
Introduction to the Theory of 
Two-Sided Matching Models

To see which results are robust and which are not, we’ll look at 
some increasingly general models.  

(Even before we look at complex design problems, we can get a 
headstart at figuring out which are our most applicable results 
by doing this sort of theoretical sensitivity analysis.)

• 1-1 matching: the “marriage” model

• Many-to-one matching (with simple preferences) : the “college 
admissions” model

• many to one matching with money and complex (gross 
substitutes) preferences 
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One to one matching: The marriage model

PLAYERS: 

Men = {m1,..., mn} Women = {w1,..., wp}

PREFERENCES (complete and transitive):

P(mi) = w3, w2, ... mi ... [w3 >mi w2]

P(wj) = m2, m4, ... wj ...

If  agent k (on either side of the market) prefers to 
remain single rather than be matched to agent j, i.e. 
if k >k j, then j is said to be unacceptable to k.
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Strict preferences, and indifferences

If an agent is not indifferent between any two 
acceptable mates, or between being matched and 
unmatched, we’ll say he/she has strict preferences.  
Some of the theorems we prove will only be true for 
strict preferences, and it will be useful to keep track of 
which ones, so I’m not assuming strict preferences 
unless I say so.

(This distinction has recently become much more 
important, as we’ve moved from labor markets to 
school choice problems)
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An OUTCOME of the game is a MATCHING: 

µ:M∪W M∪W  

such that w = µ(m) iff µ(w)=m, 
and for all m and w 
either µ(w) is in M or µ(w) = w, and 
either µ(m) is in W or µ(m) = m.

i.e. a man is matched to a woman only if she is also 
matched to him, and everyone is either matched 
to a person of the opposite gender or is single 
(“matched to him/herself)
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Stable matchings
A matching is
BLOCKED BY AN INDIVIDUAL k if k prefers being single to being 

matched with µ(k), i.e. k >k µ(k)

BLOCKED BY A PAIR OF AGENTS (m,w) if they each prefer each 
other to µ, i.e.
w >m µ(m)  and  m >w µ(w)

• A matching µ is STABLE if it isn't blocked by any individual or 
pair of agents.

• NB:  A stable matching is efficient, and in the core, and in this 
simple model the set of (pairwise) stable matchings equals 
the core.
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Deferred Acceptance Algorithm, with men proposing
(roughly the Gale-Shapley 1962 version)

• 0.  If some preferences are not strict, arbitrarily break ties 
• 1 a. Each man m proposes to his 1st choice (if he has any 

acceptable choices).  
• b. Each woman rejects any unacceptable proposals and, if 

more than one acceptable proposal is received, "holds" the 
most preferred and rejects all others.

• k a.  Any man rejected at step k-1 makes a new proposal to its 
most preferred acceptable mate who hasn’t yet rejected him.  
(If no acceptable choices remain, he makes no proposal.)

• b.  Each woman holds her most preferred acceptable offer to 
date, and rejects the rest.

• STOP:  when no further proposals are made, and match each 
woman to the man (if any) whose proposal she is holding.



Theorem 2.8 (Gale and Shapley): A stable 
matching exists for every marriage market.  

(Theorems are numbered as in Roth and Sotomayor.) 

Elements of the proof: 

• the deferred acceptance algorithm always stops

• the matching it produces is always stable with 

respect to the strict preferences (i.e. after any 

arbitrary tie-breaking), 

• and with respect to the original preferences.
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Two-sidedness is important
(at least that’s the way we thought about this before Ostrovsky 2008)

• Consider the one-sided “roommate problem” 
in which everyone can potentially be matched 
with anyone else.

• Example (GS) 4 roommates with preferences 
given by

1: 2,3,4 2: 3,1,4 3: 1,2,4 4: any prefs

No stable matching exists
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Theorem 2.12 (Gale and Shapley)

When all men and women have strict preferences, 

there always exists an M-optimal stable matching 

(that every man likes at least as well as any other 

stable matching), and a W-optimal stable matching.  

Furthermore, the matching µM produced by the 

deferred acceptance algorithm with men proposing 

is the M-optimal stable matching.  The W-optimal 

stable matching is the matching µW produced by the 

algorithm when the women propose.
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Sketch of the proof:

Terminology: w is achievable for m if there is some 
stable µ such that µ(m) = w.

