Measuring Polarization in High-Dimensional Data: Method and Application to Congressional Speech

Matthew Gentzkow, Stanford University and NBER*
Jesse M. Shapiro, Brown University and NBER
Matt Taddy, Microsoft and Chicago Booth

May 2017

Abstract

We study trends in the partisanship of congressional speech from 1873 to 2016. We define partisanship to be the ease with which an observer could infer a congressperson’s party from a fixed amount of speech, and we estimate it using a structural choice model and methods from machine learning. Our method corrects a severe finite-sample bias that we show arises with standard estimators. The results reveal that partisanship is far greater in recent years than in the past, and that it increased sharply in the early 1990s after remaining low and relatively constant over the preceding century. Our method is applicable to the study of high-dimensional choices in many domains, and we illustrate its broader utility with an application to residential segregation.
1 Introduction

America’s two political parties speak different languages. Democrats talk about “estate taxes,” “undocumented workers,” and “tax breaks for the wealthy,” while Republicans refer to “death taxes,” “illegal aliens,” and “tax reform.” The 2010 Affordable Care Act was “comprehensive health reform” to Democrats and a “Washington takeover of health care” to Republicans. Within hours of the 2016 killing of 49 people in a nightclub in Orlando, Democrats were calling the event a “mass shooting”—linking it to the broader problem of gun violence—while Republicans were calling it an act of “radical Islamic terrorism”—linking it to concerns about national security and immigration.\(^1\) Partisan language diffuses into media coverage (Gentzkow and Shapiro 2010; Martin and Yurukoglu forthcoming) and other domains of public discourse (Greenstein and Zhu 2012; Jensen et al. 2012). Experiments and surveys show that partisan framing can have large effects on public opinion (Nelson et al. 1997; Graetz and Shapiro 2006; Chong and Druckman 2007), and that language is one of the most basic determinants of group identity (Kinzler et al. 2007).

Is today’s partisan language a new phenomenon? In one sense, the answer is clearly no: one can easily find examples of partisan terms in America’s distant past.\(^2\) Yet the magnitude of the differences, the deliberate strategic choices that seem to underlie them, and the expanding role of consultants, focus groups, and polls (Bai 2005; Luntz 2006; Issenberg 2012) suggest that what we see today might represent a consequential change (Lakoff 2003). If the language of politics is more partisan today than in the past, it could be contributing to deeper polarization and cross-party animus, both in Congress and in the broader public.

In this paper, we apply tools from structural estimation and machine learning to study the partisanship of language in the US Congress from 1873 to 2016. We specify a discrete-choice model of speech in which political actors choose phrases to influence an audience. We define the

\(^1\)The use of individual phrases such as “estate taxes” and “undocumented workers” is based on our analysis of congressional speech data below. For discussion of the Affordable Care Act, see Luntz (2009) and Democratic National Committee (2016). For discussion of the Orlando shooting, see Andrews and Buchanan (2016).

\(^2\)In the 1946 essay “Politics and the English Language,” George Orwell discusses the widespread use of political euphemisms (Orwell 1946). Northerners referred to the American Civil War as the “War of the Rebellion” or the “Great Rebellion,” while southerners called it the “War for Southern Independence” or, in later years, the “War of Northern Aggression” (McCardell 2004). The bulk of the land occupied by Israel during the Six-Day War in 1967 is commonly called the “West Bank,” but some groups within Israel prefer the name “Judea and Samaria,” which evokes historical and Biblical connections (Newman 1985). The rebels fighting the Sandinista government in Nicaragua were commonly called “Contras,” but were referred to as “freedom fighters” by Ronald Reagan and Republican politicians who supported them (Peace 2010).
overall partisanship of speech in a given period to be the ease with which an observer could guess a speaker’s party based solely on the speaker’s choice of words. We estimate the model using the text of speeches from the United States Congressional Record.

To compute an accurate estimate of partisanship, we must grapple with two methodological challenges. First, natural plug-in estimators of our model suffer from severe finite-sample bias. The bias arises because the number of phrases a speaker could choose is large relative to the total amount of speech we observe, meaning that many phrases are said mostly by one party or the other purely by chance. Second, although our discrete-choice model takes a standard multinomial logit form, the large number of choices and parameters makes standard approaches to estimation computationally infeasible. We address these challenges, respectively, by using an L_1 or lasso-type penalty on key model parameters to control bias, and a Poisson approximation to the multinomial logit likelihood to permit distributed computing. We also suggest two tools for model-free inspection of the data: a permutation test to assess the magnitude of small-sample bias, and a leave-out estimator for partisanship.

The methods we develop here can be applied to a broad class of problems in which the goal is to characterize the polarization or segregation of choices in high-dimensional data. Examples include measuring residential segregation across small geographies, polarization of web browsing or social media behavior, and between-group differences in consumption. Whenever the number of possible choices is large relative to the number of actual choices observed, naive estimates will tend to suffer from finite-sample bias similar to the one we document for speech, and our penalized estimator can provide an accurate and computationally feasible solution.

We find that the partisanship of language has exploded in recent decades, reaching an unprecedented level. From 1873 to the early 1990s, partisanship was relatively constant and fairly small in magnitude: in the 43rd session of Congress (1873-75), the probability of correctly guessing a speaker’s party based on a one-minute speech was 54 percent; by the 101st session (1989-1990) this figure had increased to 57 percent. Beginning with the congressional election of 1994, partisanship turned sharply upward, with the probability of guessing correctly based on a one-minute speech climbing to 73 percent by the 110th session (2007-09). Methods that do not correct for finite-sample bias—including both the maximum likelihood estimator of our model and estimates previously published by Jensen et al. (2012)—imply instead that partisanship is no higher today than in the past.

