
Redesign of the National Resident Matching 
Program

We turn next to think about 

• Theory as an input to design 
• and why it’s not the only input, 
• and what some other inputs might be…

To put it another way, we want to think about what makes 
design difficult, taking as a case study the redesign of the 
NRMP.

That matching is difficult turns out to be an ancient 
observation…



Midrash Rabbah (VaYikra Rabbah)
Translated into English under the editorship of Rabbi Dr. H. Freedman, and Maurice Simon,
Leviticus, Chapters I-XIX translated by Rev. J. Israelstam, Soncino Press, London, 1939
Chapter VIII (TZAV)

A Roman lady asked R. Jose b. Halafta: ‘In how many days did the 
Holy One, blessed be He, create His world”’  He answered: ‘In six 
days, as it is written, For in six days the Lord made heaven and earth, 
etc.(Ex. XXXI, 17).  She asked further: ‘And what has He been doing 
since that time?’  He answered: ‘He is joining couples [proclaiming]: 
“A’s wife [to be] is allotted to A; A’s daughter is allotted to B; (So-and-so’s wealth is 
for So-and-so).”’1 Said she: ‘This is a thing which I, too, am able to do. See how 
many male slaves and how many female slaves I have; I can make them consort 
together all at the same time.’  Said he: ‘If in your eyes it is an easy task, it is in 
His eyes as hard a task as the dividing of the Red Sea.’ He then went away and 
left her.  What did she do?  She sent for a thousand male slaves and a thousand 
female slaves, placed them in rows, and said to them: ‘Male A shall take to wife 
female B; C shall take D and so on.’  She let them consort together one night.  In 
the morning they came to her; one had a head wounded, another had an eye 
taken out, another an elbow crushed, another a leg broken; one said ‘I do not 
want this one [as my husband],’ another said: ‘I do not want this one [as my wife].’

1.  M.K. deletes this as irrelevant.  But E.J. explains: A’s wealth is to be given to B, as a dowry for the former’s daughter.
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Roth, A. E. and Elliott Peranson, “The Redesign of the Matching Market for 
American Physicians: Some Engineering Aspects of Economic Design,” American 
Economic Review, 89, 4, September, 1999, 748-780.

Some NRMP "match variations:” What makes the NRMP different 
from a simple college admissions model is that it has complications 
which sometimes cause two positions to be linked to one another, 
and sometimes cause the number of positions to change. 

In the first category of differences are couples, who submit rank 
orders of pairs of programs and must be matched to two positions; 
and applicants who match to 2nd year positions and have 
supplemental lists which must then be consulted to match them to 
1st year positions. 

In the second category are requests by residency programs to have 
an even or an odd number of matches, and reversions of unfilled 
positions from one program to another. 3



These complications matter for two related reasons:

1. They may change the properties of the match; 
and

2. The clearinghouse algorithm must be designed to 
accommodate them

Let’s take a look at how we might model couples, for 
example (keeping in mind that we’ll eventually have to 
take account of all the match variations, not just 
couples…)
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A More Complex Market: Matching with Couples 
This model is the same as the college admissions model, except the set 
of workers is replaced by a set of applicants that includes individuals and 
couples.

Denote the set of applicants by A = A1∪C, where A1 is the set of 
(single) applicants who seek no more than one position, and C is the set 
of couples {ai, aj} such that ai is in the set A2 (of husbands) and aj is in the 
set A3, and the sets of applicants A1, A2, and A3 together make up the 
entire population of individual applicants, A' = A1∪A2∪A3. 

Each couple c={ai,aj} in C has preferences over ordered pairs of positions, 
i.e. an ordered list of elements of FxF.  The first element of this list is 
some (ri,rj) in FxF which is the couples' first choice pair of jobs for ai and aj

respectively, and so forth. 

Applicants in the set A1 have preferences over residency programs, and 
residency programs (firms) have preferences over the individuals in A', 
just as in the simple model discussed earlier.  (That is, firms view the 
members of a couple as two distinct individuals…) 5



A matching is a set of pairs in FxA‘.