Inductive step: suppose that up to step k of the 
algorithm, no m has been rejected by an achievable 
w, and that, at step k, w rejects m (who is acceptable 
to w) and (therefore) holds on to some m’.

Then w is not achievable for m.  
Consider µ with µ(m) = w, and µ(m’) achievable for 
m’.  Can’t be stable: by the inductive step, (m’,w) 
would be a blocking pair.
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Common preferences 

Let µ >M µ' denote that all men like µ at least as 

well as µ', with at least one man having strict 

preference.  Then  >M is a partial order on the 

set of matchings, representing the common 

preferences of the men.  Similarly, define  >W

as the common preference of the women.
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Theorem 2.13(Knuth)

When all agents have strict preferences, the common 
preferences of the two sides of the market are opposed
on the set of stable matchings: if µ and µ' are stable 
matchings, then all men like µ at least as well as µ' if 
and only if all women like µ' at least as well as µ.  That 
is, µ >M µ' if and only if µ' >W µ.

Proof: immediate from definition of stability.

So the best outcome for one side of the market is the 
worst for the other.

Let’s see what’s going on.
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For any two matchings µ and µ’, and for all m and w, 
define
λ= µ ∨M µ' as the function that assigns each man his 
more preferred of the two matches, and each woman 
her less preferred: 

• λ(m) = µ(m) if µ(m) >m µ' (m) and 
• λ(m) = µ' (m) otherwise

• λ(w) = µ(w) if µ(m) <w µ' (w) and
• λ(w) = µ' (w) otherwise

Define ν = µ ∧M µ' analogously, by reversing the 
preferences.
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Theorem 2.16 Lattice Theorem (Conway):

When all preferences are strict, if µ and µ' are 
stable matchings, then the functions 

λ= µ ∨M µ' and ν= µ ∧M µ' 
• are both matchings.  

• Furthermore, they are both stable.
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So if we think of λ as asking men to point to their preferred 
mate from two stable matchings, and asking women to 
point to their less preferred mate, the theorem says that

No two men point to the same woman  

– (this follows from the stability of m and m’)

Every woman points back at the man pointing to her; 

– the direction [λ(m) = w implies λ (w) = m] follows 
easily from stability, but the direction [λ(w) = m 
implies λ (m) = w] takes a bit more work. (We’ll come 
back to this when we prove the Decomposition 
Lemma

• And the resulting matching is stable.

– again, immediately from the stability of m and m’
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Theorem 2.22: In a market (M,W, P) with strict 
preferences, the set of people who are single is the 
same for all stable matchings.

One strategy of proof:  What can we say about the number and 
identity of men and women matched (and hence the number 
and identity unmatched) at µM and at  µW?

i.e. denoting MµM =  µM(W), etc. what can we say about the 
relative sizes and containment relations of the sets MµM , WµM,
MµW, and WµW ?

µM |MµM| |WµM|

µW |MµW| |WµW|
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Theorem 2.27 Weak Pareto optimality for the men: There is no 
individually rational matching µ (stable or not) such that µ >m µM
for all m in M.

Proof (using the deferred acceptance algorithm…)

If µ were such a matching it would match every man m to some 
woman w who had rejected him in the algorithm in favor of 
some other man m' (i.e. even though m was acceptable to w). 

Hence all of these women, µ(M), would have been matched 
under µ M.  That is, µ M(µ(M)) = M.

Hence all of M would have been matched under µ M and µ M(M) 
= µ(M).  

But since all of M are matched under µ M any woman who gets a 
proposal in the last step of the algorithm at which proposals 
were issued has not rejected any acceptable man, i.e. the 
algorithm stops as soon as every woman in µ M(M) has an 
acceptable proposal.  

So such a woman must be single at µ (since every man prefers 
µ to µ M), which contradicts the fact that µ M(M) = µ(M). 17



Example 2.31 (µM not strongly Pareto optimal for the men)
M = {m1, m2, m3}, W = {w1, w2, w3}

P(m1) = w2,w1,w3 P(w1) = m1,m2,m3

P(m2) = w1,w2,w3 P(w2) = m3,m1,m2

P(m3) = w1,w2,w3 P(w3) = m1,m2,m3

µM = ([m1,w1], [m2,w3], [m3,w2]) = µW

But note that µ >M µM for

µ =  ([m1,w2], [m2,w3], [m3,w1])   

All m like µ at least as well as µM and some strictly prefer it.
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One final lemma about stable and unstable matchings
will help when we study strategic properties.