We unpack the recent increase in partisanship along a number of dimensions. The most partisan
phrases in each period—defined as those phrases most diagnostic of the speaker’s party—align well with the issues emphasized in party platforms and, in recent years, include well-known partisan phrases like those mentioned above. Manually classifying phrases into substantive topics shows that the increase in partisanship is due more to changes in the language used to discuss a given topic (e.g., “estate tax” vs. “death tax”) than to changes in the topics parties emphasize (e.g., Republicans focusing more on taxes and Democrats focusing more on labor issues). The topics that show the sharpest increase in recent years include taxes, immigration, crime, and religion. Separating out phrases that first appear in the vocabulary after 1980, we find that such “neologisms” exhibit a particularly dramatic rise in partisanship, though they are not the main driver of the overall rise in partisanship. Comparing our measure to a standard measure of polarization based on roll-call votes, we find that the two are correlated in the cross section but exhibit very different dynamics in the time series. We see this as evidence that partisan language is not merely another measure of a single latent dimension of ideological polarization, but a distinct phenomenon that has evolved independently.

While we cannot say definitively why partisanship of language increased when it did, the evidence points to innovation in political persuasion as a proximate cause. The 1994 inflection point in our series coincides precisely with the Republican takeover of Congress led by Newt Gingrich, under a platform called the *Contract with America* (Gingrich and Armey 1994). This election is widely considered a watershed moment in political marketing, as consultants such as Frank Luntz applied novel focus group technologies to identify effective language and disseminate it broadly to candidates (Lakoff 2004; Luntz 2004; Bai 2005). Consistent with this, we show that phrases from the text of the *Contract with America* see a spike in usage in 1994, and then exhibit a particularly strong upward trend in partisanship. As a related factor, the years leading up to this inflection point had seen important changes in the media environment: the introduction of television cameras as a permanent presence in the chamber, the live broadcast of proceedings on the C-SPAN cable channels, and the emergence of the twenty-four hour cable news cycle. Prior work suggests that these media changes strengthened the incentive to engineer language and impose party discipline on floor speeches (Frantzich and Sullivan 1996).

To illustrate the broader utility of our methods, the final section presents an application to partisan residential segregation. The extent to which such polarization has been increasing is a point of contention in the literature, with Bishop (2008) famously arguing that there has been a “big sort” of American voters into politically homogeneous enclaves, and Glaeser and Ward (2006)
and Abrams and Fiorina (2012) among others arguing that this is a myth. We show that standard segregation measures applied to this problem are severely distorted by the same finite-sample bias that we highlight in our main application. Applying our methods to correct for this bias reveals that the level of segregation is much lower than naive measures would suggest, and that it has not increased significantly over time.

Our analysis relates most closely to recent work by Jensen et al. (2012). They use text from the Congressional Record to characterize party differences in language from the late nineteenth century to the present. Their index, which is based on the observed correlation of phrases with party labels, implies that partisanship has been rising recently but was even higher in the past. We apply a new method that addresses finite-sample bias and leads to substantially different conclusions. Lauderdale and Herzog (2016) specify a generative hierarchical model of floor debates and estimate the model on speech data from the Irish Dail and the US Senate. They study trends in polarization in the US Senate from 1995 to 2014 and find that polarization in speech has increased faster over that period than polarization in roll-call voting. Peterson and Spirling (2016) study trends in the polarization of speech in the UK House of Commons. In contrast to Lauderdale and Herzog’s (2016) analysis (and ours), Peterson and Spirling (2016) do not specify a generative model of speech. Instead, Peterson and Spirling (2016) measure polarization using the predictive accuracy of several machine-learning algorithms. They cite our article to justify using randomization tests to check for spurious trends in their measure. These tests show that their measure implies significant and time-varying polarization even in fictitious data in which speech patterns are independent of party.

Our segregation results relate to the broader literature on residential segregation, which is surveyed in Reardon and Firebaugh (2002). The finite-sample bias we highlight has been noted in that context by Cortese et al. (1976) and Carrington and Troske (1997). Recent work has derived axiomatic foundations for segregation measures (Echenique and Fryer 2007; Frankel and Volij 2011), asking which measures of segregation satisfy certain intuitive properties. Our approach is, instead, to specify a generative model of the data and to measure segregation using objects that have a well-defined meaning in the context of the model. To our knowledge, ours is among the first papers to estimate group differences based on preference parameters in a structural model.

3See also Mele (2013) and Ballester and Vorsatz (2014). Our measure is also related to measures of cohesiveness in preferences of social groups, as in Alcalde-Unzu and Vorsatz (2013).

4In this respect, our paper builds on Ellison and Glaeser (1997), who use a model-based approach to measure agglomeration spillovers in US manufacturing.

5Davis et al. (2016) use a structural demand model to estimate racial segregation in restaurant choices in a sample.
We know of no other attempt to use a penalization scheme to address the finite-sample bias arising in segregation measurement, which has previously been addressed by benchmarking against random allocation (Carrington and Troske 1997), applying asymptotic or bootstrap bias corrections (Allen et al. 2015), and estimating mixture models (Rathelot 2012, D’Haultfœuille and Rathelot 2017).6

Substantively, our findings speak to a broader literature on trends in political polarization. A large body of work builds on the ideal point model of Poole and Rosenthal (1985) to analyze polarization in congressional roll-call votes, finding that inter-party differences fell from the late nineteenth to the mid-twentieth century, and have increased steadily since (McCarty et al. 2015). We show that the dynamics of polarization in language are very different, suggesting that language is a distinct dimension of party differentiation.7

The next sections introduce our data, model, and approach to estimation. We then present our main estimates, along with evidence that unpacks the recent increase in partisanship. In the following section, we discuss possible explanations for this change. In a final section, we present results on the residential segregation of voters. We conclude by considering the wider implications of increasing partisanship and discussing other applications of our method.

