between a network structure and the

corresponding belief pro�le. With respect to the second question, we note that in the most

general case, the focus on TCEOs is restrictive. However, an implication of Proposition 1 is

that if agents�s have su¢ cient (local) knowledge of the real reputation network (R) then the

largest set of initial networks (and corresponding beliefs) that can ever facilitate a TCEO is

identical to the largest set of networks that can facilitate full cooperation in any strict Nash

Equilibrium. Thus, the upper bound on the set of interaction networks that can be sustained

in equilibrium is not a¤ected by our focus on a ostracizing strategies. Since Nash equilibria

are more permissive than perfect Bayesian equilibria, our results provides also an upper bound

on the set of interaction networks that can be sustained in perfect Bayesian equilibrium.
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5 Cooperation based on local beliefs

Our �rst main result, which provides the foundation for later results, shows that whether

or not there exists a TCEO in an economy that is characterized by a given vector m is

asymptotically independent of the agents� global beliefs, and depends only on their local

beliefs. This is quite surprising, since the fact that we focus on networks with bounded

degree implies that the overwhelming majority of information about other clients and agents

is not included in any agent�s local beliefs.

Let deg(G) denote the maximum degree of any client or agent in network G. For a given

belief Da, let deg(Da) denote the supremum, over all networks G to which Da assigns strictly

positive probability, of deg(G).

Theorem 1 (Local Beliefs Theorem)For any � > 0 and � > 0, there exists a �nite constant

d = d(
; �; �;�; �) independent of the size of the entire network such that for any belief Da
satisfying deg(Da) � �,

��IC(
; �; �;Da)� IC(
; �; �;Dda)�� < �:
Theorem 1 implies that whenever we can make comparative statements about coopera-

tion under beliefs fDdaga2A, we can also make (asymptotic) comparative statements about

cooperation under beliefs fDaga2A.

Consider a special case in which agents have complete knowledge of the true underlying

network �i.e. consider a true network N , and for every a 2 A, let Da place probability 1 on

N . An implication of Theorem 1 is that whenever we can make comparative statements about

cooperation given the local neighborhoods of all agents (i.e. fNd (a)ga2A), we can also make

(asymptotic) comparative statements for the entire network N . This later interpretation

of Theorem 1 highlights that when an agent a determines whether or not to cooperate she

"discounts" links that are at a large distance from her and can asymptotically do as good

by considering only her local neighborhood.

The proof of Theorem 1 builds on recent developments in graph theory, and in particular

on GG who study randomized �greedy�algorithms for matchings in a graph, and the rela-
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tionship between the local and global properties of the set of matchings of a graph. We defer

the complete proof to Appendix B. Instead, we state the following key lemma that sheds

light on the intuition behind Theorem 1 as well as on the generality of the observation that

local beliefs are su¢ cient to predict outcomes in a network.

Fix any network N , and let N (a; d) denote the depth�d neighborhood of agent a in

N . For each client c and agent a, let I tN (c; a) denote the indicator of the event that c

interacted with a in period t, and let Pr
�
I tN(c; a)

�
denote the probability that I t(c; a) = 1 in

a network N . Note that one may interpret the quantity Pr
�
I1N(c; a)

� �
Pr
�
I1N(a;d)(c; a)

��
as

the probability that edge (c; a) is chosen to belong to the random graph matching constructed

by examining the edges of N
�
N (a; d)

�
in a random order (selected u.a.r.) and including an

edge if no incident edges have already been examined. Noting that this randomized matching

construction is exactly the matching algorithm studied in GG, it follows from Lemma 6 of

GG that

Lemma 2 (Locality Lemma) For any � > 0 and � > 0, there exists a �nite constant

d = d(�; �) independent of the size of the entire network such that for any network N

satisfying deg(G) � �,

jPr
�
I1N(c; a) = 1

�
� Pr

�
I1N(a;d)(c; a) = 1

�
j < �:

Lemma 2 highlights the observation that when interactions are mutually exclusive, and

when there is a su¢ ciently strong stochastic element in the order of interactions, whether

or not two individuals interact with each other depends heavily on the local patterns of

interactions. On the other hand, in such environments, the global patterns of interactions

may be less important. The intuition behind Theorem 1 and Lemma 2 is demonstrated in

Example 1.

Example 1 Consider the leftmost network in �gure 2 and suppose that agent a has

a belief Da that puts probability 1 on the correct network. In order to decide whether to

cooperate with client c, agent a evaluates the probability that she interacts with client c in

a given period. Based on D1
a the corresponding probability is 1. To see why, note that there
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are no other agents in D1
a. Now consider the belief D

2
a, because there are 2 agents in D

2
a

and only one client, and because the order of interactions is drawn u.a.r., the probability that

a interact with c based on D2
a is

1
2
. Following the same logic, the corresponding probability

based on D3
a is

2
3
. This is because the only orders of meetings in which c and a do not

interact are those in which agent a0 and client c meet before any other client and agent

interact. Continuing the process in the same way we get the the probability that c and a

interact in a given period based on beliefs D4
a and D

5
a are

5
8
and 19

30
respectively. Notably, the

sequence
�
1; 1

2
; 2
3
; 5
8
; 19
30

�
is monotonically converging (i.e. the deviation from the value that is

based on the correct belief is monotonically decreasing).

More generally, ordering the edges in a graph u.a.r. is equivalent to randomly and

independently assigning each edge a real number distributed uniformly between 0 and 1, and

then choosing the edges one by one from the low to the high value. Now, consider a �xed

agent a and client c connected by an edge (a; c). Suppose that the edge (a; c) is contained

within a �small" subgraph H such that every edge e in H has the following property: the

value assigned to e is strictly less than the value assigned to all edges adjacent to e which

are not contained in H. In this case, all inclusion/exclusion decisions (with respect to the

random matching) about the edges on the boundary of H are made before any neighboring

edges in GnH are even considered. The result is that no agent-client interactions external to

H can have any in�uence on the agent-client interactions internal to H. Lemma 2 is based

on the observation that as long as the maximum degree of any node in the overall network is

uniformly bounded, with high probability any given agent-client edge (a; c) will be contained

within such an in�uence-resistant subgraph, whose size is a small constant, independent of

the size of the overall network. This leads to an asymptotic independence on the global

structure of the network, and allows for a purely �local" analysis.

In the following section we apply Theorem 1 to an environment in which agents and clients

have incomplete information with respect to the network structure. We show that in this

environment the local beliefs of agents and clients with respect to the network structure are

much simpler than their corresponding global beliefs. Thus, Theorem 1 o¤ers a considerable

simpli�cation.
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6 The Global Fractions (GF) model

We are interested in the following question: "For what structures of the interaction network

G there exists a reputation network R such that there exists a TCEO with the network

N = (G;R)?". So far we remained agnostic with respect to the relationship between the

actual underlying network and the beliefs that agents (and clients) hold with respect to

the network structure. This approach has the advantage of being the most general, but to

answer our question of interest we must take a stand with respect to the role of the underlying

network in generating agents�(and clients�) beliefs.

Clearly, in any reasonable application, there is a close connection between the network

structure and the underlying beliefs. For example, in any setting of repeated interactions, we

expect any individual to know who she is connected to, and maybe have additional knowledge

that relates to the outside options of individuals who are connected to her. An individual

may also have some aggregate information on the global network structure. Whatever this

knowledge may be, an individual�s belief must be consistent with her knowledge.

We now propose a speci�c model of individuals�knowledge and beliefs with respect to the

network structure, which we call the Global Fractions (GF) model. The GF model is based

on the idea that the underlying process of the formation of the network has a signi�cant

random component, but that (in large networks) the fraction of clients and agents with a

given degree is more or less constant and therefore known.17 Due to the random component,

individuals have only partial information on the network structure, and each individual may

hold private information about her own local area of the network.

Formally, assume that before period 1 the network N is drawn u.a.r. from all networks

with a set of agents A, a set of clients C, and a given degree distribution that speci�es for

all d: [1] the fraction of clients that have degree d, and [2] the fraction of agents that have

degree d. Let the underlying network selection process be common knowledge. In addition,

each agent a has access to private local information including: the set of clients connected

to her (N1(a)), the degree of each client connected to her (dc for all c 2 N1(a)), and which

of her clients observes the outcomes of her interactions with any of her other clients (R(c; c0)

17For evidence on consistency in degree distributions in large networks, see also Barabási and Albert
(1999).
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for all c; c0 2 N1(a)). The (Bayesian) posterior of agent a is denoted by DGF (ajN). We note

that DGF (ajN) assigns equal probability to any network that satis�es [1] and [2], has sets

of clients and agents C and A respectively, and is consistent with the agent�s private local

information.18

Note that specifying the aforementioned fractions is equivalent (under a simple transfor-

mation) to instead specifying the probability that the client (agent) in an edge (c; a) selected

u.a.r. from all edges of the network has degree d (for all d).19 Furthermore, specifying the

number of clients nc along with these probabilities fully determines the number of agents

na. Thus, for any da 2 Z+;�b (a) 2 (Z+)da ; nc 2 Z+ and probability distributions Ga;Gc

each with bounded support on Z+ and assigning each integer a rational probability, we let

N (da;�b (a) ; R; nc;Ga;Gc) denote the set of all networks in which agent a has degree da, the

sorted vector of degrees of the clients that are connected to a is equal to �b (a), the reputation

network R(c; c0) for all c; c0 2 N1(a) is given by R, the total number of clients in the network

is nc, and the probability that the agent (client) a0(c0) in an edge (c0; a0) selected u.a.r. from

all edges of the network has degree d is equal to Pr(Ga = d)
�
Pr(Gc = d)

�
.20 Consequently,

if the true underlying network is N 2 N (da;�b (a) ; R; nc;Ga;Gc), then the posterior of agent

a is that the network is selected u.a.r. from all networks in N (�). We denote this belief by

DGF (ajN) = DGF (da;�b (a) ; R; nc;Ga;Gc). Using the GF model, we relate any underlying

network structure to a corresponding belief pro�le.