Lemma 3.5 Blocking Lemma (Gale and 
Sotomayor) : Let µ be any individually rational 
matching with respect to strict preferences P
and let M' be all men who prefer µ to µM.  If 
M' is nonempty there is a pair (m,w) which 
blocks µ such that m is in M-M' and w is in 
µ(M')
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Proof of blocking lemma

Case I: µ(M') ≠ µM(M').  Choose w in µ(M')-µM(M'), say, 
w=µ(m').  Then m' prefers w to µM(m') so w prefers 
µM(w)=m to m'. But m is not in M' since w is not in 
µM(M'), hence m prefers w to µ(m) (since 
preferences are strict), so (m,w) blocks µ.

Case II: µM(M')=µ(M')=W'.  
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Case II: µM(M')=µ(M')=W'.  Let w be the woman in W' who 
receives the last proposal from an acceptable member of M' in 
the deferred acceptance algorithm.  Since all w in W' have 
rejected acceptable men from M', w had some man m engaged 
when she received this last proposal.  We claim (m,w) is the 
desired blocking pair. 

First,  m  is not in M' for if so, after having been rejected by w, he 
would have proposed again to a member of W' contradicting the 
fact that w received the last such proposal.  But m prefers w to 
his mate under µM and since he is no better off under µ, he 
prefers w to µ(m).  On the other hand, m was the last man to be 
rejected by w so she must have rejected her mate under µ
before she rejected m and hence she prefers m to µ(w), so (m,w) 
blocks µ.
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Strategic Behavior
Let’s consider strategic behavior in centralized matching 

mechanisms, in which participants submit a list of stated 
preferences.  

By the revelation principle, some of the results will apply to 
decentralized markets also, in which agents have different 
sets of strategies.

Consider a marriage market (M,W,P) whose outcome will be 
determined by a centralized clearinghouse, based on a list of 
preferences that players will state (“reveal”).  If the vector of 
stated preferences is Q, the algorithm employed by the 
clearinghouse produces a matching h(Q).  The matching 
mechanism h is defined for all (M,W,Q).  If the matching 
produced is always a stable matching with respect to Q, we’ll 
say that h is a stable matching mechanism.
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Theorem 4.4 Impossibility Theorem (Roth)
No stable matching mechanism exists for which 
stating the true preferences is a dominant 
strategy for every agent.

Remark on proof: for an impossibility theorem, one 
example for which no stable matching mechanism 
induces a dominant strategy is sufficient.
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Consider an example with 2 agents on each side
with true preferences P = (Pm1, Pm2, Pw1, Pw2) as follows:

m1: w1, w2 w1: m2, m1

m2: w2, w1 w2: m1, m2

In this example, what must an arbitrary stable 
mechanism do?  I.e. what is the range of h(P) if h is a 
stable mechanism?

Given h(P), and the restriction that h is a stable 
mechanism, can one of the players x engage in a 
profitable manipulation by stating some Px’ ≠ Px such 
that x prefers h(P’) to h(P)?
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Of course, this kind of proof of the impossibility theorem 
leaves open the possibility that situations in which some 
participant  can profitably manipulate his preferences are 
rare.  The following result suggests otherwise.

Theorem 4.6

When any stable mechanism is applied to a marriage 
market in which preferences are strict and there is more 
than one stable matching, then at least one agent can 
profitably misrepresent his or her preferences, assuming 
the others tell the truth.  (This agent can misrepresent in 
such a way as to be matched to his or her most preferred 
achievable mate under the true preferences at every stable 
matching under the mis-stated preferences.)
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Incentives facing the men when the M-optimal 
stable mechanism is used

Theorem 4.7 (Dubins and Freedman, Roth) 

The mechanism that yields the M-optimal stable matching 
(in terms of the stated preferences) makes it a dominant 
strategy for each man to state his true preferences.  

Theorem 4.10 (Dubins and Freedman)  

Let P be the true preferences of the agents, and let P differ 
from P in that some coalition M of the men mis-state their 
preferences. Then there is no matching µ, stable for P, 
which is strictly preferred to µM by all members of M.
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Theorem 4.11 (Limits on successful manipulation.) 
(Demange, Gale, and Sotomayor).