2 Congressional Speech Data

Our primary data source is the text of the United States Congressional Record (hereafter, the Record) from the 43rd Congress to the 114th Congress. We obtain digital text from HeinOnline, who performed optical character recognition (OCR) on scanned print volumes. The Record is a “substantially verbatim” record of speech on the floor of Congress (Amer 1993). We exclude

6Within the literature on measuring document partisanship (e.g., Laver et al. 2003; Gentzkow and Shapiro 2010; Kim et al. forthcoming), our approach is closest to that of Taddy (2013), but unlike Taddy (2013), we allow for a rich set of covariates and we target faithful estimation of partisanship rather than classification performance. More broadly, our paper relates to work in statistics on authorship determination (Mosteller and Wallace 1963), work in economics that uses text to measure the sentiment of a document (e.g., Antweiler and Frank 2004; Tetlock 2007), and work that classifies documents according to similarity of text (Blei and Lafferty 2007; Grimmer 2010).

7A related literature considers polarization among American voters, with most measures offering little support for the widespread view that voters are more polarized today than in the past (Fiorina et al. 2005; Glaeser and Ward 2006; Fiorina and Abrams 2008). An exception is measures of inter-party dislike or distrust, which do show a sharp increase in recent years (Iyengar et al. 2012).
Extensions of Remarks, which are used to print unspoken additions by members of the House that are not germane to the day’s proceedings.8

The modern Record is issued in a daily edition, printed at the end of each day that Congress is in session, and in a bound edition that collects the content for an entire Congress. These editions differ in formatting and in some minor elements of content (Amer 1993). Our data contains bound editions for the 43rd to 111th Congresses, and daily editions for the 97th to 114th Congresses. We use the bound edition in the sessions where it is available and the daily edition thereafter. The Online Appendix shows that the two editions give qualitatively similar results in the years in which they overlap.

We use an automated script to parse the raw text into individual speeches. Beginnings of speeches are demarcated in the Record by speaker names, usually in all caps (e.g., “Mr. ALLEN of Illinois.”). We determine the identity of each speaker using a combination of manual and automated procedures, and append data on the state, chamber, and gender of each member from historical sources.9 We exclude any speaker who is not a Republican or a Democrat, speakers who are identified by office rather than name, non-voting delegates, and speakers whose identities we cannot determine.10 The results of a manual audit of the reliability of our parsing are presented in the Online Appendix and indicate good accuracy.

The input to our main analysis is a matrix C_t whose rows correspond to speakers and whose

8The Record seeks to capture speech as it was intended to have been said (Amer 1993). Speakers are allowed to insert new remarks, extend their remarks on a specific topic, and remove errors from their own remarks before the Record is printed. The rules for such insertions and edits, as well as the way they appear in print, differ between the House and Senate, and have changed to some degree over time (Amer 1993; Johnson 1997; Haas 2015). We are not aware of any significant changes that align with the changing partisanship we observe in our data. We present our results separately for the House and Senate in the Online Appendix.

9Our main source for congresspeople is the congress-legislators GitHub repository https://github.com/unitedstates/congress-legislators/tree/1473ea983d5538c25f5d315626445ab038d81416 accessed on November 15, 2016. We make manual corrections, and add additional information from ICPSR and McKibbin (1997), the Voteview Roll Call Data (Carroll et al. 2015a,b), and the King (1995) election returns. Both the public domain and Voteview datasets include metadata from Martis (1989).

10In the rare case in which a speaker switches parties during a term, we assign the new party to all the speech in that term. We handle the similarly rare case in which a speaker switches chambers in a single session (usually from the House to the Senate) by treating the text from each chamber as a distinct speaker-session. If a speaker begins a session in the House as a non-voting delegate of a territory and receives voting privileges after the territory gains statehood, we treat the speaker as a voting delegate for the entirety of that speaker-session. If a non-voting delegate of the House later becomes a senator, we treat each position as a separate speaker-session. We obtain data on the acquisition of statehood from http://www.thirty-thousand.org/pages/QHA-02.htm (accessed on January 18, 2017) and data on the initial delegates for each state from https://web.archive.org/web/20060601025644/http://www.gpoaccess.gov/serialset/cdocuments/hd108-222/index.html. When we assign a majority party in each session, we count the handful of independents that caucus with the Republicans or Democrats as contributing to the party’s majority in the Senate. Due to path dependence in our data build, such independents are omitted when computing the majority party in the House.
columns correspond to distinct two-word phrases or bigrams (hereafter, simply “phrases”). An element \(c_{ijt} \) thus gives the number of times speaker \(i \) has spoken phrase \(j \) in session (Congress) \(t \). To create these counts, we first perform the following pre-processing steps: (i) delete hyphens and apostrophes; (ii) replace all other punctuation with spaces; (iii) remove non-spoken parenthetical insertions; (iv) drop a list of extremely common words;11 and (v) reduce words to their stems according to the Porter2 stemming algorithm (Porter 2009).12 We then drop phrases that are likely to be procedural or have low semantic meaning according to criteria we define in the Online Appendix. Finally, we restrict attention to phrases spoken at least 10 times in at least one session, spoken in at least 10 unique speaker-sessions, and spoken at least 100 times across all sessions. The Online Appendix presents results from a sample in which we tighten each of these restrictions by 10 percent.

The resulting vocabulary contains 508,352 unique phrases spoken a total of 287 million times by 7,732 unique speakers. We analyze data at the level of the speaker-session, of which there are 36,161. The Online Appendix reports additional summary statistics for our estimation sample and the phrases used to construct it.

We manually classify a subset of phrases into 22 non-mutually exclusive topics as follows. We begin with a set of partisan phrases which we group into 22 topics (e.g., taxes, defense, etc.). For each topic, we create a set of keywords consisting of relevant words contained in one of the categorized phrases, plus a set of additional manually included words. Finally, we identify all phrases in the vocabulary that include one of the topic keywords, are used more frequently than a topic-specific occurrence threshold, and are not obvious false matches. The Online Appendix lists, for each topic, the keywords, the occurrence threshold, and a random sample of included and excluded phrases.