De�nition 3 (Cooperation Network) Let mGF (N) = (
; �; �; fDGF (ajN)ga2A). We say

that a network N is a GF cooperation network if and only if there exists a TCEO in the

economy mGF (N).

In the following section we develop a set of results that, combined with Theorem 1, relate

the question of whether a large networkN is a GF cooperation network to a simpler question.
18Our analysis goes through with individuals that are less informed, and can also be modi�ed to allow for

more informed individuals (e.g. knowing the degrees of neighbors of neighbors).
19Let Pa (d) the proportion of agents with degree d, and let da =

P
d Pa (d) � d be the average agent�s

degree. Then the probability that an agent a in an edge that is chosen u.a.r. has degree d is, Pa(d)�d
da

.
20Suppose further that Pr(Ga = da) > 0, and Pr(Gc = �bi (a)) > 0 for all i. Then, it is well-known

that for any �xed da;�b (a) ; R;Ga;Gc there exists an in�nite strictly increasing sequence of integers fncg s.t.
N (�jnc; a) 6= ;. This follows from the Gale-Reyser Theorem �see e.g. Krause (1996), and (in our particular
setting) Theorem 1.3 of Greenhill et al. (2006). All statements should be read as holding only for nc s.t.
the aforementioned set is non-empty.
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Namely, we show that it is su¢ cient to examine the incentive of each agent to cooperate as

if the agent is a part of a simpler network that we de�ne �a simple random tree.

Remark 2 The economic literature o¤ers several models of network formation (see also

Goyal 2007 and Jackson 2008 and references therein). By construction, any such process

can be captured by some fDaga2A. This implies that our analysis is �formation process free�.

The GF model adds structure to captures a scenario in which individuals �have no clue�how

networks are formed, but have some information on their attributes.21

7 Cooperation and network structure in the GF model

In this section, we focus on agents whose knowledge and beliefs are consistent with the GF

model and derive conditions on a network N such that N is a GF cooperation network. A

key result is that for all �nite support distributions Ga;Gc and for every agent a in any

asymptotically large network N with degree distributions Ga;Gc, the belief of agent a is

asymptotically identical to the belief that the network looks locally like a corresponding

simple random tree. We then combine this result with Theorem 1 to derive the main result

of this section: a large network N is a GF cooperation network if and only if the incentives

of each agent to cooperate in her corresponding random tree are su¢ ciently large. In the

following section we rely on this result and characterize the set of interaction networks G

for which there exists a reputation network R such that the network N = (G;R) is a GF

cooperation network.

For any given d0 2 Z+, �b 2 (Z+)d0 , distributions Ga;Gc with �nite support, and d � 1,

let T (d0;�b; R;Ga;Gc; d) denote the random depth�d tree such that the root r has degree d0,

the sorted vector of degrees of the children of r is �b, all subsequent non-leaf nodes at an even

depth have a number of children drawn i.i.d. from Ga � 1, all subsequent non-leaf nodes at

an odd depth have a number of children drawn i.i.d. from Gc� 1, the underlying reputation

network for the clients connected to the node (N1(r)) is R, and for all other clients pairs c,

and c0, the probability that c and c0 are connected is 1
2

�
Pr (R(c; c0) = 1) = 1

2

�
.

21An algorithm for generating valid large random graphs with arbitrary degree distributions exists and is
suggested in the proof of Lemma 3.
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To measure how di¤erent two beliefs are we use the notion of total variational distance.

For two random variables (r.v.) X;Y with support on some countably in�nite set X , the

total variational distance between X and Y , TV D(X;Y ), is de�ned as
P

x2X jPr(X =

x) � Pr(Y = x)j. Then for two belief distributions Da;D0a, TV D(Dda;D0da ) < � implies that

the belief agents a has about her depth-d neighborhood under Da is �within ��of the belief

agent a has about her depth-d neighborhood under D0a.

Lemma 3 (Locally Tree-Like Lemma) For all d0;�b; R, and �nite support Ga;Gc, and for all

d > 0,

lim
nc!1

TV D
�
DdGF (d0;�b; R; nc;Ga;Gc); T (d0;�b; R;Ga;Gc; d)

�
= 0

The proof of Lemma 3 is presented in Appendix A and employs the so-called con�guration

method (see Wormald 1999). Using this technique, a random graph is related to a di¤erent

random object - the con�guration model. In the con�guration model, each client (agent) is

viewed as a bucket, and each bucket is endowed with a number of points equal to the desired

degree of the corresponding client (agent). The points in the buckets are then matched

randomly, and an agent a and a client c are connected if a point from a�s bucket is matched

to a point of c�s bucket. By starting this construction with a given agent node and continuing

sequentially by connecting at every step all of the points in the buckets who where connected

to in the previous step, we show that in asymptotically large networks: [1] the number of

steps that it takes until a cycle is closed is arbitrarily large; and [2] after any �nite number

of steps, the degree distribution of the buckets that are still unmatched is asymptotically

(on the size of the network) identical to the degree distribution in the entire network.22

Lemma 3 implies that in an asymptotically large network N , for any �xed d, the belief

DdGF (d0;�b; R; nc;Ga;Gc) converges to a belief on a random tree. Thus, to make use of the

convenient structure of a random tree, one must establish that for the measure of interest, an

agent�s depth-d belief is a su¢ cient statistic to determine the measure of interest. Theorem

1 completes this gap with respect to agents�incentives to cooperate and we are able to derive

the following key result.
22More generally, there is a vast literature that both analyzes the con�guration model, and relates it back

to many random-graph models of interest (see e.g. Greenhill et al. 2006, Wormald 1999). Such relations
often involve subtle counting and conditioning arguments - for more details the reader is referred to the proof
in Appendix A.
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Theorem 2 (Asymptotic Characterization of Cooperation Networks I) Fix 
; �; � and con-

sider a sequence of networks (N1; N2:::) with identical �nite support degree distributions

Ga;Gc and an increasing size (i.e. the numbers of clients and agents in network N i+1 are

larger than the corresponding numbers in network N i). Then, there exists a number i such

that for all i > i the network N i is a GF cooperation network if and only if for any agent a,

lim
d!1

IC(
; �; �; T (da;�b (a) ; R;Ga;Gc; d)) > 0;

where �b (a) is the sorted vector of the degrees of the clients that are connected to agent a.

Proof. We prove the theorem by proving the following result: For all 
; �; �; d0;�b, and �nite

support Ga;Gc, limd!1 IC(
; �; �; T (d0;�b; R;Ga;Gc; d)) and limnc!1 IC(
; �; �;DGF (d0;�b; R; nc;Ga;Gc))

both exist, and equal one-another. This follows from Theorem 1 and Lemma 3.

Lemma 3 implies that in a large networkN , the sequence of beliefsDdGF (d0;�b; R; nc;Ga;Gc),

d = 1; 2; : : :, converges in a sense to a belief on an �in�nite random tree�. As a result, in

a large network N , and as long as agents�beliefs are consistent with the GF model, many

relevant quantities can be described in terms of the associated limits. Most relevant for the

characterization of large cooperation networks, Theorem 2 implies an explicit asymptotic

characterizations of cooperation networks in terms of a dynamic program that is based on

the belief that the network is a random tree.

In a particularly interesting limit case we can give an especially simple characterization.

Let R1 be the complete reputation network in which any two clients are connected and each

client is informed of transaction outcomes of all other clients (for all c0 and c, R1(c0; c) = 1).

Recall that Pr (I1N(c; a)) is the probability that c and a interact in period 1 given the network

N .

Corollary 1 (Asymptotic Characterization of Cooperation Networks II) Let 
; �; �; d0;�b;Ga;Gc

be �xed and Ga;Gc have �nite support. For a agent a, let Nd;a denote the belief T (d0;�b; R;Ga;Gc; d).

Then, limd!1
P

c2N1(a) Pr
�
I1Nd;a(c; a)

�
exists, and

sign

�
lim

nc!1
IC(
; �; �;DGF (d0;�b; R1; nc;Ga;Gc))

�
= sign

0@�(� � 
)
1� � lim

d!1

X
c2N1(a)

Pr
�
I1Nd;a

(c; a)
�
� 


1A :
(1)
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Proof. That the necessary limit exists follows from Lemma 2. To derive (1) note that if the

reputation network is captured by R1 then uNnEaR(c) = 0 for all c. Therefore, it follows from

(9) that for any �xed belief N and strategy Q,

(uN (Q)� ucoopN ) =
(
 � � � ucoopN ) �

P
c2N1(a):Q(c)=0 Pr (I

1
N(c; a))

1� � + � �
P

c2N1(a):Q(c)=0 Pr (I
1
N(c; a))

(2)

The Corollary then follows from (2), (10), and Theorem 2.