Each single applicant, each couple, and each residency program 
submits to the centralized clearinghouse a Rank Order List (ROL) 
that is their stated preference ordering of acceptable alternatives.

A  matching µ is blocked by a single applicant (in the set A1), or by 
a residency program, if µ matches that agent to some individual or 
residency program not on its ROL.  

A matching is blocked by an individual couple (ai,aj) if they are 
matched to a pair (ri,rj) not on their ROL.  

A residency program r and a single applicant a in A1 together 
block a matching µ precisely as in the college admissions market, if 
they are not matched to one another and would both prefer to be. 
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A couple c=(a1,a2) and residency programs r1 and r2 block µ if the 
couple prefers (r1,r2) to µ(c), and either r1 and r2 each would prefer 
to be matched to the corresponding couple member, or if one of 
them would prefer, and the other already is matched to the 
corresponding couple member.  That is, c and (r1,r2) block µ if

1. (r1,r2) >cµ(c); and if either 

2. {(a1∉ µ(r1), and  a1 >r1 ai for some ai ∈µ(r1)  or a1 is acceptable to 
r1 and |µ(r1)| < q1 } and either a2∈µ(r2) or {a2 ∉ µ(r2),  a2 >r2 aj

for some aj ∈µ(r2)  or a2 is acceptable to r2 and |µ(r2)| < q2}

or 

3. a1∈µ(r1) and {a2 ∉ µ(r2), and a2 >r2 aj for some aj ∈µ(r2)    or a2 is 
acceptable to r2 and |µ(r2)| < q2} 
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A matching is stable if it is not blocked by any 
individual or by a an individual and a residency 
program, or by a couple together with one or 
two residency programs.

Theorem 5.11 (Roth ’84): In the college 
d d l h l h fadmissions model with couples, the set of 
stable matchings may be empty.

Proof: by (counter) example. 
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Example--market with one couple and no stable matchings (motivated by Klaus 
and Klijn, and Nakamura (JET corrigendum 2009 to K&K JET 2005): 

Let c=(s1,s2) be a couple, and suppose there is another single student s3, and 
two hospitals h1 and h2.  Suppose that the acceptable matches for each agent, 
in order of preference, are given by

c: (h1,h2); s3: h1, h2,
h1: s1, s3; h2: s3, s2

Then no individually rational matching μ (i.e. no μ that matches agents only to 
acceptable mates) is stable. We consider two cases, depending on whether the 
couple is matched or unmatched.

Case 1: μ(c)=(h1,h2). Then s3 is unmatched, and s/he and h2 can block μ, 
because h2 prefers s3 to μ (h2)=s2.

Case 2: μ (c)=c (unmatched).  If μ (s3)=h1, then (c, h1,h2) blocks μ. If μ (s3)=h2 
or μ (s3)=s3 (unmatched), then (s3,h1) blocks μ.
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Furthermore, the following example shows that even when the set of stable 
matchings is non-empty, it may no longer have the nice properties we’ve come to 
expect.

Matching with couples  (Example of Aldershof and Carducci, ’96)
4 hospitals {h1,…h4} each with one position;  
2 couples {s1,s2} and {s3,s4}

Preferences:
h1 h2 h3 h4 {s1,s2} {s3,s4}
S4 s2 s2 s2 h3h2 h2h1
S3 s3 s4 s3 h2h3 h2h3

S1 s1 h2h4 h1h3
h3h4 h4h1
u h3 h4h3
u h2
u h4
h3 u
h2 u
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There are exactly two stable matchings:  h1,…h4 are either 
matched to:

h1 h2 h3 h4
(s4 s2 s1 s3) h1, h2, h4, {s1,s2} prefer this

or to

(s4 s3 s2 u) h3, {s3,s4} prefer this

So, even when stable matchings exist, there need not be an 
optimal stable matching for either side, and employment 
levels may vary.
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So we can start to note theorems about simple markets whose conclusions 
do not carry over to markets with the NRMP match variations (or just with 
couples).