3 Model and Measure of Partisanship

3.1 Probability Model

Let \(c_{ijt} \) be the \(J \)-vector of phrase counts for speaker \(i \) in session \(t \), with \(m_{it} = \sum_j c_{ijt} \) denoting the total amount of speech by speaker \(i \) in session \(t \). Let \(P (i) \in \{R,D\} \) denote the party affiliation of

11The set of these “stopwords” we drop is defined by a list obtained from http://snowball.tartarus.org/algorithms/english/stop.txt on November 11, 2010.

12Gentzkow et al. (2017) provide more intuition on the decision to represent raw text as phrase counts and on the pre-processing steps, both of which are standard in the text analysis literature.
speaker \(i \), and let \(R_t = \{ i : P(\cdot) = R, m_{it} > 0 \} \) and \(D_t = \{ i : P(\cdot) = D, m_{it} > 0 \} \) denote the set of Republicans and Democrats, respectively, active in session \(t \). Let \(x_{it} \) be a \(K \)-vector of (possibly time-varying) speaker characteristics.

We assume that:

\[
c_{it} \sim MN\left(m_{it}, q_{P}^{P(i)}(x_{it})\right),
\]

where \(q_{P}^{P}(x_{it}) \in (0,1)^J \) for all \(P, i, \) and \(t \). The speech-generating process is fully characterized by the verbosity \(m_{it} \) and the probability \(q_{P}^{P}() \) of speaking each phrase.

3.2 Choice Model

As a microfoundation for (1), suppose that at the end of session \(t \) speaker \(i \) receives a payoff:

\[
u_{it} =\begin{cases}
\delta y_t + (1 - \delta) \left(\alpha_t + x_{it}' \gamma_t \right) c_{it}, & i \in R_t \\
-\delta y_t + (1 - \delta) \left(\alpha_t' + x_{it}' \gamma_t' \right) c_{it}, & i \in D_t
\end{cases}
\]

where

\[
y_t = \varphi_t' \sum_i c_{it}
\]

is an index of public opinion that can be affected by political rhetoric. Here, \(\varphi_t \) is a \(J \)-vector mapping speech into public opinion, \(\delta \) is a scalar denoting the relative importance of public opinion in a speaker’s utility, \(\alpha_t \) is a \(J \)-vector denoting the baseline popularity of each phrase at time \(t \), and \(\gamma_t \) is a \(K \times J \) matrix mapping speaker characteristics into the utility of using each phrase.

Each speaker chooses each phrase she speaks to maximize \(u_{it} \) up to a choice-specific i.i.d. type I extreme value shock, so that:

\[
q_{ij}^{P(i)}(x_{it}) = e^{u_{ij}} / \sum_i e^{u_{ii}}
\]

\[
u_{ij} = \delta (2 \cdot 1_{i \in R_t} - 1) \varphi_{ij} + (1 - \delta) \left(\alpha_{ij} + x_{it}' \gamma_{ij} \right).
\]

Note that if \(x_{it} \) is a constant (\(x_{it} := x_t \)), any interior phrase probabilities \(q_{ij}^{P}() \) are consistent with equation (4). In this sense, the choice model in this subsection only restricts the model in (1) by pinning down how phrase probabilities depend on speaker characteristics. Note also that, according to equation (4), if a phrase (or set of phrases) is excluded from the choice set, the relative frequencies of the remaining phrases are unchanged. We exploit this fact in Sections 5 and 6 to
compute average partisanship for interesting subsets of the full vocabulary.

3.3 Measure of Partisanship

For given characteristics x, we think of the degree of partisanship as the divergence between $q^R_t(x)$ and $q^D_t(x)$. When these vectors are close, Republicans and Democrats speak similarly and we say that partisanship is low. When they are far from each other, languages diverge and we say that partisanship is high.

We choose a particular measure of this divergence that has a clear interpretation in the context of our model: the posterior probability that an observer with a neutral prior expects to assign to a speaker’s true party after hearing the speaker speak a single phrase.

Definition. The *partisanship* of speech at x is:

$$\pi_t(x) = \frac{1}{2} q^R_t(x) \cdot \rho_{jt}(x) + \frac{1}{2} q^D_t(x) \cdot (1 - \rho_{jt}(x)), \quad (5)$$

where

$$\rho_{jt}(x) = \frac{q^R_{jt}(x)}{q^R_{jt}(x) + q^D_{jt}(x)}. \quad (6)$$

Average partisanship in session t is:

$$\bar{\pi}_t = \frac{1}{|R_t \cup D_t|} \sum_{i \in R_t \cup D_t} \pi_t(x_{it}). \quad (7)$$

To understand these definitions, note that $\rho_{jt}(x)$ is the posterior belief that an observer with a neutral prior assigns to a speaker being Republican if the speaker chooses phrase j in session t and has characteristics x. Partisanship $\pi_t(x)$ averages $\rho_{jt}(x)$ over the possible parties and phrases: if the speaker is a Republican (which occurs with probability $\frac{1}{2}$), the probability of a given phrase j is $q^R_{jt}(x)$ and the probability assigned to the true party after hearing j is $\rho_{jt}(x)$; if the speaker is a Democrat, these probabilities are $q^D_{jt}(x)$ and $1 - \rho_{jt}(x)$, respectively. Average partisanship $\bar{\pi}_t$, which is our target for estimation, averages $\pi_t(x_{it})$ over the characteristics x_{it} of speakers active in session t.
3.4 Discussion

We frame our model in terms of our application to partisan speech. Both the model and the approaches we develop to estimation, however, are applicable to any multinomial choice problem where we wish to characterize the divergence in choices between two groups. In Section 7 below, we illustrate with an application to residential segregation of political parties, where i indexes US adults rather than speakers, and the choices j are residential locations rather than phrases.