In the following section we use Corollary 1 and the corresponding tree structure described

in Lemma 3 and Theorem 2 to characterize the interaction networks G for which there exists

a reputation network R such that the network N = (G;R) is a GF cooperation network.

7.1 Third-party observability and cooperation

In this section, we focus on two questions: [1] how do the patterns of third-party observability,

as captured by the reputation component of the network (R), a¤ect the ability of di¤erent

patterns of repeated interactions, as captured by the interaction network (G), to facilitate

cooperation? And [2] what is the largest set of interaction networks G for which there exists

a reputation network R such that the network N = (G;R) is a GF cooperation network?

We �rst establish that third-party observability helps cooperation and allows a larger set of

interaction networks to sustain cooperation. Then, we focus on the analysis of the incentives

of agents to cooperate as a function of the structure of the interaction network when the

reputation network is complete.

The intuition that the complete reputation network (R1) allows for the largest set of

interactions networks to be to sustain cooperation is consistent with much of the literature

on community enforcement; when more clients are aware of an agent�s defection, the agent

faces a larger punishment for defecting.

Proposition 1 (Weak Monotonicity of Cooperation in Third-Party Observability)Fix 
; �; �

and consider a sequence of interaction networks (G1; G2:::) with identical �nite support degree

distributions Ga;Gc and an increasing size (i.e. the numbers of clients and agents in network

Gi+1 is large than the corresponding numbers in network Gi). Then, there exists a number

i such that for all i > i and for any reputation network R, if the network (Gi; R) is a GF

cooperation network then the network (Gi; R1) is also a GF cooperation network.
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Proof. We prove Proposition 1 by proving the following claim: Let 
; �; �; d0;�b;Ga;Gc be

�xed and Ga;Gc have �nite support, and let ICDGF (R; nc) = IC(
; �; �;DGF (d0;�b; R; nc;Ga;Gc)).

Then, for any reputation network R, ICDGF (R; nc) � ICDGF (R1; nc).

To prove this claim, note that by de�nition,

ICDGF (R; nc) = minc2N1(a) �
�
EDGF (d0;�b;R;nc;Ga;Gc)[u

coop
N ]� EDGF (d0;�b;R;nc;Ga;Gc)[uNnEaR(c)]

�
� 
:

The lemma then follows from: [1] for all R, EDGF (d0;�b;R;nc;Ga;Gc)[uNnEaR(c)] � 0;

[2]EDGF (d0;�b;R1;nc;Ga;Gc)[uNnEaR1 (c)] = 0; and [3]EDGF (d0;�b;R;nc;Ga;Gc)[u
coop
N ] = EDGF (d0;�b;R1;nc;Ga;Gc)[u

coop
N ].

Fainmesser (2012a) relies on the results established in this paper (especially Theorems

1 and 2) and studies the structure of cooperation networks in markets in which third-party

observability is extremely limited (when R is the empty network, i.e. no two clients are

connected in R). Fainmesser (2012a) shows that the incentives to cooperate are strongest in

sparse interactions networks in which there are similar numbers of clients and agents (with

similar and low degrees).

Proposition 1 teaches us that in order to study the limits of cooperation we are required

to focus on networks that take the form N = (G;R1) and make comparative statements

with respect to the incentives of agents to cooperate as a function of G. We �nd that when

R = R1, the incentives to cooperate are strongest in dense interaction networks in which

there are more clients then agents (so agents�degrees are high and clients�degrees are low).

In the next section, we extend our model to allow for stochastic elements in the production

function of agents and show that our results imply that third-party observability enhances

e¢ ciency in markets that rely on trust and cooperation, but that nevertheless, when there

are more agents than clients in a market, an e¢ cient outcome is not guaranteed.

A fundamental observation that is captured by Corollary 1 is that when R = R1, agents

who expect to interact with higher overall probability (larger
P

c2N1(a) Pr
�
I1N(c; a)

�
) have

stronger incentives to cooperate. As a result, cooperation is better sustained when agents�

(clients�) degrees are large (small). To see why, note that [1] the probability that an agent a

interacts in a given period is increasing in her degree; and [2] the probability that a interacts

in a given period is an increasing function of the degree of any agent that is connected to a

client that a is connected to. The intuition for the latter is subtle: because agents with high
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degrees are less likely to interact with each one of the clients to whom they are connected,

they are less likely to interact with each client before other agents who are connected to the

same client get a chance to interact with him.23

More generally, when agents�degrees are large and clients�degrees are small, there are

more clients and less agents who interact. Consequently, agents interact with high probability

and expect large payo¤s. Figure 3 provides a simple deterministic example of the general

rule that is captured by Proposition 2.

a’

c

a a’

c

a

c’
Clients

Agents

Figure 3: Consider the two networks above and let the dashed line between clients c and c0 in
the rightmost network represent a link between them in the reputation network (R (c; c0) = 1).
In the leftmost network, agent a expects to interact with probability 1

2 in any given period. As
a result, conditional on cooperation between a0 and c, agent a cooperates with c if and only if
�
1�� (� � 
) �

1
2 > 
. In the rightmost network, agent a0 has an additional link. Clearly, this

increases the probability that agent a0 interacts in a given period from 1
2 to 1. However, this

also increases the probability that agent a interacts in a given period from 1
2 to

2
3 . As a result,

conditional on cooperation between a0 and c, as well as between a0 and c0, agent a cooperates
with c if and only if �

1�� (� � 
) �
2
3 > 
.

Theorem 2 shows that the incentive e¤ect of any change in the degree of any client or

agent in the network can be captured by considering the e¤ect of the corresponding change

in the corresponding random tree. In turn, any change to the degree of a node in a random

tree can be captured by appending or removing subtrees (A tree T 0 is subtree of a tree

T if T 0 � T ). Thus, Proposition 2 shows that the incentive e¤ect of any change in the

degree of any client or agent in the network can be determined by identifying whether the

corresponding change in the corresponding random tree involves adding or removing (as

children) subtrees from a client or an agent node. E.g. appending (as children) subtrees to

agents nodes in the corresponding random tree (rooted with agent a) can capture: [1] adding

links between a and some clients; and/or [2] increasing the degree distribution of agents in

the network as a whole. Thus, Proposition 2 shows that the e¤ects of [1] and [2] on the

23The intuition applies most directly to trees. However, our random tree characterization highlights the
connection between trees and large networks.
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incentives of agent a are qualitatively the same. The proof of Proposition 2 is deferred to

Appendix B.

Proposition 2 (Monotonicity of Cooperation in Degree) Let 
; �; � be �xed. Suppose that

for all d � 1, the random tree T 2 = T (d20;�b
2; R1;G2a;G2c; d) can be constructed (on the same

probability space) from the random tree T 1 = T (d10;�b
1; R1;G1a;G1c; d) by performing only the

two operations: [1] appending (as children) subtrees to agent nodes in an arbitrary way, and

[2] removing (as children) subtrees from client nodes in an arbitrary way. Then,

limnc!1 IC
�

; �; �;DGF

�
d10;
�b1; R1; nc;G1a;G1c

��
> 0 implies

limnc!1 IC
�

; �; �;DGF

�
d20;
�b2; R1; nc;G2a;G2c

��
> 0.

Proposition 2 implies that networks in which agents are well connected and clients have

only low degrees maximize the incentives to cooperate. However, it is just one implication

of a more general rule that is due to the perfect alignment between an agent�s probability

of interacting and her incentives to cooperate: consider two networks N 0 = (G0; R1) and

N 00 = (G00; R1), and assume that conditional on full cooperation, the minimal probability of

interaction of any agent is weakly higher in N 00 than in N 0 �min
a

P
c2N 00

1 (a)
Pr (I1N 00(c; a)) �

min
a

P
c2N 0

1(a)
Pr (I1N 0(c; a))

�
. Then N 0 being a cooperation network implies that N 00 is a

cooperation network. This is true regardless of the size of the network and the model of

beliefs that we consider. In networks in which all agents are symmetric, this rule implies that

the expected aggregate number of interactions and the incentives of agents to cooperate are

perfectly aligned. To fully demonstrate the implications of this observation, we generalize

our model to allow for stochastic elements in the production technology. Considering an

environment in which agents might have periods in which they are not able to interact (e.g.

entrepreneurs might not have an investment idea, and sellers may have stochastic shocks to

their production) highlights the limits on e¢ ciency that are imposed by the need to rely on

trust and cooperation �even in the presence of perfect third-party observability.