In a simple matching market:

1. the set of stable matchings is always nonempty

2. the set of stable matchings always contains a "program optimal" stable 
matching, and an "applicant optimal" stable matching. 

3. the same applicants are matched and the same positions are filled at 
every stable matching.  

Similarly, strategic results about simple markets won’t carry over unchanged 
to the more complex medical market. 
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Strategic behavior in simple markets (without match variations):

1. In simple markets, when the applicant proposing algorithm is used, but not 
when the hospital proposing algorithm is used, no applicant can possibly 
improve his match by submitting an ROL that is different from his true 
preferences.

2. In simple markets when the program proposing algorithm is used, every 
applicant who can do better than to submit his true preferences as his ROL 
can do so by submitting a truncation of his true preferences.  

3. In simple markets, when the program proposing algorithm is used, the only 
applicants who can do better than to submit their true preferences are those 
who would have received a different match from the applicant proposing 
algorithm.  

Furthermore, the best such applicants can do is to obtain the applicant optimal 
match.
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Descriptive Statistics: NRMP

 1987 1993 1994 1995 1996 
APPLICANTS       
Primary ROL’s 20071 20916 22353 22937 24749 
Applicants with Supplemental 
ROL’s 

1572 2515 2312 2098 2436 

Couples      
   Applicants who are Coupled 694 854 892 998 1008 
PROGRAMS      
Active Programs 3225 3677 3715 3800 3830 
Active Programs with ROL 
Returned 

3170 3622 3662 3745 3758 

Potential Reversions of 
Unfilled Positions 

     

   Programs Specifying 
Reversion 

69 247 276 285 282 

 Positions to be Reverted if 
Unfilled 

225 1329 1467 1291 1272 

Programs Requesting Even 
Matching 

4 2 6 7 8 

 Total Quota Before Match 19973 22737 22801 22806 22578 
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Because conclusions about simple markets can have counter 
examples in the complex medical market, there are points atexamples in the complex medical market, there are points at 
which we have to rely on computational explorations to see 
how close an approximation the simple theory provides for the 

l kcomplex market.

Computation proved useful in three places:Computation proved useful in three places:

1. Computational experiments were used in the algorithm 
design.

2. Computational explorations of the data from previous 
years were used to study the effect of different algorithmsyears were used to study the effect of different algorithms.

3. Theoretical computation, on simple markets, was used to 
understand the relation between market complexity and 
market size. 
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what class of algorithms we might want to explore?

The deferred acceptance algorithm for simple matching models gave us aThe deferred acceptance algorithm for simple matching models gave us a 
one pass algorithm; it starts with everyone unmatched, and never cycles –
we’re probably not going to be able to do that in the complex problem.

What about building a stable matching (if one existed), resolving blocking 
pairs as we identified them?

E.g. if (m’,w’) is a blocking pair for a matching μ, a new matching ν can be 
obtained from μ by satisfying the blocking pair if m' and w' are matched to 
one another at ν, their mates at μ (if any) are unmatched at ν, and all other 
agents are matched to the same mates at ν as they were at μ.

But even for the simplest models this can cycle, and might not converge to 
a stable matching (see the discussion of Example 2.4 in Roth and 
Sotomayor).

In the marriage model there’s a way around this problem. 
16



Theorem 2.33 (Roth and Vande Vate): Let μ be an 
arbitrary matching for (M, W, P). Then there exists 
a finite sequence of matchings , such 
that  is stable, and for each  , 
there is a blocking pair  for  such that 

follows from  by satisfying the pair 
.
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Elements of the proof:  Let µ1 be an arbitrary (w.l.o.g individually 
rational) matching with blocking pair (m1,w1).  Let µ2 be the matching 
obtained by satisfying the blocking pair, and define the set A(1) = 
{m1,w1}.

Inductive assumption: Let A(q) be a subset of M∪W such that 
there are no blocking pairs for µq+1 contained in A(q), and such that  
µq+1 does not match any agent in A(q) to any agent outside of A(q).