Our notion of partisanship is closely related to isolation, a common measure of residential segregation (White 1986; Cutler et al. 1999). To see this, let $m_{it} = 1$ for all i and t, so that each adult chooses one and only one residential location. Isolation is the difference in the share Republican of the average Republican’s location and the average Democrat’s location. In an infinite population with an equal share of Republicans and Democrats, all with characteristics x, this is:

$$Isolation_t (x) = \frac{q^R_t (x) \cdot \rho_t (x)}{\sum_{i \in P_t} q^R_{it} (x) + q^D_{it} (x)} - 1.$$

Thus, isolation is an affine transformation of partisanship.

Frankel and Vojil (2011) characterize a large set of segregation indices based on a set of ordinal axioms. Ignoring covariates x, our measure satisfies six of these axioms: Non-triviality, Continuity, Scale Invariance, Symmetry, Composition Invariance, and the School Division Property. It fails to satisfy one axiom: Independence.13

4 Estimation

4.1 Plug-in Estimators

Ignoring covariates x, a straightforward way to estimate partisanship is to plug in empirical analogues for the terms that appear in equation (5). This approach yields the maximum likelihood estimator (MLE) of our model.

More precisely, let $\hat{q}_{it} = c_{it} / m_{it}$ be the empirical phrase frequencies for speaker i. Let $\hat{q}^P_t = \sum_{i \in P} c_{it} / \sum_{i \in P} m_{it}$ be the empirical phrase frequencies for party P, and let $\hat{\rho}_jt = \hat{q}^R_{jt} / (\hat{q}^R_{jt} + \hat{q}^D_{jt})$.

13In our context, Independence would require that the ranking in terms of partisanship of two years t and s remains unchanged if we add a new set of phrases J^* to the vocabulary whose probabilities are the same in both years ($q^R_{jt} = q^R_{js}$ for all $j \in J^*$). Frankel and Vojil (2011) list one other axiom, the Group Division Property, which is only applicable for indices where the number of groups (i.e., parties in our case) is allowed to vary.
excluding from the choice set any phrases that are not spoken in session \(t \). Then the MLE of \(\pi_t \) when \(x_{it} := x_t \) is:

\[
\hat{\pi}_t^{MLE} = \frac{1}{2} (\hat{q}_t^R) \cdot \hat{\rho}_t + \frac{1}{2} (\hat{q}_t^D) \cdot (1 - \hat{\rho}_t). \tag{9}
\]

Standard results imply that this estimator is consistent and efficient in the limit as the amount of speech grows large, holding fixed the set of phrases in the vocabulary.

The MLE can, however, be severely biased in finite samples. As \(\hat{\pi}_t^{MLE} \) is a convex function of \(\hat{q}_t^R \) and \(\hat{q}_t^D \), Jensen’s inequality implies that it has a positive bias. To build intuition for the form of the bias, use the fact that \(E(\hat{q}_t^R, \hat{q}_t^D) = (q_t^R, q_t^D) \) to decompose the bias of a generic term \((\hat{q}_t^R) \cdot \hat{\rho}_t \) as:

\[
E \left((\hat{q}_t^R) \cdot \hat{\rho}_t - (q_t^R) \cdot \rho_t \right) = (q_t^R) \cdot E(\hat{\rho}_t - \rho_t) + \text{Cov} \left((\hat{q}_t^R - q_t^R), (\hat{\rho}_t - \rho_t) \right). \tag{10}
\]

The first term is nonzero because \(\hat{\rho}_t \) is a nonlinear transformation of \((\hat{q}_t^R, \hat{q}_t^D) \). Far more important in practice, however, is that the second term is nonzero because the sampling error in \(\hat{\rho}_t \) is mechanically related to the sampling error in \((\hat{q}_t^R, \hat{q}_t^D) \). Intuitively, as the asymptotic properties of the MLE require that we observe a large number of occurrences of each phrase, the bias will tend to be greatest whenever the number of phrases (i.e., the dimensionality of the choice set) is large relative to the total amount of speech.

A similar bias arises for plug-in estimators of polarization measures other than partisanship, because sampling variability means that \(\hat{q}_t^R \) and \(\hat{q}_t^D \) will tend to differ by more than \(q_t^R \) and \(q_t^D \). This is especially transparent if we use a norm such as Euclidean distance as a metric: Jensen’s inequality implies that for any norm \(\| \cdot \| \), \(E \| \hat{q}_t^R - \hat{q}_t^D \| > \| q_t^R - q_t^D \| \). Similar issues arise for the measure of Jensen et al. (2012), which is given by \(\frac{1}{m_i} \sum_j m_{jt} \left| \text{corr} \left(c_{ijt}, 1_{i \in R_t} \right) \right| \). If speech is independent of party \((q_t^R = q_t^D) \), then the population value of \(\text{corr} \left(c_{ijt}, 1_{i \in R_t} \right) \), conditional on total verbosity \(m_i \), is zero. But in any finite sample the correlation will be nonzero with positive probability, so the measure may imply some amount of polarization even when speech is unrelated to party.

