Market Design: Theory and Applications Auction Theory

Instructor: Itay Fainmesser

Fall 2011

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Today

- Auction Theory Basics:
 - 1. Bidding and Equilibria in Independent Private Values (IPV) model
 - 2. Revenue Equivalence
 - 3. Common Values
- Internet Auctions: eBay vs. Amazon

The Independent Private Values Model

Basic Auction Environment:

- ▶ Bidders *i* = 1, ..., *n*
- One object to be sold
- ▶ Bidder *i* observes a "signal" S_i ~ F(·), with typical realization s_i ∈ [s, s]. Assume F is continuous.
- Bidders' signals $S_1, ..., S_n$ are independent.
- Bidder *i*'s value $v_i(s_i) = s_i$.
- A set of auction rules will give rise to a game between the bidders.

◆□> ◆□> ◆目> ◆目> ◆目> ◆□>

Two important features of the model:

- Bidder i's information (signal) is independent of bidder j's information (signal).
- Bidder i's value is independent of bidder j's information (i.e. private values).

Vickrey (Second-Price) Auction

Auction Rules:

- Bidders are asked to submit sealed bids $b_1, ..., b_n$.
- Bidder who submits the highest bid wins the object.
- Winner pays the amount of the second highest bid.

Proposition

In a second price auction, it is a (weakly) dominant strategy to bid one's value, $b_i(s_i) = s_i$.

In a second price auction, it is a (weakly) dominant strategy to bid one's value, bi (si) = si .

Proof. Bidding b_i means *i* will win if and only if the price is below b_i .

Bid $b_i > s_i \Rightarrow$ sometimes win at price above value. Bid $b_i < s_i \Rightarrow$ sometimes lose at price below value.

Expected Vickrey Auction Revenue

- Seller's revenue equals second highest value.
- Let $S^{i:n}$ denote the i^{th} highest of *n* draws from distribution *F*.
- Seller's expected revenue is

$$\mathbb{E}\left[S^{2:n}\right]$$
 .

• If $F(\cdot)$ is the uniform distribution over [0, 1], then

$$\mathbb{E}\left[S^{2:n}\right] = \frac{n-1}{n+1}$$

For example, in an auction with 10 participants, each of whom values the object at a (uniformly) random value between \$0 and \$10, then the expected revenue for the seller is about \$8.18 [Check for yourself!].

Open Ascending Auction

Auction Rules:

- Prices rise continuously from zero.
- Bidders have the option to drop out at any point.
- Auction ends when only one bidder remains.
- Winner pays the ending price.

Leaving aside concerns of information, these two auction formats are actually the same!

- Leaving aside concerns of information, these two auction formats are actually the same!
- Why is this the case?

- Leaving aside concerns of information, these two auction formats are actually the same!
- Why is this the case?
 - In a Vickery auction, the winner pays the bid of the next-highest bidder.

- Leaving aside concerns of information, these two auction formats are actually the same!
- Why is this the case?
 - In a Vickery auction, the winner pays the bid of the next-highest bidder.
 - In an Open Ascending auction, the winner is crowned when the next highest bidder drops out. When will this occur?

Sealed Bid (First-Price) Auction

Auction Rules:

- Bidders submit sealed bids $b_1, ..., b_n$.
- Bidders who submits the highest bid wins the object.
- Winner pays his own bid.

Under these rules, bidders will want to shade bids below their values. Why is this the case?

Sealed Bid (First-Price) Auction

Example: $F(\cdot)$ is the uniform distribution over [0, 1].

- Suppose bidders $j \neq i$ bid $b_j = a \cdot s_j$
- Bidder i's expected payoff:

$$U(b_i, s_i) = (s_i - b_i) \cdot \Pr[b_j = b(S_j) \le b_i, \forall j \ne i]$$

= $(s_i - b_i) \cdot \Pr[a \cdot s_j \le b_i]^{n-1}$
= $(s_i - b_i) \cdot \Pr\left[s_j \le \frac{b_i}{a}\right]^{n-1}$
= $(s_i - b_i) \cdot \left[\frac{b_i}{a}\right]^{n-1}$
= $(s_i - b_i) \cdot \frac{(b_i)^{n-1}}{a^{n-1}}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Sealed Bid (First-Price) Auction - Example

- Suppose bidders $j \neq i$ bid $b_j = a \cdot s_j$
- Bidder i's expected payoff:

$$U(b_i, s_i) = (s_i - b_i) \cdot \frac{(b_i)^{n-1}}{a^{n-1}}$$

First order condition:

$$0 = (s_i - b_i) \cdot \frac{(n-1)(b_i)^{n-2}}{a^{n-1}} - \frac{(b_i)^{n-1}}{a^{n-1}}$$

and

$$b_i = \frac{n-1}{n} \cdot s_i$$

Expected First Price Auction Revenue

$$\mathbb{E}\left[b(S^{1:n})\right] = \mathbb{E}\left[\frac{n-1}{n} \cdot S^{1:n}\right] = \frac{n-1}{n} \cdot \frac{n}{n+1} = \frac{n-1}{n+1}$$

▶ So first and second price auction yield same expected revenue.