Then if µq+1 isn’t stable, there is a blocking pair (m’,w’) such 
that at most one of m’ and w’ is contained in A(q).    (If neither of 
{m’,w’} is in A(q), let A(q+1) = A(q)∪{m’,w’} and let µq+2 be obtained 
from µq+1 by satisfying the blocking pair (m’,w’).

Otherwise, one of the pair is in A(q), say m’ (in the other case 
the symmetric argument will apply).   Let A(q+1) = A(q)∪{w’}.  Now run 
the deferred acceptance algorithm, just in the set A(q+1), starting with 
w’ proposing and continuing until a matching is reached with no 
blocking pairs among the members of A(q+1).  The output is µq+2.  



This suggests a new class of algorithms, of which the deferred acceptance 
algorithm is a special case. 

Start with an arbitrary matching µ, and select a subset A of agents such 
that there are no blocking pairs for µ contained in A, and µ does not match 
any agent in A to any agent not in A.  

(For example, A could be a pair of agents matched under µ, or a single 
agent, or the set of all men.)  

A new player, say woman w, is selected to join A.  If no man in A is part of a 
blocking pair with woman w, we may simply add her to A without changing 
the matching.  Otherwise, select the man m whom woman w most prefers 
among those in A with whom she forms a blocking pair, and form a new 
matching by satisfying this blocking pair.  If there is a woman w' = µ(m), 
then she is left unmatched at this new matching, and so there may now be 
a blocking pair (w',m') contained in A.  If so, choose the blocking pair most 
preferred by w' to form the next new matching.  
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The process continues in this way within the set A∪{w}, like the deferred 
acceptance algorithm with women proposing, satisfying the blocking pairs which 
arise at each step until the process terminates with a matching µi having no 
blocking pairs within Ai = S∪{w}.  

The process can now be continued, with the selected set Ai growing at each 
stage.  At each stage, the selected set has no blocking pairs in it for the 
associated matching µI, and so the process converges to a stable matching when 
Ak = M∪W.

In the deferred acceptance algorithm with men proposing, the initial matching µ
is the one at which all agents are single, and the initial set A is A=W.

In the deferred acceptance algorithm with men proposing, the welfare of the 
women rises monotonically throughout the algorithm. In this more general class 
of algorithms there is no parallel, since agents from either side may be 
introduced into the set A.  But the set A itself grows, so the algorithm converges.

So, we’ll be looking for an algorithm that accumulates agents not involved in 
blocking pairs…
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Computational experiments in the algorithm design (taken from the 
actual design process of the the applicant‐proposing algorithm)g p pp p p g g )

First, a conceptual design was formulated and circulated for comment, 
based on the family of algorithms explored (for the marriage model) in y g p ( g )
Roth and VandeVate (1990).

To code this into a working algorithm, a number of choices had to beTo code this into a working algorithm, a number of choices had to be 
made, concerning the sequence in which operations would be 
conducted. 

Computational experiments were performed before making sequencing 
choices. 

(Throughout the algorithm design process, progress reports were 
posted on the web, where they were available to all interested parties. 
Since designs often have to be adopted my multiple constituencies theSince designs often have to be adopted my multiple constituencies, the 
design process might be important…) 

21



• Do sequencing differences cause substantial or predictable changes 
in the match result (e.g. do applicants or programs selected first do 
better or worse than their counterparts selected later)?

• Does the sequence of processing affect the likelihood that an 
algorithm will produce a stable matching?  

Experiments to test the effect of sequencing  were conducted using data from 
three NRMP matches: 1993, 1994, and 1995.

The results were that sequencing effects existed, but were unsystematic, and 
effected on the order of 1 in 10,000 matches. 

(In the majority of years and algorithm sequences examined, the match was 
unaffected by changes in sequencing of algorithm operations, and in the 
majority of the remaining cases only 2 applicants received different matches.)