One appealing approach to addressing finite-sample bias in \(\hat{\pi}_t^{MLE} \) is to use different samples to estimate \(\hat{q}_t^D \) and \(\hat{\rho}_t \), making the errors in the former orthogonal to the errors in the latter and so

\[14\] Suppose that there are two speakers, one Democrat and one Republican, each with \(m_i = 1 \). There are two phrases. The Republican says the second phrase with certainty and the Democrat says the second phrase with probability 0.01. Then \(E(\rho_d) = 0.01 \left(\frac{1}{7} \right) + 0.99 \left(\frac{1}{10} \right) = 0.995 > \rho_d = 1/1.01 \approx 0.990. \]
eliminating the second bias term in equation (10). This leads naturally to a leave-out estimator:

\[\hat{\pi}^{LO}_t = \frac{1}{2} \frac{1}{|R_t|} \sum_{i \in R_t} \hat{q}_{i,t} \cdot \hat{\rho}_{-i,t} + \frac{1}{2} \frac{1}{|D_t|} \sum_{i \in D_t} \hat{q}_{i,t} \cdot (1 - \hat{\rho}_{-i,t}) , \]

(11)

where \(\hat{\rho}_{-i,t} \) is the analogue of \(\hat{\rho}_t \) computed from the empirical frequencies \(\hat{q}^P_{-i,t} \) of all speakers other than \(i \). This estimator is consistent in the limit as the amount of speech grows, fixing the number of phrases. It is still biased for \(\pi_t \) (because \(\hat{\rho}_{-i,t} \) is biased for \(\rho_t \)), but we show below that the bias appears small in practice.

4.2 Penalized Estimator

Our preferred estimation method draws on the structure of the choice model in Section 3.2, allowing us to include speaker characteristics \(x_{it} \) and to control bias through penalization. Rewrite \(u_{ijt} \) as:

\[u_{ijt} = \alpha_{jt} + x'_{it} \gamma_{jt} + \phi_{jt} 1_{i \in R_t} . \]

(12)

The \(\alpha_{jt} \) are phrase-time-specific intercepts and the \(\phi_{jt} \) are phrase-time-specific party loadings. In our baseline specification, \(x_{it} \) consists of indicators for state, chamber, gender, Census region, and whether the party is in the majority for the entirety of the session. The coefficients \(\gamma_{jt} \) on these attributes are static in time (i.e., \(\gamma_{jtk} := \gamma_{jk} \)) except for those on Census region, which are allowed to vary freely across sessions. We also explore specifications in which \(x_{it} \) includes unobserved speaker-level preference shocks.

We estimate the parameters \(\{ \alpha_{jt}, \gamma_{jt}, \phi_{jt} \}_{t=1}^T \) of equation (12) by minimization of the following penalized objective function:

\[
\sum_j \left\{ \sum_t \sum_i \left[m_{it} \exp(\alpha_{jt} + x'_{it} \gamma_{jt} + \phi_{jt} 1_{i \in R_t}) - c_{ijt}(\alpha_{jt} + x'_{it} \gamma_{jt} + \phi_{jt} 1_{i \in R_t}) + \psi\left(|\alpha_{jt}| + ||\gamma_{jt}||_1 + \lambda_j |\phi_{jt}| \right) \right] \right\} . \]

(13)

We form an estimate \(\hat{\pi}_t^* \) of \(\pi_t \) by substituting estimated parameters into the probability objects in equation (7).

15 Implicitly, in each session \(t \) we exclude any phrase that is spoken only by a single speaker.

16 This parameterization is observationally equivalent to equation (4), with \(\hat{\phi}_{jt} = 2 \delta \phi_{jt} \), \(\tilde{\gamma}_{jt} = \gamma_{jt} (1 - \delta) \), and \(\tilde{\alpha}_{jt} = (1 - \delta) \alpha_{jt} - \delta \phi_{jt} \).
The minimand in (13) encodes two key decisions. First, we approximate the likelihood of our multinomial logit model with the likelihood of a Poisson model (Palmgren 1981; Baker 1994; Taddy 2015), where \(c_{ijt} \sim \text{Pois}(\exp[\mu_{it} + u_{ijt}]) \), and we use the plug-in estimate \(\hat{\mu}_{it} = \log m_{it} \) of \(\mu_{it} \). Because the Poisson and the multinomial logit share the same conditional likelihood \(\Pr(c_{ijt} \mid m_{it}) \), their MLEs coincide when \(\hat{\mu}_{it} \) is the MLE. Although our plug-in is not the MLE, Taddy (2015) shows that our approach often performs well in related settings. In the Online Appendix, we show that our estimator performs well on data simulated from the multinomial logit model.

We adopt the Poisson approximation because, fixing \(\hat{\mu}_{it} \), the likelihood of the Poisson is separable across phrases. This feature allows us to use distributed computing to estimate the model parameters (Taddy 2015). Without the Poisson approximation, computation of our estimator would be infeasible due to the cost of repeatedly calculating the denominator of the logit choice probabilities.

The second key decision is the use of an \(L_1 \) penalty \(\lambda_j |\tilde{\phi}_{jt}| \), which imposes sparsity on the party loadings and shrinks them toward 0 (Tibshirani 1996). We determine the penalties \(\lambda \) by regularization path estimation, first finding \(\lambda_j^1 \) large enough so that \(\phi_{jt} \) is estimated to be 0, and then incrementally decreasing \(\lambda_j^2, ..., \lambda_j^G \) and updating parameter estimates accordingly. An attractive computational property of this approach is that the coefficient estimates change smoothly along the path of penalties, so each segment’s solution acts as a hot-start for the next segment and the optimizations are fast to solve. We then choose the value of \(\lambda_j \) that minimizes a Bayesian Information Criterion.\(^{17} \) The Online Appendix reports a qualitatively similar result when we use 5-fold cross-validation to select the \(\lambda_j \) that minimizes average out-of-sample deviance.