8 Optimal networks

In this section we study the constraints imposed on the number of (mutually bene�cial)

bilateral interactions by the need to enforce cooperative behavior in an incentive compatible
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manner. To this end, we extend our model in two ways. First, we allow for stochastic

elements in the production technology of agents. Formally, we assume that in every period,

each agent is active with some probability � 2 [0; 1] and inactive otherwise. The realization

of whether an agent is active in a given period is i.i.d. across agents and periods. An

active agent can interact as described above, whereas an inactive agent cannot interact. The

probability that an agent is active (�) captures any stochastic element in the production

technology. For example, if the agent is an entrepreneur then she may not be able to come

up with a pro�table investment opportunity in every period. Similarly, if the agent is a

producer, she may su¤er from exogenous shocks to her production process. Notably, all

of our results above extend without change to this more general environment.24 Moreover,

introducing instead a stochastic element on the demand side yield qualitatively identical

results. We show below that stochastic elements in the market provide a key reason to

prefer fully connected interaction networks in order to maximize the number of trades. We

further show that in some markets, for a fully connected interaction network G, there is no

reputation network R such that the network N = (G;R) is a GF cooperation network.

A second way we extend our model is by considering a network design problem that

is useful for comparing the �rst best (i.e. how many cooperative interactions are possible

without the need to satisfy the incentive constraints for cooperation?) with the second

best (i.e. how many cooperative interactions are possible when the incentive constraints for

cooperation must be satis�ed?). The di¤erence between the �rst and second best captures

the limits of cooperation, as well as the limits of the e¤ectiveness of third-party observability

in facilitating cooperation.

Consider a market with na agents and nc clients and parameters 
; �; �; �. Let �N be

a probability distribution over network structures N = (G;R). In the unconstrained design

problem, a planner chooses �N and compels all agents to follow strategy QcoopD (always

cooperate). In the cooperation constrained design problem, the planner chooses �N and

recommends that all agents follow strategy QcoopD ; agents are then informed of �N and

follow the planner�s recommendation only if (
; �; �; �;�N) admits a TCEO. Let nc (N)

24The interested reader is referred to Fainmesser and Goldberg (2011) which is an older draft of this paper
and is available on Fainmesser�s websites.
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(na (N)) be the number of clients (agents) whose degree in G is at least 1. If nc (N) < nc

(na (N) < na) we say that nc � nc (N) clients (na � na (N) agents) are excluded from the

market in N .

For a given network N , let E[V (N)] = E
hP

a2A
P

c2N1(a) Pr (I
1
N(c; a))

i
denote the ex-

pected number of cooperative interactions that are achieved in a given period if all agents

follow strategy QcoopD . Denote by E[V (�N)] the corresponding value given a probability

distribution �N over networks. Let N 2 N (nc; na) if the network N can be constructed

with nc clients and na agents (i.e. nc (N) � nc and na (N) � na), and let Nuc (�) (N c (�)) be

the solution to the unconstrained (constrained) design problem. Then,

Nuc (nc; na; 
; �; �; �) = argmax
�N jsupp(�N)�N (nc;na)

E[V (�N)]

and
N c (nc; na; 
; �; �; �) = argmax

�N jsupp(�N)�N (nc;na)
E[V (�N)]

;mina2A IC(
;�;�;�;�N)>0

;

where mina2A IC(
; �; �; �;�N) > 0 guarantees that (
; �; �; �;�N) admits a TCEO. Thus,

the proportion of welfare loss due to the constraints on the structure of cooperation networks

is

WL (nc; na; 
; �; �; �) = 1�
E[V (N c (nc; na; 
; �; �; �))]

E[V (Nuc (nc; na; 
; �; �; �))]

If WL (nc; na; 
; �; �; �) = 0, then cooperation networks can achieve the �rst best in a

market with (nc; na; 
; �; �; �).

We now revisit our conclusion following Proposition 2. Namely, that the expected aggre-

gate number of interactions and the incentives of agents to cooperate are perfectly aligned.

We demonstrate this insight using a special family of interaction networks which we call

semi-regular networks. In a semi-regular network all agents have the same degree dA and

all clients have the same degree dC . We also show that adding a su¢ ciently large number

of links to an interaction network G guarantees that: [1] if R = R1, agents have (asymp-

totically) the maximal possible incentives to cooperate given na; nc; and [2] conditional on

N being a GF cooperation network, the expected number of interactions in every period is

(asymptotically) maximal given na; nc. The proof of Theorem 3 is presented in Appendix B.

Theorem 3 (Dense Networks Maximize Welfare and Incentives to Cooperate) Let DGF (R1; nc; dA; dC)
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be an agent�s belief according to the GF model when the underlying reputation network is R1,

there are nc clients in the market, and the degrees of all agents and clients in the interaction

network G are dA and dC respectively. Then,

sign

�
IC
�

; �; �; �;DGF

�
R1; nc; dA; dC

���
= sign

�
�(� � 
)
1� � � 1

na
� E
�
V
�
DGF (R1; nc; dA; dC)

��
� 

�

and

lim
nc!1

E [V (DGF (R1; nc; dA; dC)]
min(� � nc � dCdA ; nc)

� 1�
�
max(dA; dC)� 1

��1
:

Moreover, nc
na
= dA

dC
. Thus, min(� � nc � dCdA ; nc) = min(� � na; nc), which equals the maximal

volume of trade possible conditional on nc and na.25

Theorem 3 implies an asymptotic lower bound on the incentives to cooperate.

lim
nc!1

IC
�

; �; �; �;DGF (R1; nc; dA; dC)

�
� �(� � 
)

1� � �min(�; dA
dC
) �
�
1�

�
max(dA; dC)� 1

��1�� 
: (3)
Expression (3) highlights the importance of the ratio dA

dC
(or nc

na
) in determining whether

repeated interactions can sustain cooperation in a market that gives positive probability for

any of na agents and nc clients to interact. If the ratio nc
na
is large enough, cooperation

can asymptotically be sustained and maximal number of interactions facilitated even with

limited (yet large) degrees. Corollary 2 shows that Theorem 3 has implications to welfare

that go beyond the semi-regular setup.

Recall thatWL (nc; na; 
; �; �; �) is the proportion of welfare loss due to the constraints on

the structure of networks that can sustain cooperation. Recall further that if �(��
)
1�� ���
 < 0

then no network (apart from the empty network) sustains cooperation. This is true because

even an agent who is guaranteed to interact whenever she is active, and expects to lose her

entire future payo¤ if she defects, will still defect. Consequently, �(��
)
1�� � � � 
 < 0 implies

that WL (nc; na; 
; �; �; �) > 0 for any nc; na. Corollary 2 covers the more interesting case

where �(��
)
1�� � �� 
 > 0. The proof is deferred to Appendix B.

25From an algorithmic perspective it is interesting to note that in addition to being easy to implement and
leading to a tractable analysis, the simple matching mechanism governing our market is also asymptotically
welfare maximizing w.r.t. the number of interactions when all agents cooperate, and all agents (clients) have
the same (large) degree dA (dC). This is surprising, since the mechanism is quite simplistic, and corresponds
better to a random decentralized market than to known algorithms for constructing optimal matchings.
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Corollary 2 (Barrier to Entry and Asymptotic E¢ ciency) Consider a market with nc

clients and �nc agents, and �xed 
; �; � s.t. � < 1 and
�(��
)
1�� � 
 > 0. Then,

1. For any �, WL (nc; �nc; 
; �; � = 1; �) = 0.

2. Let � < 1. There exists � (�) such that WL (nc; �nc; 
; �; �; �) > 0 for any � > �.

3. For any � 2
h

 � 1��

�(��
) ; 1
i
and � 2 Q+, limnc!1WL (nc; �nc; 
; �; �; �) = 0.

Part 1 of Corollary 2 shows that when there is no stochastic element in the production

technology (� = 1), the incentive constraints do not restrict welfare. In particular, when

� = 1, a network that consists of pairs of clients and agents and some excluded clients or

agents (but not both) provides the maximal number of interactions as well as the maximal

incentives to cooperate. On the other hand, part 2 of the Corollary addresses the case of

stochastic production technology. If � < 1 the maximal number of interactions cannot be

achieved if any agent is excluded from the market. At the same time, if there are many more

agents than clients, all cooperation networks exclude some agents from the market. This

leads to a welfare loss. Figure 4 provides an example.

a’

c

a a’’

c’
Clients

Agents

Figure 4: Assume that � = 1. In the above network, agent a cooperates with client c (and
agent a0 cooperates with client c0), if and only if �

1�� (� � 
) > 
. Moreover, conditional on
cooperation between every client and agent that are connected, two interactions will take place
in every period. This is the maximal number of interactions that can take place in one period
in a network with three agents and two clients. Now assume that � < 1. There exists positive
probability that in a given period only agents a and a00 are active. Thus, any network in which
agent a00 is not connected to any client limits the number interactions to less than two even
though two agents are active.

Part 3 of Corollary 2 is encouraging; in large markets (asymptotic) e¢ ciency is restored.

Theorem 3 provides the necessary intuition: let dA = dC
�0 and �x �

0. Then as long as 1 � �0 ��,

lim
dC!1

lim
nc!1

IC
�
DGF (R1; nc; dA; dC)

�
=
�(� � 
)
1� � � �� 
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and as long as 1 � �0 � �,

lim
dC!1

lim
nc!1

E [V (DGF (R1; nc; dA; dC))]
nc

= 1

Going back to part 3 of Corollary 2, no matter how large is na
nc
, a planner can choose

�N in the following way: [1] set R = R1; and [2] pick large positive integers dA; dC s.t.
dA
dC
= � and choose G u.a.r. from the set of interaction networks s.t. Pr(dc = dC) = 1,

Pr(da = dA) =
nc
na
� 1
�
, and Pr(da = 0) = 1� nc

na
� 1
�
. Then, the planner achieves (asymptotically

in dA; dC) both high incentives to cooperate and maximal number of interactions. This is

interesting because the planner does not need to create a complete network. In fact, dC (dA)

does not need to be in the order of na (nc) and can be much smaller. The implications of

our results in the context of barriers to entry and e¢ ciency are discussed further in section

9.3.