Let P be the true preferences (not necessarily strict) of 
the agents, and let P differ from P in that some 
coalition C of men and women mis-state their 
preferences.  Then there is no matching µ, stable for P, 
which is preferred to every stable matching under the 
true preferences P by all members of C.

Note that Theorem 4.11 implies both Theorems 4.7 and 
4.10.
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Proof of Theorem 4.11:
Suppose some nonempty subset M ∪ W of men and women mis-state their 
preferences and are strictly better off under µ, stable w.r.t. P ,than under 
any stable matching w.r.t. P.  

µ must be individually rational with respect to P, even though unstable.  

Now construct strict preferences P', so that if any agent x is indifferent 
under P between µ(x) and some other alternative, then under P' x prefers 
µ(x) (but otherwise make no change in the ordering of preferences P).  
Then (m,w) blocks µ under P' only if (m,w) blocks µ under P.  

Since every stable matching under P' is also stable under P,
µ(m) >m µM(m) for every m in M,  and

(*)
µ(w) >w µW(w) for every w in W

where µm and µW are the M- and W- optimal stable matchings for (M,W, P').}
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If M is not empty we can apply the Blocking Lemma (3.5) to the 
market (M,W, P'), since by (*) M is a subset of M'; thus there is a 
pair {m,w} which blocks µ under P' and so under P such that 

µM (m) ≥m µ(m) and 

µM (w) ≥w µ(w) (otherwise w and µ(w) would block µM, since w is 
in µ(M’) by the blocking lemma).

Clearly m and w are not in M∪W and so are not mis-stating their 
preferences, so they will also block µ under P, contradicting that 
µ is stable under P.  

If M is empty W is not, and the symmetrical argument applies.
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Notice that the claim that individual men can’t profitably manipulate 
their preferences is much more robust than the (knife-edge) claim that 
coalitions of men can’t profitably manipulate, recall Example 2.31:

Example 2.31 (µM not strongly Pareto optimal for the men)
M = {m1, m2, m3}, W = {w1, w2, w3}

P(m1) = w2,w1,w3 P(w1) = m1,m2,m3
P(m2) = w1,w2,w3 P(w2) = m3,m1,m2
P(m3) = w1,w2,w3 P(w3) = m1,m2,m3

µM = ([m1,w1], [m2,w3], [m3,w2]) = µW But note that µ >M µM for
µ=  ([m1,w2], [m2,w3], [m3,w1])    

Note that m2 can help the other men at no cost to himself…so a coaltion
of all men can weakly help themselves (and strictly  if there was some 
money) 30



What can we say about equilibrium?

Theorem 4.15 (Gale and Sotomayor): Pure strategy 
equilibria exist:

When all preferences are strict, let µ be any stable matching 
for (M, W, P).  Suppose each woman w in µ(M) chooses the 
strategy of listing only µ(w) on her stated  preference list of 
acceptable men (and each man states his true preferences).  
This is an equilibrium in the game induced by the M-
optimal stable matching mechanism (and µ is the matching 
that results).

(Think about how to prove this before looking in the 
book…)
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Furthermore, every equilibrium mis-representation by 
the women must nevertheless yield a matching that is 
stable with respect to the true preferences.  (But the 
proof of this—which is like the old joke about the dying 
financier—should raise doubts about it’s applicability

Theorem 4.16 (Roth)  Suppose each man chooses his 
dominant strategy and states his true preferences, and 
the women choose any set of strategies (preference lists) 
P'(w) that form an equilibrium for the matching game 
induced by the M-optimal stable mechanism.  Then the 
corresponding  M-optimal stable matching for (M,W, P’) 
is one of the stable matchings of (M,W, P).
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Let’s make all these results familiar by comparing them to a 
simple (auction) model of one seller of a discrete good and n 
buyers with money

Traders   N={1, …n, n+1} 

Seller s=n+1 owns the object, and has reservation price rn+1

Buyers b=1,…n have reservation prices rb

That is, each player i places a monetary value ri on the object, 
and each buyer has sufficient cash to pay his reservation 
price.
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If the seller sells the object to buyer b at a price p (and if no 
other monetary transfers are made), the seller earns p, buyer 
b earns rb-p and all other buyers earn zero.

A feasible outcome is a non-negative vector  of monetary payoffs 
x=(x1, x2, …xn, xn+1) in Rn+1 such that Σ xi ≤ max {ri}.  

