## Undeferred Acceptance in the Brown University A Cappella Market

ECON 1465 Mark Cinali, Jacob Cohen and Adam Wyron

## Outline

- 1. The A Cappella Market
- 2. Existing Research into Market Characteristics
- 3. The Underlying Model
- 4. Our Investigation
- 5. Our Model

#### **Brown A Capella Market**



## A Cappella Groups at Brown

- All 11 groups participate
- Students can audition for several groups
- Those that get called back from any group are placed into a coordinated centralized matching market
- If students do not get called back, they are self-matched
- Students that get called back submit their strict preferences over groups

## Matching Algorithm

- 1. Groups are given a random order
- 2. If a group is up, it selects a student to be evaluated by all groups
- 3. All groups that want to propose to that student simultaneously raise their hands
- 4. If one or more acceptable groups propose to that student, the student is matched with its most preferred group, and the student is removed from the market
- 5. If no acceptable groups raise their hand, the student is self-matched
- 6. Matching ends when no group wants to call up more students.

# What is compelling about the market setup?

## Characteristics of the A Capella Market

- Stage 3 Market: transactions made through a centralized procedure (participation compelled)
- Swift market clearance
  - $\circ$   $\,$  Groups forced to make decisions at same time  $\,$
- Information about student's quality is known at the time of matching
- Incomplete information about selection order and other players' preferences
- Groups make binding decisions about students while more-preferred students may still be outstanding

#### Characteristics of the A Capella Market

- •Strategy-proof for students:
  - When student is evaluated, matched to most preferred group that has hand raised
  - If false preferences given, either matched to same group or different one
  - If same, no benefit to misrepresenting preferences
  - If different group, new matching must
    necessarily pair them with a group that was
    lower on their truthful preference list otherwise
    it would have been the initial matching

# What has already been analyzed?

What does previous research suggest?

#### Market Culture: How Rules Governing Exploding Offers Affect Market Performance - M. Niederle and A. Roth

- Markets encounter difficulty maintaining a thick marketplace when transactions are made at a dispersed time.
  - Establish norms concerning when offers can be made, accepted and rejected
  - Difficult to establish a thick market at an efficient time with exploding and binding offers
  - Inefficient early contracting occurs
- A Cappella market is not currently unraveling

#### Jumping the Gun: Actions and institutions Related to the Timing of Market Transactions - A. Roth and X. Xing

- Incentives to "jump the gun" and arrange offers early but ultimately that leads to unraveling and ultimately market failure
  - Decisions are made before important information becomes available.
- Unraveling impeded if the consequences of hiring during uncertainty are large
  - In this market, student quality known

#### Turnaround Time and Bottlenecks in Market Clearing: Decentralized Matching in the Market for Clinical Psychologists - A. Roth and X. Xing

- Ability to hold onto multiple offers and deadline congests market
  - Firms can be rejected at the last second after all other acceptable candidates are already out of the market.
  - A capella market creates situations firms have to make binding decisions to accept students before they know who else will become available

#### Our Starting point: Deferred Acceptance Model in a Marriage Market

Assumptions we are making to fit models to market

## **Gale-Shapley Deferred Acceptance**

•2.8 - guarantees stable matching

•4.7 - student-proposing mechanism makes truth-telling dominant for students

•4.4 - in student-proposing, no way to make truth-telling dominant for groups

•Groups tentatively hold offers without binding decision until very end

•What happens without ability to hold?

## Our Environment

Students: S  $\{s_1, ..., s_n\}$ Groups: G  $\{g_1, ..., g_m\}$ 

#### Assumptions:

Marriage Market Strict preferences for students and groups n > m

#### What we are looking into

## Proposed Model: Undeferred Acceptance

**1. a:** each student simultaneously proposes to its most-preferred group that has not rejected them

**b:** each group rejects any unacceptable proposals

**c:** groups decide whether or not to reject acceptable proposals

**d:** if a group decides to accept any proposal, it will accept its most preferred in that round

**2.** accepted matchings become common information and are removed from the market

**3.** step 1 is repeated for all unmatched students and groups

**4.** matching ends when no more proposals can be made

## **Undeferred** Acceptance

#### •Imperfect analogue

Model:

Multiple students considered at once Students select order of proposal Accepting has p = 1 of matching to student

Market:

One student at a time Groups select order Raising hand has p < 1 matching to student