However sequencing decisions did influence the speed of convergence to a 
stable matching.
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Based on the sequencing experiments described above, the following 
decisions were made pertaining to the design of the applicant proposing 
algorithm for the NRMP:

1. All single applicants are admitted to the algorithm for processing 
before any couples are admitted.

2. Single applicants are admitted for processing in ascending sequence 
by applicant code.

3. Couples are admitted for processing in ascending sequence by the 
lower of the two applicant codes of the couple.

When a program is selected from the program stack for processing, the 
applicants ranked by the program are processed in ascending order by 
program rank number (i.e. in order of the program’s preferences).
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Computational Exploration of the Difference Between Program and Applicant 
Proposing Algorithms

 1987 1993 1994 1995 1996 
APPLICANTS      
Number of Applicants 
Affected 

20 16 20 14 21 

Applicant Proposing 
Result Preferred 

12 16 11 14 12 

Program Proposing 
Result Preferred 

8 0 9 0 9 

 New Matched 0 0 0 0 1 
 New Unmatched 1 0 0 0 0 
      
PROGRAMS      
Number of Programs 
Affected 

20 15 23 15 19 

Applicant Proposing 
Result Preferred 

8 0 12 1 10 

Program Proposing 
Result Preferred 

12 15 11 14 9 

 Programs with 
New Position(s) Filled 

0 0 2 1 1 

 Programs with 
New Unfilled Positions 

 
1 

 
0 

 
2 

 
0 

 
0 
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If this were a simple market, the small number of applicants 
whose matching is changed when we switch from hospitals 
proposing to applicants proposing would imply that there was 
also little room for strategic behavior when it comes time to 
state rank order lists.

We can find out if this is also true in the complex market with 
computational experiments.  It turns out that we don’t have to 
experiment on each individual separately, to put an upper 
bound on how many individuals could profitably manipulate 
their preferences.

(For the moment, we treat the submitted preferences as the 
true preferences—we’ll see in a minute why that is justified.)
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Computational experiments to find upper bounds for the scope of strategic 
behavior

Truncations at the match point (to check if examining truncations is sufficient in 
the multi-pass algorithm…)

Difference in result for both the program proposing algorithm and the applicant 
proposing algorithm when applicant ROLs truncated at the match point:

1993 1994 1995

none 2 applicants improve, same 
positions filled

2 applicants improve, same 
positions filled

Difference in result for the program proposing algorithm when program ROLs 
truncated at the match point:

1993 1994 1995

none none 2 applicants do worse, same 
positions filled
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Difference in result for the applicant proposing algorithm 
when program ROLs truncated at the match point:

1993 1994 1995

none
3 applicants do worse, same number 
of positions filled, but not same 
positions [3 programs filled one less 
position, 1 program filled 1 more 
position, 1 program filled 2 more 
positions, 1 additional position was 
reverted from one program to 
another].

none
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Results for Iterative Truncations of Applicant ROL’s just above the match 
point

1993 1994

Program Proposing Algorithm Applicant Proposing Program Proposing Algorithm Applicant Proposing

Truncated Truncated & 
Improved

Truncated Truncated & 
Improved

Truncated Truncated & 
Improved

Truncated Truncated & 
Improved

Run 1 17209 4546 17209 4536 17725 4935 17725 4934

Run 2 4546 2093 4536 2082 4935 2361 4934 2359

Run 3 2093 1036 2082 1023 2361 1185 2359 1183

Run 4 1036 514 1023 498 1185 602 1183 598

Run 5 514 258 498 241 602 292 598 287

Run 6 258 135 241 116 292 151 287 143

Run 7 135 73 116 52 151 75 143 66

Run 8 73 48 52 25 75 40 66 31

Run 9 48 34 25 12 40 27 31 17

Run 10 34 27 12 5 27 18 17 7

Run 11 27 24 5 2 18 14 7 3

Run 12 24 22 2 0 14 13 3 2

Run 13 22 22 13 13 2 2
29



The truncation experiments with applicants' ROLs yield the following upper 
bounds for the two algorithms in the years studied.