That is, it is feasible to have monetary transfers that aren’t just 
between the buyer and seller.  So the rules of the game are 
that a coalition S of players can distribute max{ri| i in S} if S 
contains the seller, and 0 otherwise.
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A payoff vector is (pairwise) stable if it is individually rational and 
if there doesn’t exist a buyer i and a price p such that p>xn+1

and ri – p > xi.

The core of the game is the set of payoff vectors x such that no 
coalition of any size can afford to pay its members more than 
the sum of their payoffs at x.

Let r1* be the highest reservation price, and r2* the second 
highest (belonging to renumbered players 1* and 2* 
respectively)
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Theorem 7.2:

• For any vector of reservation prices r, the core is nonempty.

• If the seller does not have the highest reservation price, then 
the core equals the set of feasible x such that xn+1 = p for r2* ≤
p ≤ r1*,  x1* = r1* - p, and xi = 0 for all players other than 1* and 
n+1.

If the seller does have the highest reservation price (i.e. if 
1* = n+1) then the core equals {(0,…0, r1*)}

• The set of stable payoff vectors equals the core.

(NB: unlike the marriage model, this little model is asymmetric.  
In comparing most of the theorems we’ve just discussed, it 
will sometimes help to think of the bidders as the men…)
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One more observation about the marriage 
model

Suppose µ and µ’ are stable matchings, and for 
some m, w = µ(m) >m µ’(m) = w’.  Then the 
stability of µ’ immediately implies that

µ’(w) >w µ(w) = m.

But how about w’?  (Recall the part of the 
Lattice Theorem, 2.16, that we deferred til
now…)

37



The Decomposition Lemma (Corollary 2.21, Knuth):

Let µ and µ’ be stable matchings in (M,W, P), with all preferences 
strict.  Let M(µ) (W(µ)) be the set of men (women) who prefer µ
to µ’, and let M(µ’) (W(µ’)) be those who prefer µ’.  Then µ and 
µ’ map M(µ’) onto W(µ) and M(µ) onto W(µ’).

Proof: we’ve just observed above that µ(M(µ)) is contained in 
W(µ’).  So |M(µ)| < |W(µ’)|.

Symmetrically, µ’(W(µ’)) is contained in M(µ), so |M(µ)| >
|W(µ’)|.

Since µ and µ’ are one-to-one (and since M(µ) and  W(µ’) are 
finite), both µ and µ’ are onto. So, to answer the question 
posed on the previous slide, a man or woman who prefers 
one stable matching to another is matched at both of them to 
a mate with the reverse preferences.
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Many-to-one matching: The college admissions model
PLAYERS: Firms = {f1,..., fn} Workers= {w1,...,wp}

# positions q1,...,qn

Synonyms (sorry:-): F=Firms = C=Colleges = H=Hospitals  W=Workers = 
S=Students

PREFERENCES over individuals (complete and transitive), as in the 
marriage model:

P(fi) = w3, w2, ... fi ... [w3 >fi w2]
P(wj) = f2, f4, ... wj ...

An OUTCOME of the game is a MATCHING: 
µ:  F∪W  F∪W  

such that µ(f) contains w iff µ(w) = f, and for all f and w 
|µ(f)| is less than or equal to qf

either µ(w) is in F or µ(w) = w.            so f is matched to the set of 
workers µ(f). 39



We need to specify how firms’ preferences over 
matchings, are related to their preferences over 
individual workers, since they hire groups of workers.  
The simplest model is 

Responsive preferences: for any set of workers S⊂W 
with |S|<qi, and any workers w and w’ in W/S, 

S∪w >fi S∪w’ if and only if w >fi w’, and 

S∪w >fi S if and only if w is acceptable to fi.
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A matching µ is individually irrational if µ(w) = f for some worker 
w and firm f such that either the worker is unacceptable to 
the firm or the firm is unacceptable to the student.  An 
individually irrational matching is said to be blocked by the 
relevant individual. (Note the modeling assumption here.)

A matching µ is BLOCKED BY A PAIR OF AGENTS (f,w) if they each 
prefer each other to µ:

[w >f w' for some w' in µ(f) or   w >f f if |µ(f)| < qf ]

and  f >w µ(w)

As in the marriage model, a matching is (pairwise) stable if it isn’t 
blocked by any individual or pair of agents.
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But now that firms employ multiple workers, it might not be enough to 
concentrate only on pairwise stability.  The assumption of 
responsive preferences allows us to do this, however.