9 Discussion

In this section, we �rst highlight the implications of our methodological contribution to

social networks analysis. Then, we provide an interpretation of our characterization of GF

cooperation networks in the more traditional context of market structure and discuss the

implications for barriers to entry and e¢ ciency.

9.1 The (un)importance of global beliefs

The recent literature on static network games (e.g. Galeotti et al. 2010) suggests that when

players have incomplete knowledge of the networks structure, the analysis of the induced

(Bayesian) game is much simpler than the corresponding analysis when players know the

entire network structure. However, this does not mean that global knowledge of the network

is not important. In fact, Galeotti et al. provide several examples in which changing the

information structure changes the set of equilibria signi�cantly. Kets (2011) shows that when

a game is local (a player�s payo¤depends only on her action and the actions of her immediate

neighbors) and when players have a common prior, there are weak conditions under which

small changes to the priors do not change the equilibrium payo¤s.

In our model, for the family of TCEOs, any change to a belief of an agent that keeps the

32



agent�s belief over her local neighborhood intact does not a¤ect the agent�s best response

correspondence. This is especially surprising given that our game is not local �an agent�s

payo¤ generally depend on the entire network structure. The methodology we use can be

applied to other setups as long as the strategic in�uence of one individual on another decays

with the distance between the individuals. In static network games this occurs due to an

assumed decay of in�uence, whereas in our setup this is due to the stochastic component in

the order of interactions within a period.

9.2 Random network formation and random trees

The following three ideas raise separate interest in economics, sociology, and psychology: [1]

the formation process of social networks has a stochastic component; [2] individuals do not

know the exact structure of the (social) network in which they are embedded; and [3] individ-

uals often consider separate interactions as independent (even when they are not).26 Lemma

3 (and to some extent Theorem 2) o¤ers a connection between these three observations: if the

stochastic element in the underlying process of the network formation is su¢ ciently salient,

and if individuals cannot observe perfectly or learn the entire network structure, then in a

large network the correct prior of an individual is that her local environment is a random

tree. In a random tree separate observations of an individual are independent. Naturally,

one would like to explore more realistic mental models that generate similar results. To

that extent, this is only a �rst stab at an important question: to what extent can simpli�ed

heuristics that people use to deal with incomplete knowledge of the network be explained as

�averaging�over a stochastic prior?

A by-product of Lemma 3 is the provision of su¢ cient conditions under which a network

is expected to exhibits no degree correlation.27 We note that this provides a microfoundation

to previous reduced form assumptions used in the networks literature. For example, Jackson

and Yariv (2007) assume that each player in a network has expectations on the number

26E.g. DeMarzo, Vayanos, and Zwiebel (2003) propose a model in which individuals learn from their
neighbors about the state of the world. In their model, individuals experience persuasion bias - each individ-
ual i continuously updates her prior based on her neighbors�opinions ignoring the fact that her neighbors�
opinions depend on the network structure and on information that was previous accessible to i. Golub and
Jackson (2010) develop a similar model that allows for more �exibility in the updating rule, but maintains
the assumption that an individual updates her prior ignoring the network structure.
27For an application, see Fainmesser (2012b).
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of connections of each of the other players connected to her that are captured by a �xed

degree distribution. Our result provide su¢ cient conditions under which this assumption is

consistent with a common prior.

9.3 Third-party observability, barriers to entry, and e¢ ciency

Proposition 1 suggests that third-party observability enhance e¢ ciency by allowing for a

larger set of interaction networks to be GF cooperation networks. Theorem 3 provides a more

direct positive result: in the presence of perfect third-party observability, for large nc and

na, networks that maximize the number of (mutually bene�cial) interactions and networks

that maximize the incentives to cooperate are approximately identical. In such �optimal�

networks, the degrees of clients and agents are large. However, as illustrated in Example

2, Theorem 3 and Corollary 2 also suggest that there are some non-degenerate scenarios in

which even with perfect third-party observability there is no network N = (G;R) such that:

[1] all agents in A have an opportunity to interact, and [2] N facilitates full cooperation.

In Example 2, some agents are excluded permanently from the market in any network that

facilitates full cooperation. Depending on the (unmodeled) network formation mechanism in

a given market, this observation lends itself to several interpretations: either that the need

to sustain cooperation may create a barrier to entry, or alternatively that the existence of

barriers to entry may be necessary to facilitate cooperation in some markets.

Example 2 Consider 
; �; �; �; nc; and na such that nc
na
< �,

�(� � 
)
1� � � nc

na
� 
 < 0; (4)

and
�(� � 
)
1� � � �� 
 > 0: (5)

Condition 4 guarantees that no network N in which Pr(da = 0jN) = 0 admits a TCEO.

At the same time, condition 5 assures us that there exists a non-empty network that admits

a TCEO. For example, a network in which Pr(dc = 1jN) = 1, Pr(da = 1jN) = nc
na
, and

Pr(da = 0jN) = 1� nc
na
is a cooperation network.

In an environment in which � < 1, for any �nite na and nc, the exclusion of agents from

the market lowers the expected number of interactions. To see why, note that even if na > nc,
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in periods in which more than nc agents are active, the number of interactions is at most

nc whereas if less than nc of the connected agents are active, the number of interactions is

bounded above by the number of the connected agents who are active. In (asymptotically)

large markets, some agents might still be excluded from any network that facilitates full

cooperation. However, the welfare problem is resolved. As long as condition (5) holds, there

exists an (asymptotically) welfare maximizing network that facilitates full cooperation.

Example 2 (cont.) Suppose there exist positive integers dC and dA, and �a 2 (0; 1) s.t.

Pr(da = dA) = �a, Pr(da = 0) = 1 � �a, and Pr(dc = dC) = 1. Let fna be the number of
agents who have degree dA. By construction, fna = �a � na = nc�dC

dA
and as long as ncfna � �,

condition 5 implies that �(��
)
1�� �

ncfna�
 > 0. Now consider ��a such that fna = nc
�
and note that

�xing �a implies a �xed ratio
dC
dA
. Then by Theorem 3, limdC!1 limnc!1

�
E[V (DGF (nc))]

nc
j��a
�
=

1; and

lim
dC!1

lim
nc!1

�
IC (DGF (nc))�

�
�(� � 
)
1� � � �� 


�
j��a
�
� 0

which guarantee that given large enough number of clients and agents, there exists a network

that facilitates full cooperation and (asymptotically) the maximal number of interactions pos-

sible.

10 Conclusion

This paper presents a model of repeated games in two-sided networks with reputation net-

works that allow clients to share information about past transactions. The model allows us

to vary separately the interaction network between clients and agents and the reputation

network between clients, and examine how the quality of the reputation network a¤ects the

ability to sustain cooperation in any given interaction network.

More broadly, we make both a new methodological contribution in the form of a novel

method for moving beyond the assumption that a player�s payo¤ function depends only on

the actions taken by her immediate neighbors, and an applied contribution in the form of

a study of repeated interactions and community enforcement in networked markets with

clients and agents. At the core of our methodological contribution is a new method for

reducing questions about the global properties of a networked market to questions about
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the local properties of the network. This allows us to analyze large networks as if they

were small. Our methodology can be applied to various economically important network

interactions as long as (on the equilibrium path) the e¤ect of one economic agent on another

is a decreasing function of the network distance between the two agents. In this environment,

the introduction of incomplete knowledge of the network structure allows us to approximate

any small neighborhood of the network with a simple representative network - a random

tree. Notably, both Theorem 1 and Lemma 3 can be modi�ed to include networks that are

not two-sided; allowing for a richer set of interactions.

By applying our methodology to the study of repeated games in networks, we show that

while good reputation networks allow for cooperation in markets that could not sustain

cooperation otherwise, they do not guarantee cooperation in every market. Surprisingly, a

market with high quality reputation networks between clients can exhibit �barriers to entry�

because the number of agents that can be a part of any cooperation network is a bounded

function of the number of clients in the market. The exclusion of agents from the market can

hinder e¢ ciency in any small market. However, as a market grows, a high quality reputation

network that allows for optimal welfare emerges. Such a network facilitates the maximal

number of (mutually bene�cial) interactions as well as sustains cooperation between every

client and agent who are connected.

11 Appendix A: proof of Lemma 3

Lemma 3 has implications that go beyond its role in the analysis of repeated games in
networks. For example, Fainmesser (2012b) employs a variant of the Lemma for simplifying
the analysis of networked labor markets in static settings. Results of a similar �avor have
also been found useful in other disciplines.28 To this end, we present the proof of Lemma
3 as a stand-alone section and follow the conventions of the graph theoretic literature with
respect to notation and de�nitions. We hope that this will make it easier for our more
technical readers to appreciate the generality of the result and to be able to adopt the result
or parts of it to be used in further applications.