Upper limit of the number of applicants who 
could benefit by truncating their lists at one 
above their original match point: 

1987 1993 1994 1995 1996

Program-Proposing Algorithm
12 22 13 16 11

Applicant-Proposing Algorithm
0 0 2 2 9

As expected, more applicants can benefit from list truncation under the 
program-proposing algorithm than under the applicant-proposing algorithm.   
Note that the number of applicants who could even potentially benefit from 
truncating their ROLs under the program-proposing algorithm is in each year 
almost exactly equal to the number of applicants who received a preferred 
match under the applicant proposing match (line 2 of Table 2).  This suggests 
that this upper bound is very close to the precise number that would be 
predicted in the absence of match variations. 30



The truncation experiments with programs' ROLs yield the following upper bounds.

Upper limit of the number of programs that could benefit by 
truncating their lists at one above the original match point:

1987 1993 1994 1995 1996

Program-Proposing Algorithm 15 12 15 23 14

Applicant-Proposing Algorithm 27 28 27 36 18

As expected, some programs can benefit from list truncation under either algorithm. 
However, consistently more programs benefit from list truncation under the applicant-
proposing algorithm than under the program-proposing algorithm.  Note that although 
the numbers of programs in these upper bounds remain small, they are in many cases 
about twice as large as the number of programs which received a preferred match at the 
stable matching produced by the algorithm other than the one being manipulated. 

Refined estimate of the upper limit of the number of programs that could improve 
their results by truncating their own ROL’s in 1995  (Based on 50% sample):

Program Proposing Algorithm Applicant Proposing Algorithm

Original Results 23 36

Current Estimate (still an upper limit) 12 22
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Residency programs have another dimension on which they can manipulate; they not 
only have to report their preferences, but also how many positions they wish to fill.  As 
we’ve seen in examples of the (simple) college-admissions model, and as in multi-unit 
auctions, they may potentially benefit from demand reductions.

(And for an impossibility theorem on avoiding capacity manipulation, see Sonmez, Tayfun [1997], 
"Manipulation via Capacities in Two-Sided Matching Markets," Journal of Economic Theory, 77, 1, November, 
197-204.)

Revised Estimate of the Upper Bound of the Number of Programs That Could Improve 
Their Remaining Matches By Reducing Quotas 

1987 1993 1994 1995 1996

Program Proposing Algorithm 28 16 32 8 44

Applicant Proposing Algorithm 8 24 16 16 32

This will be worth thinking about again—a small cloud on the horizon—when we 
consider what temptations may exist for residency programs to hire some of their 
people early, before the match.  If there are such temptations, they may not be 
counterbalanced by a tendency to do worse in the match, on the contrary, reducing 
demand may have small spillover benefits in the match for the remaining 
candidates…
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Overall, the striking thing about all these computational results is how small the set of 
stable outcomes appear to be; i.e. how few applicants or programs are affected by a 
switch from program proposing to applicant proposing, and how small are the 
opportunities to misrepresent preferences or capacities.

But we don’t really understand the structure of the set of stable matchings when there 
are couples, supplementary lists, and reversion of positions from one program to another.  
So there’s a chance that we’re making a big mistake here.  

For example, we know that program and applicant optimal stable matchings no longer 
exist, but we’ve been studying the set of stable matchings by looking at the outcomes of 
the program and applicant proposing algorithms.  Maybe the set of stable matchings isn’t 
all located between these two matchings when all the match variations are present; 
maybe the set of stable matchings just appears to be small because we don’t know where 
to look.   

Even if our conclusions are correct, we’d like to know why.  Could it be some spooky 
interaction between the size of the market and the presence of complications?  Or does 
the core simply get small as the market gets large, even in simple markets?

Two approaches:
• Empirical: examine some simple markets
• Theoretical/computational: explore some artificial simple markets 
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The Thoracic surgery match is a simple match, with no match variations.  It exactly fits 
the college admissions model; those theorems all apply.