Revenue Equivalence Theorem

Theorem (Revenue Equivalence)

Suppose *n* bidders have values $s_1, ..., s_n$ identically and independently distributed with CDF $F(\cdot)$. Then any equilibrium of any auction game in which *(i)* the bidder with the highest value wins the object, and *(ii)* a bidder with value <u>s</u> gets zero profits, generates the same revenue in expectation.

Using the Revenue Equivalence Theorem

Many applications of the revenue equivalence theorem.

If the auction equilibrium satisfies (i) and (ii), we know:

- Expected Revenue
- Expected Bidder Profits (payoff equivalence)
- Expected Total Surplus

We can use this to solve for auction equilibria.

All-Pay Auctions

- Bidders 1, .., n
- ▶ Values $s_1, ..., s_n$, i.i.d. with CDF F
- Bidders submit bids b₁, ..., b_n
- Bidder who submits the highest bid gets the object.
- Every bidder must pay his or her bid.

Solving the All-Pay Auction

Suppose all pay auction has a symmetric equilibrium with an increasing strategy $b^A(s)$. Then it must be that $b^A(\underline{s}) = 0$.

In this equilibrium, i's expected payoff given value s_i will be:

$$U(s_i) = s_i \cdot \left[F(s_i)\right]^{n-1} - b^{\mathcal{A}}(s_i)$$

and in our example of uniform distribution of s_i :

$$U(s_i) = s_i \cdot (s_i)^{n-1} - b^A(s_i)$$

= $\left(s_i - \frac{n-1}{n} \cdot s_i\right) \cdot \frac{\left(\frac{n-1}{n} \cdot s_i\right)^{n-1}}{\left(\frac{n-1}{n}\right)^{n-1}}$

So

$$b^{A}(s_{i}) = (s_{i})^{n} - rac{1}{n-1} (s_{i})^{n} = rac{n-1}{n} \cdot (s_{i})^{n}$$

*ロト *個ト *ミト *ミト ・ミー のくや

Other Revenue Equivalent Auctions

 The English (oral ascending) auction. All bidders start in the auction with a price of zero. Price rises continuously; bidders may drop out at any point in time. Once they drop out, they cannot re-enter. Auction ends when only one bidder is left; this bidder pays the price at which the second-to-last bidder dropped out.

Other Revenue Equivalent Auctions

- The English (oral ascending) auction. All bidders start in the auction with a price of zero. Price rises continuously; bidders may drop out at any point in time. Once they drop out, they cannot re-enter. Auction ends when only one bidder is left; this bidder pays the price at which the second-to-last bidder dropped out.
- 2. The Dutch (descending price) auction. The price starts at a very high level and drops continuously. At any point in time, a bidder can stop the auction, and pay the current price. Then the auction ends.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

"Common Value" Auctions

We would like to generalize the model to allow for the possibility that:

- 1. Learning bidder j's information could cause bidder i to re-assess his estimate of how much he values the object,
- 2. The information of *i* and *j* is not independent (when *j*'s estimate is high, *i*'s is also likely to be high).

Examples:

- Selling natural resources such as oil or timber.
- Selling financial assets such as treasury bills.
- Selling a company.

Second Price Auction with Common Values - Example

Two bidders.

▶
$$v(s_1, s_2) = s_1 + s_2$$

▶ *s_i*~*U*[0, 1]

Observations:

1.
$$E[v(s_1, s_2)|s_2] = s_1 + \frac{1}{2}$$

2. $b(s_1) = s_1 + \frac{1}{2}$ and $b(s_2) = s_2 + \frac{1}{2}$ is not an equilibrium.

3. The winner's curse.

Failure of Revenue Equivalence Theorem

- The RET does not hold in this more general environment.
- Basic idea: bidders profits are due to information rents. When signals / values are correlated, information rents can be reduced if "more information" is used in setting the price.
- Example: English auction generates more revenue than a second price auction.