We also impose a minimal penalty of \(\psi = 10^{-5} \) on the phrase-specific intercepts \(\tilde{\alpha}_{jt} \) and the covariate coefficients \(\tilde{\gamma}_{jt} \). We do this to handle the fact that some combinations of data and covariate design do not have an MLE in the Poisson model (Haberman 1973, Silva and Tenreyro 2010). A small penalty allows us to achieve numerical convergence while still treating the covariates in a flexible way.\(^{18} \)

\(^{17} \)The Bayesian Information Criterion we use is \(\sum_i \log \text{Pois}(c_{ijt}; \exp[\hat{\mu}_{it} + u_{ijt}]) + df \log n \), where \(n = \sum_i (|D_i| + |R_i|) \) is the number of speaker-sessions and \(df \) is a degrees-of-freedom term that (following Zou et al. 2007) is given by the number of parameters estimated with nonzero values (excluding the \(\hat{\mu}_{it} \), as outlined in Taddy 2015).

\(^{18} \)The Online Appendix shows how our results vary with alternative values of \(\psi \). Larger values of \(\psi \) decrease computational time for a given problem. Note that in practice we implement our regularization path computationally as \(\psi \lambda_j^1, ..., \psi \lambda_j^G \) where \(\lambda_j^G = t \lambda_j^1, \ t = 10^{-5} \), and \(G = 100 \). To ensure that the choice of \(\lambda_j \) is not constrained by the regularization path, we recommend that users choose values of \(\psi \) and \(t \) small enough that forcing \(\lambda_j = \lambda_j^G \) for all \(j \)
If the penalty shrinks quickly enough with the amount of speech then, for fixed vocabulary, our estimator behaves asymptotically like the MLE and is root-n consistent. However, as we will see, our estimator is far less biased than the MLE. Moreover, for fixed penalty λ, our estimator can be interpreted as the unique posterior mode of a Bayesian model with a diffuse Laplace prior on the coefficients \hat{y}, an informative Laplace prior on the party loadings $\hat{\phi}$, and an uninformative prior on the intercepts $\hat{\alpha}$. Our parameter estimates are thus optimal for this prior against a “0-1” loss function (Murphy 2012).

For all of our main results, we perform inference via subsampling (Politis et al. 1999). We partition the data into 10 random subsets and re-estimate on each subset. We then report confidence intervals based on the distribution of the estimator across these subsets, under the assumption of root-n convergence. We center these confidence intervals around the estimated series and report uncentered bias-corrected confidence intervals for our main estimator in the Online Appendix. The Online Appendix also reports confidence intervals based on a parametric bootstrap. We do not report results for a nonparametric bootstrap; the standard nonparametric bootstrap is known to be invalid for lasso regression (Chatterjee and Lahiri 2011).

5 Results

5.1 Trends in Partisanship

We now turn to our main results on trends in the partisanship of speech over time. As a diagnostic for finite-sample bias, we present, for each measure, a placebo series where we reassign parties to speakers at random and then re-estimate the measure on the resulting data. In this “random” series, $q_t^R = q_t^D$ by construction, so the true value of π_t is equal to $\frac{1}{2}$ in all years. We thus expect the random series for an unbiased estimator of π_t to have value $\frac{1}{2}$ in each session t, and we can measure the bias of an estimator by its deviation from $\frac{1}{2}$.

Figure 1 presents results for the maximum likelihood estimator $\hat{\pi}_t^{MLE}$ of our model, and the index reported by Jensen et al. (2012) computed using their publicly available data. Panel A shows that the random series for $\hat{\pi}_t^{MLE}$ is far from $\frac{1}{2}$, indicating that the bias in the MLE is severe

19 The Online Appendix shows that confidence intervals based on five subsamples have similar width to those based on ten subsamples, suggesting that our assumed learning rate is a reasonable approximation over the relevant range.

in practice. Variation over time in the magnitude of the bias dominates the series, leading the random series and the real series to be highly correlated. Taking the MLE at face value, we would conclude that language was much more partisan in the past and that the upward trend in recent years is small by historical standards.

Because bias is a finite-sample property, it is natural to expect that the severity of the bias in $\hat{\pi}^{MLE}_{t}$ in a given session t depends on the amount of speech, i.e., on the verbosity m_t of speakers in that session. The Online Appendix shows that this is indeed the case: a first-order approximation to the bias in $\hat{\pi}^{MLE}_{t}$ as a function of verbosity follows a similar path to the random series in Panel A of Figure 1 and the dynamics of $\hat{\pi}^{MLE}_{t}$ are similar to those in the real series when we allow verbosity to follow its empirical distribution but fix phrase frequencies (q^{R}_t, q^{D}_t) at those observed in a particular session t^*. The Online Appendix also shows that while the severity of the bias falls as we exclude less frequently spoken phrases, very severe sample restrictions are needed to control bias, and there remains a significant time-varying bias even when we exclude 99 percent of phrases from our calculations.

Panel B of Figure 1 shows that the Jensen et al. (2012) measure behaves similarly to the MLE. The plot for the real series replicates the published version. The random series is again far from $\frac{1}{2}$, and the real and random series both trend downward in the first part of the sample period. Jensen et al. (2012) conclude that polarization has been increasing recently, but that it was as high or higher in earlier years. The results in Panel B suggest that the second part of this conclusion could be an artifact of the finite-sample mechanics of their index.\footnote{In the Online Appendix, we show that the dynamics of $\hat{\pi}^{MLE}_{t}$ in Jensen et al.’s (2012) data are similar to those in our own data, which is reassuring as Jensen et al. (2012) obtain the Congressional Record independently, use different processing algorithms, and use a vocabulary of three-word phrases rather than two-word phrases.}

Figure 2 shows the leave-out estimator $\hat{\pi}^{LO}_{t}$. The random series suggests that the leave-out correction largely purges the estimator of bias: the series is close to $\frac{1}{2}$ throughout the period. The real series suggests that partisanship is roughly constant for much of the sample period, then rises rapidly beginning in the 1990s.