Descriptive statistics and original Thoracic Surgery match results

1991 1992 1993 1994 1996

Applicant ROL’s 127 183 200 197 176

Active Programs 67 89 91 93 92

Program ROL’s 62 86 90 93 92

Total Quota 93 132 141 146 143

Positions Filled 79 123 136 140 132

Difference in Thoracic Surgery results when algorithm changed from program 
proposing to applicant proposing:

1991 1992 1993 1994 1996

none
2 applicants improve
2 programs do worse

2 applicants improve
2 programs do worse

none none
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Theoretical computation on a simple model

Simple model: n firms, n workers, (no couples) 
uncorrelated preferences, each worker applies to k 
firms.

C(n) = number of workers matched differently at μF and 
μW
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Large core with k=n: C(n)/n is the proportion of workers who receive different 
matches at different stable matchings, in a simple market (no couples) with n 
workers and n firms (each of which employs one worker) when preferences are 
uncorrelated and each preference list consists of all n agents on the other side of 
the market. (from Roth and Peranson, 1999)  Note that as the market grows large in 
this way, so does the set of stable matchings, in the sense that for large markets, 
almost every worker is effected by the choice of stable matching.
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Small core of large markets, with k fixed as n grows: C(n)/n is the proportion of 
workers who receive different matches at different stable matchings, in a simple 
market with n workers and n firms, when each worker applies to k firms, each 
firm ranks all workers who apply, and preferences are uncorrelated. (from Roth 
and Peranson, 1999).  Note that for any fixed k, the set of stable matchings grows 
small as n grows large.
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The numerical results show us that C(n)/n gets small as n gets 
large when k is fixed, (even) for uncorrelated preferences.

And of course, in these simulated markets, we see that the core 
gets small not because of strategic behavior—these are the true 
preferences.

This also implies that in large markets it is almost a dominant 
strategy for every agent to reveal his true preferences—only one 
in a thousand could profit by strategically mis-stating preferences 
(if they had full information about all preferences).
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Term paper idea ‐ follow the developments in finding out whether the 
following claim is true:following claim is true:

The set of stable matches (or the core) gets small (in some expected 
l ) th k t t l if th l th f th ROLvalue sense) as the market gets large, if the length of the ROLs 

doesn’t also get large.

You can start with what we talked about in this class, and then move to 
recent developments in theory:

• Nicole Immorlica and Mohammad Mahdian, “Marriage, Honesty and 
Stability,” Immorlica, SODA 2005, 53‐62.
• Fuhito Kojima and Parag Pathak, “Incentives and Stability in LargeFuhito Kojima and Parag Pathak,  Incentives and Stability in Large 
Two Sided Matching Markets” American Economic Review, 99(3), 608‐
627, 2008
• Fuhito Kojima Parag Pathak and Alvin E Roth “Matching with• Fuhito Kojima, Parag Pathak, and Alvin E. Roth  Matching with 
Couples: Stability and Incentives in Large Markets” working paper
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A far more ambitious term paper idea

S lf bl ki l A diff t ki d f ( d li ) bl i i d b thSelf‐blocking couples: A different kind of (modeling) problem is raised by the 
following partial example:

Let C = {a1 a2} have preferences: (H1 H2) (H2 H3)Let C = {a1, a2} have preferences: (H1, H2), (H2, H3)
Suppose the relevant part of the hospital preferences are
H1: a1, …
H2: a1, a2H2: a1, a2
H3: a2, …

Consider a (partial) allocation that has C={a1,a2} matched to H2, H3. That is, C 
gets it’s second choice, [(a1,H2), (a2,H3)]
Note that C would prefer the matching at which it was matched to H1,H2, i.e. 
[(a1,H1), (a2,H2)]
But {C, H1, H2} don’t block the original matching because H2 prefers a1 to a2.

But maybe we should think of a modified definition in which {C, H1, H2} does 
bl k th i i l t hi i C ithd 2 f H2 Ablock the original matching, since C can withdraw a2 from H2… As an 
administrative matter, C wouldn’t like to hear that they had gotten their second 
choice only because they had listed it as acceptable…  40
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