• Focus: binding decision-making without knowledge of future prospects

#### Decentralized Job Matching (With Perfect Information)

## •Decentralized job matching – G. Haeringer and M. Wooders

•Offering stage: According to the ordering given by their index numbers, each remaining [student]  $s_k$ , k = 1, ..., n offers its position to an acceptable [group] among the remaining [groups] who have not previously declined that firm, or exits the market if none of these [groups] are acceptable. •Acceptance stage: According to the ordering given by their index numbers, each [group]  $g_k$ , k = 1,...,m either accepts one of his offers (if he has any) or declines all his offers. A [group] cannot "hold" an offer and accept or decline it at a later stage. A [group] who has not received any offer waits for the next stage. If a [group], say  $w_i$ , accepts an offer from a [student], say  $s_j$ , then  $g_i$  and  $s_j$  are matched and exit.

•When [students] and [groups] act simultaneously during the offering and acceptance stages respectively, the sequential job market game can be seen as a decentralized version of the deferred acceptance algorithm.

## Decentralized Job Matching (With Perfect Information)

- Firms as students, workers as groups
- $\bullet$  There exists a group optimal stable matching  $\mu_g$  found by running the deferred acceptance procedure

#### Sequential Group decisions:

- SPE strategy for  $\boldsymbol{g}_i$  to reject all proposals

except from  $s_j = \mu_g(g_i)$ 

• Can strategically get  $\mu_g$ 

## Results of Decentralized Job Matching

Simultaneous group decision-making --> expansion of SPE strategies:

- Any stable matching is SPE if students propose strategically
- Unstable matchings can be SPE

## What Happens with Incomplete Information about Preferences?

#### **Imperfect Information about Students**

| $\mathbf{S} = \{\mathbf{s1}, \mathbf{s}\}$ | 2, s3     |            |           |
|--------------------------------------------|-----------|------------|-----------|
| P(s1)                                      | g1        | g2         | g3        |
| P(s2)                                      | g1        | ?          | ?         |
| P(s3)                                      | g2        | g1         | g3        |
|                                            |           |            |           |
| $G = \{g1, g2, g3\}$                       |           |            |           |
| P(g1)                                      | <b>S1</b> | <b>s</b> 2 | s3        |
| P(g2)                                      | s2        | s3         | <b>S1</b> |
| P(g3)                                      | <b>S1</b> | s2         | s3        |

In round one, s3 proposes to g2

If  $P(s_2) = g_1 g_2 g_3$ -g2 rejects s<sub>3</sub>  $\mu(g_2) = s_2$ -g2 accepts s<sub>3</sub>  $\mu(g_2) = s_3$ g2 does better by rejecting

If  $P(s_2) = g_1 g_3 g_2$ -g2 rejects s<sub>3</sub>  $\mu(g_2) = g_2$ -g2 accepts s<sub>3</sub>  $\mu(g_2) = s_3$ g2 does better by accepting

## Possible Directions: Decision-Making Under Incomplete Information

#### • Equilibria:

- Can we find an SPE strategy?
- Is settling an SPE strategy?
- Does settling come at a cost (i.e. assuming risk neutrality, can playing probabilistically increase expected utility)?
- Reason for participation in the market:
  - Not necessarily NE to make early offers
  - Potential social cost to not participating
- Stability:
  - Not as necessary to look at (draft market)

## **Relevant Literature**

Shapley, L., & Gale, D. (1962) College admission and the stability of marriage. Am Math Mon, **69**:9–15

Roth, A.E., Sotomayor, M (1990) Two-sided matching: a study in game-theoretic modeling and analysis. Econometric Society Monographs, No. 18. Cambridge University Press, Cambridge

Niederle, M & Roth, A. (2007) Market Culture: How Norms Governing Exploding Offers Affect Market Performance, mimeo, http://www.stanford.edu/~niederle/MakingMarketsThick. May2007.pdf.

Haeringer, G., & Wooders, M. (2011) Decentralized job matching. Int J Game Theory, 40, 1-28

Roth, A., & Xing, X. (1994). Jumping the Gun: Actions and institutions Related to the Timing of Market Transactions. The American Economic Review. **84: 4**, 992-1044

Roth, A and Xing, X. (1997) "Turnaround Time and Bottlenecks in Market Clearing: Decentralized Matching in the Market for Clinical Psychologists," Journal of Political Economy, 105,, 284-329.

## Your Questions/Thoughts?

Considering simulating simple market. Establishing utilities

Compare results of simple strategies

- Naive acceptance of best initial offer
- Truncate
- Probabilstic
  - Based on number of unmatched groups, number of more preferred students outstanding

Depend on size of market, how utilities are established