11.1 Notations and de�nitions

A graph � = (V;E) is a set of nodes V and a set of edges E, where each edge e = (v1; v2)
speci�es that there is a connection between nodes v1 and v2. To prove Lemma 3 we introduce
a particular randomization scheme (which we will soon describe in depth). We �rst formalize

28See Richardson and Urbanke (2008) for an example from coding theory.
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the class of graphs over which we randomize, and the di¤erent notions of degree distribution
(d.d.) that we will use. A graph � is bipartite if and only if � can be partitioned into two
sets (e.g. A(gents) and C(lients)) such that all edges contain exactly one node from A and
one node from C. A bipartite graph is said to be bicolored if the nodes of the one partite
are distinguished from the nodes of the other partite. For example, the bicolored property
guarantees that the graph on three nodes in which one agent node is connected to two client
nodes is distinguished from the graph on three nodes in which one client node is connected
to two agent nodes. We say that a bicolored bipartite graph is labeled if each node in partite
A have a distinct label from the set f1; :::; nag, and each node in partite C have a distinct
label from the set f1; :::; ncg. A graph � is rooted if one of the nodes on � is labelled in a
special way to distinguish it from the graph�s other nodes. This special node is called the
root of the graph. For two rooted graphs �1;�2, we say that �1 = �2 if the two graphs are
isomorphic with respect to the root. For a node v in a graph �, recall that dv denotes the
degree (number of neighbors) of v in �. Sometimes to make the underlying graph explicit,
we use the notation d�v .
For a graph � and a subset of nodes V 0 of �, the subgraph induced by V 0 will refer to the

subgraph of � consisting of the nodes V 0 and all edges in � that connect nodes in V 0. Recall
that for a given node v and depth d, Nd(v) was earlier de�ned as the set of nodes whose
graphical distance from v is at most d. For the remainder of Appendix A, Nd(v) should be
read as referring not just to the given set of nodes, but the subgraph induced by that set of
nodes. Sometimes, to make the reference graph explicit, we use the notation N�

d (v). Also,
for a given node v in a graph G, we let FG(v) denote the set of degrees of the nodes adjacent
to v in G. Recall that the set of degrees of a given bipartite graph � may be de�ned in two
distinct ways. Let Ha

�(Hc
�) denote the random variable (r.v.) representing the degree of an

agent (client) node selected u.a.r. from all agent (client) nodes. Alternatively, let Ga�(Gc�)
denote the r.v. representing the degree of the agent (client) belonging to an edge selected
u.a.r. from all edges of �.
For concreteness, let us �x some given degree distributions Ha;Hc with �nite, non-

negative support and rational probabilities. We let mH denote some integer bound on the
support of both Ha and Hc. Let Ga;Gc denote the corresponding degree distributions un-
der the random edge interpretation. Let G(nc) denote the set of labeled bicolored bipartite
graphs that satisfy d.d. Ga;Gc, and in which the client partite has nc nodes. We let na
denote the corresponding number of nodes in the agent partite (determined uniquely by nc
and Ga;Gc). Let R(nc) denote a graph selected u.a.r. from G(nc). Let RA(nc)

�
RC(nc)

�
denote the set of nodes in the agent (client) partite of R(nc). Let F denote the set of vectors
f s.t. Pr(FR(nc)(v) = f) > 0 for some v 2 R(nc) (note that F is dictated by Ha;Hc; nc).
Note that the random graph R(nc) has some non-trivial dependencies. Indeed, if one

conditions on there being an edge between nodes a and c, the precise e¤ect of this conditioning
on the degrees of the other nodes is di¢ cult to characterize exactly; large-scale dependencies
are introduced by the condition that the graph has the global structure dictated by Ha;Hc.
In spite of this, we prove that the local structure of R(nc) is quite simple, namely that of a
tree in which the degrees are chosen i.i.d. Let T (d; r) denote a rooted depth-d tree generated
as follows. The degree of the root equals r. Each node at an even depth k � d� 1 is given
an i.i.d. number of children distributed as Gc � 1, and each node at odd depth k � d� 1 is
given an i.i.d. number of children distributed as Ga � 1.
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Note that to prove Lemma 3, it su¢ ces to show the following.

Lemma 4 For all f 2 F and trees T ,

limnc!1 supv2RA(nc)

���Pr(NR(nc)
d (v) = T jFR(nc)(v) = f)� Pr(T (d; dv) = T jFT (d;dv)(v) = f)

��� = 0.
11.2 Con�guration method

To analyzeR(nc) and prove Lemma 3, it will be convenient to analyze the well-known pairing
(a.k.a. con�guration) method for generating R(nc) (see e.g. Greenhill et al. 2006, Section
2). First, construct na agent buckets A1; A2; :::; Ana and nc client buckets C1; C2; :::; Cnc .
Second, for each d � 1, populate a Pr(Ha = d)

�
Pr(Hc = d) fraction of agent (client)

buckets with exactly d indistinguishable points. Here we let jAij(jCjj) denote the number of
points assigned to bucket Ai(Cj), and nc;p (na;p) denote the total number of client (agent)
points as dictated by nc, Ha, and Hc. Third, select a matching M(nc) between the agent
points and the clients points u.a.r. Fourth, construct a labeled bicolored bipartite graph
R0(nc) such that there are nc client nodes, na agent nodes, and an edge connecting agent
node ai and client node cj i¤ at least one point belonging to agent bucket Ai was matched
to a point belonging to client bucket Cj. Note that it is possible that inM(nc), there exist
buckets Ai; Cj such that two points in Ai are connected to two points in Cj, in which case
the d.d. of R0(nc) need not be the same as that of R(nc).
Our approach to proving Lemma 4 will be to �rst prove an analogue (but without the

conditioning involving F) for R0(nc).

Lemma 5 For all trees T , limnc!1 supv2R0A(nc) jPr(N
R0(nc)
d (v) = T )�Pr(T (d; dv) = T )j =

0.

Proof. Note that we may construct the random matchingM(nc) in the following manner.
First, we pick an arbitrary agent or client point p1 of our choice. Then, if p1 was an agent
point, we select a point p2 u.a.r. from all client points. Alternatively, if p1 was a client
point, we select a point p2 u.a.r. from all agent points. We then add edge (p1; p2) toM(nc);
eliminate p1 and p2 from the set of remaining points; and repeat until all points are matched.
It follows that we may construct M(nc) by selecting the points in an order such that for
any bucket Ai of our choosing, Nd(ai) is �generated �rst�. Roughly speaking, we �rst pair o¤
those points whose buckets will eventually correspond to neighbors of an agent ai in R0(nc);
we then pair o¤ those points whose buckets will eventually become neighbors of neighbors of
ai in R0(nc), etc. More precisely, we may construct the matchingM(nc) using the following
algorithm. We proceed through a series of stages, indexed by k. We will decide which point
we pair o¤ next (more precisely the bucket containing that point) by assigning the buckets
labels as the algorithm proceeds.

RANDGEN :

Initialize: k = 1. Assign bucket Ai the label 1.
While there exists at least one unmatched point:
While there exists at least one bucket with label k:
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Select a bucket U u.a.r. from all buckets with label k:
Select an unmatched point p u.a.r. from U :
Select an unmatched point p0 u.a.r. from all unmatched agent (client) points;
Add edge (p; p0) toM(nc);
Remove points p; p0 from the set of remaining points;
Assign the bucket containing point p0 the label k + 1;

If there does not exist a bucket with label k+1 containing at least one unmatched point:
Select a bucket U u.a.r. from all agent (client) buckets with � 1 unmatched point;
Assign bucket U label k + 1;

k = k + 1;

A simple proof by contradiction shows that RANDGEN always terminates, and a simple
induction shows that no bucket is ever assigned two di¤erent labels. Note that since each time
we pick a point we match it u.a.r. to a remaining point of the �other�partite, RANDGEN
indeed returns a matching distributed u.a.r.
Let Ei;� be the event that no bucket with label k � � + 1 was assigned its label more

than once.

Observation 1 Conditional on the event Ei;�, N
R0(nc)
� (ai) is acyclic.

By a simple induction, at most 2(mH+mH(mH�1)+mH(mH�1)2+ :::+mH(mH�1)��1) �
2�m�

H points are matched while k � �. Let p1; p2 be any two points belonging to agents�
buckets matched during stage k � � for k even. Then the probability that p1; p2 were
matched to points q1; q2 belonging to the same client�s bucket is at most mH�1

nc;p�2�m�
H
. Indeed,

w.l.o.g. assuming p1 was matched �rst (with q1), there are at most mH � 1 points out of at
least nc;p � 2�m�

H remaining points which q2 could be matched to so that q1; q2 belong to
the same bucket. Since there are at most

�
2�m�

H
2

�
pairs of points such that both are matched

during stage k � �, it follows from a union bound that29

Pr(Ei;�) � 1�
�
2�m�

H
2

�
mH � 1

nc;p � 2�m�
H
= 1�O( 1

nc
): (6)

Let U be any agent bucket assigned label k � �, and p any point in U that is matched
during stage k. It follows from (6) and the previous discussion that for any i, regardless of the
value of dai and the actions taken by RANDGEN before p was matched, the probability
that p is matched to a point q contained in a bucket Ci satisfying d

R0(nc)
ci = l is at least

Pr(Hc = l)�O( 1
nc
). Similarly, the probability that p is matched to a point q contained in a

bucket Ci satisfying d
R0(nc)
ci = l is at most Pr(Hc = l) +O( 1

nc
). We note that corresponding

bounds hold with the role of clients and agents interchanged. It follows that the number
of points in the bucket chosen next by RANDGEN is asymptotically independent and
identically distributed, where the associated distributions (which depend only on whether
the current bucket is a client or agent bucket) correspond to Ha;Hc. Lemma 5 then follows

29The union bound is also known as Boole�s inequality: for any �nite or countable set of events, the
probability that at least one of the events happens is no greater than the sum of the probabilities of the
individual events.
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from a standard coupling argument, in which we construct T (d; dv) and NR0(nc)
d (v) on the

same probability space.