A matching  µ is blocked by a coalition A of firms and workers if there 
exists another matching µ’ such that for all workers w in A, and all 
firms f in A

1. µ’(w) is in A

2. µ’(w) >w µ(w)

3. σ∈µ’(f) implies σ∈A∪µ(f) (i.e. every firm in A is matched at µ’ to 
new students only from A, although it may continue to be matched 
with some of its “old” students from µ.  (THIS DIFFERS FROM THE

STANDARD DEFINITION OF THE CORE…)

4. µ’(f) >f µ(f)

A matching is group stable if it is not blocked by a coalition of any size.
42



Lemma 5.5: When preferences are responsive, a matching is 
group stable if and only if it is (pairwise) stable.

Proof: instability clearly implies group instability.

Now suppose µ is blocked via coalition A and outcome µ’.  Then 
there must be a worker w and a firm f such that w is in µ’(f) 
but not in µ(f) such that w and f block µ.  (Otherwise it 
couldn’t be that  µ’(f) >f µ(f), since f has responsive 
preferences.)
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A related marriage market

Replace college C by qC positions of C denoted by c1,c2, ..., c(qC).

Each of these positions has C’s preferences over individuals.  
Since each position ci has a quota of 1, we do not need to 
consider preferences over groups of students.

Each student's preference list is modified by replacing C, 
wherever it appears on his list, by the string c1,c2, ..., c(qC), in 
that order.

A matching µ of the college admissions problem, corresponds to 
a matching µ' in the related marriage market in which the 
students in µ(C) are matched, in the order which they occur in 
the preferences P(C), with the ordered positions of C that 
appear in the related marriage market.  (If preferences are not 
strict, there will be more than one such matching.) 44



Lemma 5.6: A matching of the college admissions 
problem is stable if and only if the corresponding 
matchings of the related marriage market are stable.

(NB: some results from the marriage model will 
translate immediately, but not those involving both 
stable and unstable matchings…)
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Geographic distribution

Theorem 5.12: When all preferences over individuals 
are strict, the set of students employed and positions 
filled is the same at every stable matching.

The proof is immediate via the similar result for the marriage 
problem and the construction of the corresponding marriage 
problem (Lemma 5.6).

So any hospital that fails to fill all of its positions at some stable 
matching will not be able to fill any more positions at any 
other stable matching.  The next result shows that not only 
will such a hospital fill the same number of positions, but it 
will fill them with exactly the same interns at any other stable 
matching.
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Theorem 5 13 Rural hospitals theorem (Roth ‘86):Theorem 5.13 Rural hospitals theorem (Roth  86):

When preferences over individuals are strict anyWhen preferences over individuals are strict, any 
hospital that does not fill its quota at some stable 
matching is assigned precisely the same set ofmatching is assigned precisely the same set of 
students at every stable matching.

(This will be easy to prove after Lemma 5 25)(This will be easy to prove after Lemma 5.25) 
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Comparison of stable matchings in the college admissions model

Overview:  suppose one of the colleges, C, evaluates students by their 
scores on an exam, and evaluates entering classes according to 
their average score on the exam. (So even when we assume no two 
students have exactly the same score, so that college C's 
preferences over individuals are strict, it does not have strict 
preferences over entering classes, since it is indifferent between 
two entering classes with the same average score.)  Then different 
stable matchings may give college C different entering classes.  
However no two distinct entering classes that college C could have 
at stable matchings will have the same average exam score.  
Furthermore, for any two distinct entering classes that college C 
could be assigned at stable matchings, we can make the following 
strong comparison.  Aside from the students who are in both 
entering classes, every student in one of the entering classes will 
have a higher exam score than any student in the other entering 
class.
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Lemma 5.25 (Roth and Sotomayor)
Suppose colleges and students have strict 
individual preferences, and let µ and µ' be stable 
matchings for (S, C, P), such that µ(C) ≠ µ'(C) for 
some C.  Let µ and µ' be the stable matchings
corresponding to µ and µ' in the related 
marriage market.  If µ (ci) >C µ'(ci) for some 
position ci of C then µ(ci ) ≥C µ'(ci ) for all 
positions ci of C.
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Proof
It is enough to show that µ(cj ) >C µ'(cj ) for all j > i.  So suppose 
this is false.  Then there exists an index j such that µ(cj) >C µ'(cj ), 
but µ' (cj+1) ≥C µ(cj+1).  Theorem 5.12 (constant employment) 
implies µ' (cj ) ∈ S.  Let s' ≡ µ'(cj ).  By the decomposition lemma
cj ≡ µ' (s') >s' µ(s').  Furthermore, µ(s') ≠ cj+1 , since 

s' >C µ'(cj+1) ≥C µ (cj+1) (where the first of these preferences 
follows from the fact that for any stable matching µ' in the 
related marriage market, µ(cj ) >C µ'(cj+1 ) for all j).  Therefore cj+1
comes right after cj in the preferences of s' (or any s) in the 
related marriage problem.  So µ is blocked via s' and cj+1, 
contradicting (via Lemma 5.6) the stability of µ.

(This proof also establishes the rural hospitals theorem).
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Theorem 5.26: (Roth and Sotomayor) 

If colleges and students have strict preferences over 
individuals, then colleges have strict preferences over 
those groups of students that they may be assigned 
at stable matchings.  That is, if µ and µ' are stable 
matchings, then a college C is indifferent between 
µ(C) and µ'(C) only if µ(C) = µ'(C). 

Proof: via the lemma, and repeated application of 
responsive preferences.
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Theorem 5.27: (Roth and Sotomayor)

Let preferences over individuals be strict, and let 
µ and µ' be stable matchings for (S, C, P).  If 
µ(C) >C µ'(C) for some college C, then s >c s' for 
all s in µ(C) and s' in µ'(C)-µ(C).  That is, C
prefers every student in its entering class at µ
to every student who is in its entering class at 
µ' but not at µ.

52



Proof
Consider the related marriage market and the stable matchings µ and µ' 
corresponding to µ and µ'. Let qC=k, so that the positions of C are c1,...,ck.  

First observe that C fills its quota under µ and µ', since, if not, Theorem 5.13 
(Rural hospitals) would imply that µ(C) = µ'(C).  So µ'(C) - µ (C) is a nonempty 
subset of S, since µ(C) ≠ µ'(C).  Let s' = µ'(cj) for some position cj such that s' is 
not in µ(C). Then µ(cj) ≠ µ'(cj). 

By Lemma 5.25 µ(cj) >C µ'(cj) = s'. 

The Decomposition Lemma implies cj >s' µ (s').  

So the construction of the related marriage problem implies C >s' µ(s'), since 
µ(s') ≠ C.  

Thus s >C s' for all s in µ(C) by the stability of µ, which completes the proof.

53



So, for considering stable matchings, we have some slack in how 
carefully we have to model preferences over groups.  (This is 
lucky for design, since it reduces the complication of soliciting 
preferences from firms with responsive preferences…)

The results also have an unusual mathematical aspect, since they 
allow us to say quite a bit about stable matchings even 
without knowing all the preferences of potential blocking 
pairs.
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Consider a College C with quota 2 and preferences over individuals P(C) = s1, 
s2, s3, s4.  Suppose that at various matchings 1-4, C is matched to 

1. {s1,s4}, 

2. {s2,s3}, 

3. {s1,s3}, and 

4. {s2,s4}.  

Which matchings can be simultaneously stable for some responsive 
preferences over individuals?

So long as all preferences over groups are responsive, matchings 1 and 2 
cannot both be stable (Lemma 5.25),  nor can matchings 3 and 4 (Theorem 
5.27).   
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Strategic questions in the College Admissions 
model:

Theorem 5.16 (Roth) 
A stable matching procedure which yields the 

student-optimal stable matching makes it a 
dominant strategy for all students to state 
their true preferences.

Proof: immediate from the related marriage 
market
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Theorem 5.14 (Roth) No stable matching mechanism exists that 
makes it a dominant strategy for all hospitals to state their true 

preferences.

Proof: consider a market consisting of 3 hospitals and 4 students.  H1 has a 
quota of 2, and both other hospitals have a quota of 1.  The preferences 
are:

s1:  H3, H1, H2 H1:  s1, s2, s3, s4

s2:  H2, H1, H3 H2:  s1, s2, s3, s4

s3:  H1, H3, H2 H3:  s3, s1, s2, s4

s4:  H1, H2, H3

The unique stable matching is 

{[H1, s3,s4], [H2, s2], [H3, s1]}

But if H1 instead submitted the preferences s1,s4

the unique stable matching is 

{[H1, s1,s4], [H2, s2], [H3, s3]}.
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