11.3 Relating the con�guration model back to the original model

We now relate R(nc) to R0(nc) probabilistically. Namely, it is well-known (see e.g. Greenhill
et al. 2006) that

Lemma 6 R(nc) is distributed exactly as R0(nc) conditioned to belong to the set G(nc).

We now bound the probability thatR0(nc) belongs to G(nc). In particular, it follows from
Theorem 1.3 and Lemma 2.1 of Greenhill et. al. (2006) that for the �xed degree distributions
Ha;Hc,

Lemma 7 limnc!1 Pr (R0(nc) 2 G(nc)) > 0.

11.4 Completing the proof of Lemma 4

The only remaining hurdle to proving Lemma 4 is to �reincorporate� the conditioning in-
volving F . This can be proven directly by computing the relevant conditional probabilities.
However, we o¤er an alternative proof that is more general. We show that for almost all
graphs in G(nc), the fraction of nodes whose neighborhood is isomorphic to any given tree
T is approximately the same as the probability that a corresponding i.i.d. random tree is
isomorphic to T . Therefore, the fact that an agent knows her degree and the degrees of
clients connected to her does not a¤ect the agent�s posterior over the global network struc-
ture, or even over her local network structure that is not included in her explicit knowledge.
We do that by proving a concentration result, namely that for any tree T , the variance of
the number of agents whose neighborhood looks like T in R0(nc) goes to zero as nc goes to
in�nity.

Lemma 8 For any rooted tree T , V ar[n�1a
P

ai
I(N

R0(nc)
� (ai) = T )] = O(

1
na
).

Proof. After expanding the variance using its de�nition as the di¤erence between the
expected value of the square and the square of the expectation, the only non-trivial step
in proving Lemma 8 is bounding the covariance of the indicators I(NR0(nc)

� (ai) = T ) and
I(N

R0(nc)
� (aj) = T ) for (arbitrary) nodes ai; aj. To analyze this covariance, we consider imple-

menting RANDGEN in a slightly modi�ed manner- namely, we generate �both�NR0(nc)
� (ai)

and NR0(nc)
� (aj) ��rst�. More precisely, let RANDGEN 0 be the algorithm that is equivalent

to RANDGEN , except at initialization both buckets Ai and Aj are assigned the label 1.
The covariance of I(NR0(nc)

� (ai) = T ) and I(N
R0(nc)
� (aj) = T ) is then bounded by analyzing

RANDGEN 0 to show that NR0(nc)
� (ai) and N

R0(nc)
� (aj) are asymptotically independent (in

an appropriate sense). The analysis proceeds very similarly to our proof of (6), and we omit
the details.
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12 Appendix B: additional proofs

Lemma 1 - Proof. We prove the Lemma for the deterministic case where an agent
a has a particular belief Da that places probability 1 on the network N = (G;R). The
extension for stochastic beliefs follows simply by adding the expectation operation when
applicable.
Denote by �t the order in which edges are chosen in period t. We can represent agents�

strategies in the following way. At the start of each period t each active agent a constructs a
quality function Qta : N1(a) ! f0; 1g, where Qta(c) = 1(0) implies that conditional on a not
having already interacted with another client and client c not having already interacted by
the time the edge (c; a) is chosen in �t, a will cooperate with c.
Assume that all other agents a0 6= a always cooperate. Without loss of generality, any

strategy of a can be described as a mapping fa(t; f��gt�1�=1) = Qta, t � 1. This is true
independent of whether agents observe f��g1t=1 or not. This follows by a simple induc-
tion since: [1] the only freedom agent a has is to set her function Qta; [2] Q

t
a must be

a function of the information available to agent a through stage t � 1; [3] conditional on
all other agents a0 6= a always cooperating this information is fully captured by fQ�agt�1�=1

and fI� (a; c)gc2N1(a);�=1:::t�1; [4] fI
� (c; a)gc2N1(a);�=1:::t�1 is deterministic given fQ

�
agt�1�=1 and

f��gt�1�=1; and [5] Q
1
a must be a function of Da alone.

In fact, we can say more. Note that the periods of the repeated game are probabilistically
identical until agent a defects in some interaction. Hence, there always exists an optimal
strategy in which Qta = Q

1
a up until the smallest t such that a defects for the �rst time in

period t (which we denote by t1a). Similarly, denoting by t
k
a the period in which agent a

defects for the k-th time, it follows that there always exists an optimal strategy in which Qta
is constant for t 2 [1; t1a]; (t1a; t2a]; : : :.
Let ON denote some strategy for a that maximizes the expectation of her total payo¤

conditional on her having a particular belief Da that places probability 1 on the network
N = (G;R), and assuming that all other agents a0 6= a always cooperate and all clients use
ostracizing strategies. Let ON(Q) denote some strategy such that Q�a = Q for every � � t1a,
and such that for every � > t1a the strategy maximizes the expectation of her total payo¤
conditional on her having a particular belief Da that places probability 1 on the network
N = (G;R), and assuming that all other agents a0 6= a always cooperate. Let Qcoop denote
the strategy in which a always cooperates with all clients in all periods. Let uN(Q) denote
the expected total payo¤ for a due to playing strategy Q conditional on her having belief
Da = N , and assuming that all other agents a0 6= a always cooperate and all clients use
ostracizing strategies. For ease of notation, let uN (Q)

�
= uN (ON(Q)), uN

�
= uN (ON), and

ucoopN
�
= uN (Q

coop). For each client c and agent a, let I t (c; a) denote the indicator of the
event that c interacted with a in period t. Let Pr

�
I tN(c; a)

�
denote the probability that

I t(c; a) = 1 in a network N . Then by the stationarity of the game (until period t1a), for any
belief N and strategy Q,
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uN (Q) =
X

c2N1(a):Q(c)=1

Pr
�
I1N(c; a)

�
(� � 
 + � � uN (Q)) (7)

+
X

c2N1(a):Q(c)=0

Pr
�
I1N(c; a)

� �
� + � � uNnEaR(c)

�

+

0@1� X
c2N1(a)

Pr
�
I1N(c; a)

�1A � � � uN (Q)
In particular,

ucoopN = (� � 
) �
X

c2N1(a)

Pr
�
I1N(c; a)

�
+ � � ucoopN (8)

It follows that,

(uN (Q)� ucoopN ) =

�

 + � �

�
uNnEaR(c) � u

coop
N

��
�
P

c2N1(a):Q(c)=0 Pr (I
1
N(c; a))

1� � + � �
P

c2N1(a):Q(c)=0 Pr (I
1
N(c; a))

(9)

Since
P

c2N1(a):Q(c)=0 Pr
�
I1N(c; a)

�
> 0, it follows from (9) that when for every agent a, Da

consists of a single and �xed network N , the vector m = (c; �; �; fDaga2A) admits a TCEO

if and only if for every agent a and each client c 2 N1(a),


 < � �
�
ucoopN � uNnEaR(c)

�
:

Theorem 1 - Proof. We prove Theorem 1 for the following restricted domain of agents�
beliefs: for any agent a, the belief Da is such that Pr (c 2 N1(a)jDa) 2 f0; 1g. Namely, for
any client c 2 C, either agent a believes that she is connected to c with probability 1, or
she believes (with probability 1) that she is not connected to c. The proof of the case that
Pr (c 2 N1(a)jDa) 2 [0; 1] follows the same argument but requires additional notation and
is omitted.
Equations (7) and (8) imply that

ucoopN = (� � 
) �
P

c2N1(a) Pr (I
1
N(c; a))

1� � (10)

42



and

uN = max
Q
[uN (Q)] = (11)

= max
Q

 
�
P

c2N1(a) Pr (I
1
N(c; a))� 


P
c2N1(a):Q(c)=1 Pr (I

1
N(c; a))

1� � + �
P

c2N1(a):Q(c)=0 Pr (I
1
N(c; a))

+
�
P

c2N1(a):Q(c)=0 Pr (I
1
N(c; a))

1� � + �
P

c2N1(a):Q(c)=0 Pr (I
1
N(c; a))

� uNnEaR(c)

!

Finally, noting that in a network of maximum degree �, Pr
�
I1N(c; a)

�
2 [ 1

2��1 ; 1] for all
edges (c; a), Theorem 1 follows by interpreting Equation (11) as a dynamic program (for
computing uN), combined with Lemma 2 and a simple induction, and applying the same
logic to (10).

Proposition 2 - Proof. Consider a randomized matching algorithm that progresses
by examining the edges of a network in a random order (selected u.a.r.) and including an
edge if no incident edges have already been examined. GG study the properties of exactly
this algorithm, which they name GREEDY . We �rst state an important monotonicity
property of GREEDY , which follows from Proposition 1 of GG and a straightforward in-
duction/coupling argument.

Lemma 9 Suppose that bG;G are (rooted) tree networks, and bG can be constructed from
G by performing only the two operations: [1] appending (as children) subtrees to nodes at
even depth in G in an arbitrary way, and [2] removing (as children) subtrees from nodes at
odd depth in G in an arbitrary way (where the depth of the root is 0 by default). Then the
probability that GREEDY matches the root of bG when run on bG is at least the probability
that GREEDY matches the root of G when run on G.

The proof of Proposition 2 then follows from Lemma 9 and interpreting Pr
�
I1N(c; a)

�
as

the probability that edge (c; a) is selected by GREEDY .

Theorem 3 - Proof. Since all agents are symmetric, we have that
E [V (DGF (R1; nc; dA; dC))] = na

P
c2N1(a) Pr(I

t(c; a) = 1), where a is any agent. Further-
more, because only those agents who are active can trade, we have the further re�nement

E
�
V
�
DGF (R1; nc; dA; dC)

��
= �na

X
c2N1(a)

Pr(I t(c; a) = 1j a is active at t): (12)

Let T 1(d; dA; dC) denote the rooted depth-d tree (with root r1) s.t. the root has dA children,
each non-leaf node at odd depth has dC � 1 children, and each non-leaf node at even depth
has dA � 1 children. For 0 < � < 1, let T 1(d; dA; dC ; �) denote the random rooted depth-d
tree (with root r1) constructed by taking T 1(d; dA; dC) and deleting each agent (other than
r1) w.p. � (i.i.d. across agents). For a graph G, letM(G) denote the random greedy graph
matching (on G) constructed by examining the edges of G in a u.a.r. permutation, always
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including an edge i¤ no incident edge has already been included. For a node v 2 G, let
I
�
v 2 M(G)

�
denote the indicator for the event that v is matched in G (equivalently v is

incident to a selected edge). Then it follows from Lemma 3, Lemma 6 of GG, and (12) that
for any � > 0, there exist N�;dA;dC ;�, and d�;dA;dC ;� (depending only on �; dA; dC ; �) s.t. for all
na; nc � N�;dA;dC ;� and d � d�;dA;dC ;�,

jE [V (DGF (R
1; nc; dA; dC))]

na
� �Pr

�
r1 2M

�
T 1(d; dA; dC ; �)

��
j < �; (13)

and thus

E [V (DGF (R1; nc; dA; dC))]
na

� �Pr
�
r1 2M

�
T 1(d; dA; dC ; �)

��
� �: (14)

It follows from Lemma 9 that Pr
�
r1 2M

�
T 1(d; dA; dC ; �)

��
� Pr

�
r1 2M

�
T 1(d; dA; dC)

��
,

since deleting agents is equivalent to removing (as children) subtrees from client nodes. Com-
bining with (14), we �nd that for all na; nc � N�;dA;dC ;� and d � d�;dA;dC ;�

E [V (DGF (R1; nc; dA; dC))]
na

� �Pr
�
r1 2M

�
T 1(d; dA; dC)

��
� �: (15)

We now treat two cases. First, suppose dA � dC . Then it follows from Lemma 9 that

Pr

�
r1 2M

�
T 1(d; dA; dC)

��
� Pr

�
r1 2M

�
T 1(d; dA; dA)

��
: (16)

But it follows from Corollary 6 of GG (in light of Lemma 6 of GG) that for all dA � 3,

lim
d!1

Pr

�
r1 2M

�
T 1(d; dA; dA)

��
= 1� (dA � 1)�

dA
dA�2 : (17)

Thus since dA
dA�2 � 1, we have that

lim
d!1

Pr

�
r1 2M

�
T 1(d; dA; dA)

��
� 1� 1

dA � 1
: (18)

Combining (15),(16), and (18) demonstrates the Theorem for the case dA � dC .

Now, suppose dC � dA. It follows from Lemma 3 that for any �xed d; �; dC ; dA, there exists a
bipartite graph G(d; �; dC ; dA) (with partites C;A) s.t.: 1. all nodes in partite C have degree
dC and all nodes in partite A have degree dA, and 2. a 1�� fraction of nodes in partite A (par-
tite C) have depth-d neighborhoods isomorphic to T 1(d; dA; dC)

�
T 1(d; dC ; dA)

�
. By Lemma

6 of GG, for any �xed �; dC ; dA we may select a su¢ ciently large d
�
= d(�; dC ; dA) s.t. for any

node a belonging to the (at least) (1� �)jAj nodes of partite A with depth-d neighborhoods

isomorphic to T 1(d; dA; dC); jPr
�
a 2M

�
G(d; �; dC ; dA)

��
�Pr

�
r1 2M(T 1(d; dA; dC)

�
j < �.
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Also, for any node c belonging to the (at least) (1 � �)jCj nodes of partite C with depth-

d neighborhoods isomorphic to T 1(d; dC ; dA), jPr
�
c 2 M

�
G(d; �; dC ; dA)

��
� Pr

�
r1 2

M
�
T 1(d; dC ; dA)

�
j < �. Combining the above, we �nd that for the graph G(d; �; dC ; dA),

jE[
X
c2C

I

�
c 2M

�
G(d; �; dC ; dA)

��
]� jCjPr

�
r1 2M

�
T 1(d; dC ; dA)

��
j � 2�jCj; (19)

and

jE[
X
a2A

I

�
a 2M

�
G(d; �; dC ; dA)

��
]� jAjPr

�
r1 2M

�
T 1(d; dA; dC)

��
j � 2�jAj: (20)

Note that since the number of matched nodes in partite A always equals the number of

matched nodes in partite C, one has E[
P

c2C I

�
c 2M

�
G(d; �; dC ; dA)

��
] = E[

P
a2A I

�
a 2

M
�
G(d; �; dC ; dA)

��
]. It thus follows from (19) and (20) that

jPr
�
r1 2M

�
T 1(d; dC ; dA)

��
� dC
dA
Pr

�
r1 2M

�
T 1(d; dA; dC)

��
j � 2�(1 + dC

dA
); (21)

and

lim
d!1

Pr

�
r1 2M

�
T 1(d; dC ; dA)

��
=
dC
dA

lim
d!1

Pr

�
r1 2M

�
T 1(d; dA; dC)

��
: (22)

Combining with (15), we �nd that for any �xed �; dA; dC ; � there existN 0
�;dA;dC ;�

, and d0�;dA;dC ;�
s.t. for all na; nc � N 0

�;dA;dC ;�
; d � d0�;dA;dC ;�,

E [V (DGF (R1; nc; dA; dC))]
na

� �dA
dC
Pr

�
r1 2M(T 1(d; dC ; dA)

��
� �: (23)

It follows from Lemma 9 that Pr
�
r1 2 M

�
T 1(d; dC ; dA)

��
� Pr

�
r1 2 M

�
T 1(d; dC ; dC)

��
:

Combining with (18) (replacing dA by dC) and taking limits demonstrates the theorem for
the case dC � dA.

Corollary 2 - Proof. Part 1: Let � = 1 and � � 1. Let N = (G;R) be any network
that satisfy the following: [1] for every c 2 C, dc = 1; and [2] max fdaga2A = 1. The network
N consists of nc client-agent pairs and �nc � nc agents that are not connected to any client
(R can be chosen arbitrarily). Let �N put probability 1 on the network N . Then,

E[V (�N)] = nc and min
a2A

IC(
; �; �; �;�N) =
�(� � 
)
1� � � �� 
 > 0: (24)

Plugging (24) into the de�nition of WL (nc; na; 
; �; �; �) completes the proof. The proof
for the case where � < 1 is symmetric.
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Part 2: Assume by contradiction that for every � there exists � > � such that
WL (nc; �nc; 
; �; �; �) = 0. Let nta be the number of agents that are active in period t. The
contradiction assumption implies that there exists�N such that in every periodmin fnc; ntag
interactions take place and that mina2A IC(
; �; �; �;�N) > 0. However, given that � < 1,
to satisfy that in every period min fnc; ntag interactions take place, �N must provide each
agent with a positive probability of interacting in every period that she is active. Thus, for
� > 1

�
, mina2A IC(
; �; �; �;�N) <

�(��
)
1�� � 1

�
� 
 which is guaranteed to be negative for any

� > �(��
)
(1��)
 . This completes the proof by contradiction to mina2A IC(
; �; �; �;�N) > 0.
Part 3: Let � � 1

�
and na = 1

�
� nc. Let �N assign identical probability to any network

that is possible conditional on the following: [1] da = dA for exactly na agents and da = 0
for na � na agents; and [2] dc = dC =

1
�
� dA for every c 2 C. Combining Theorem 3 and

Equation (3) we get that

lim
dA!1

lim
nc!1

E [V (�N)]

nc
� 1 ; and lim

dA!1
lim
nc!1

IC (
; �; �; �;�N) � �(� � 
)
1� � � �� 
 > 0;

which completes the proof. The proof for the case where � < 1
�
is much simpler and follows

a similar logic and therefore omitted.
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