Figure 3 presents our main result: the time series of partisanship from our preferred penalized estimator described in Section 4.2. Panel A shows the full series, and Panel B zooms in on the most recent years, indicating some events of interest. These estimates have two important advantages relative to $\hat{\pi}^{LO}_{t}$: they control for observables x_{it}, and they use penalization to control bias and reduce variance. The results show that this approach reduces both the bias and the amount of noise in the series. The Online Appendix shows that the use of regularization is the key to this increased
performance: imposing only a minimal penalty (i.e., set $\lambda \approx 0$) leads to behavior qualitatively similar to that of the MLE. The Online Appendix also shows that, in contrast to the MLE, the dynamics of our preferred penalized estimator cannot be explained by changes in verbosity over time.

Looking at the data through the sharper lens of our preferred estimator reveals that partisanship was low and relatively constant until the early 1990s, then exploded, reaching unprecedented heights in recent years. The plot also shows that the recent change in partisanship in our preferred estimates is statistically significant based on our subsampling confidence intervals.

The Online Appendix presents a range of alternative series based on variants of our baseline target, model, estimator, and sample. Targeting average Euclidian distance or average mutual information shows a large rise in partisanship following the 1990s, though the Euclidean distance series is noisier than our baseline measure. Removing covariates leads to greater estimated partisanship while adding more controls or speaker random effects leads to lower estimated partisanship, though all of these variants imply a large rise in partisanship following the 1990s. Dropping the South from the sample does not meaningfully change the estimates, nor does excluding data from early decades.

The recent increase in partisanship implied by our baseline estimates is large. Recall that average partisanship is the posterior that a neutral observer expects to assign to a speaker’s true party after hearing a single phrase. Figure 4 extends this concept to show the expected posterior for speeches of various lengths. An average one-minute speech in our data contains around 33 phrases (after pre-processing). In 1874, an observer hearing such a speech would expect to have a posterior of around 0.54 on the speaker’s true party, only slightly above the prior of 0.5. By 1990, this value increased slightly to 0.57. Between 1990 and 2008, however, it leaped up to 0.73.

In Figure 5, we compare our speech-based measure of partisanship to the standard measure of ideological polarization based on roll-call votes (Carroll et al. 2015a). The latter is based on an ideal-point model that places both speakers and legislation in a latent space; polarization is the distance between the average Republican and the average Democrat along the first dimension. Panel A shows that the dynamics of these two series are very different: though both indicate a large increase in recent years, the roll-call series is about as high in the late nineteenth and early twentieth century as it is today, and its current upward trend begins around 1950 rather than 1990. We conclude from this that speech and roll-call votes should not be seen as two different manifestations of a single underlying ideological dimension. Rather, speech appears to respond to
a distinct set of incentives and constraints.

Panel B of Figure 5 shows that a measure of the Republican-ness of an individual’s speech from our model and the individual Common Space DW-NOMINATE scores from the roll-call voting data are nevertheless strongly correlated in the cross section. Across all sessions, the correlation between speech and roll-call based partisanship measures is 0.537 \((p = 0.000) \). After controlling for party, the correlation is 0.129 and remains highly statistically significant \((p = 0.000) \). Thus, members who vote more conservatively also use more conservative language on average, even though the time-series dynamics of voting and speech diverge. As another way to validate this relationship, we show in the Online Appendix that average partisanship exhibits a discontinuity in vote margin analogous to the discontinuity in vote margin of the non-Common-Space DW-NOMINATE scores (Lee et al. 2004; Carroll et al. 2015b). The Online Appendix also shows that the divergence in speech between parties in recent years is not matched by an equally large divergence in speech between the more moderate and more extreme wings within each party.

5.2 Partisan Phrases

Our model provides a natural way to define the partisanship of an individual phrase. For an observer with a neutral prior, the expected posterior that a speaker with characteristics \(\mathbf{x}_{it} \) is Republican is \(\frac{1}{2} = \bar{q}_{it} (\mathbf{x}_{it}) \cdot \rho_{it} (\mathbf{x}_{it}) \), where \(\bar{q}_{it} (\cdot) = \frac{1}{2} q_{it}^R (\cdot) + \frac{1}{2} q_{it}^D (\cdot) \). Suppose that, unbeknownst to the observer, phrase \(j \) is removed from the vocabulary, and the marginal probabilities of the remaining phrases \(k \neq j \) are rescaled to \(\bar{q}_{kt} (\mathbf{x}_{it}) = \frac{\bar{q}_{kt} (\mathbf{x}_{it})}{1 - \bar{q}_{jt} (\mathbf{x}_{it})} \). This corresponds to an experiment where anytime phrase \(j \) would have been chosen, both the speaker’s party and the phrase are redrawn. Then the change in the expected posterior is

\[
\bar{q}_{jt} (\mathbf{x}_{it}) \left(\rho_{jt} (\mathbf{x}_{it}) - \frac{1}{2} \right).
\]

We define the partisanship \(\zeta_{jt} \) of phrase \(j \) in session \(t \) to be the average of this value across all active speakers \(i \) in session \(t \). This measure has both direction and magnitude: positive numbers are Republican phrases, negative numbers are Democratic phrases, and the absolute value gives the magnitude of partisanship.

Table 1 lists the ten most partisan phrases in every tenth session plus the most recent session.

22These correlations are 0.685 \((p = 0.000) \) and 0.212 \((p = 0.000) \), respectively, when we use data only on speakers who speak an average of at least 1000 phrases across the sessions in which they speak.

23We also implement an alternative measure of phrase partisanship where anytime phrase \(j \) would have been chosen, the phrase but not the speaker’s party is redrawn. We compute this alternative measure for sessions 50, 70, 90, and 110. The lists of the 10 most partisan phrases in each of these sessions are unchanged.
The Online Appendix shows the list for all sessions. These lists illustrate the underlying variation driving our measure, and give a sense of how partisan speech has changed over time. In the Online Appendix, we argue in detail that the top phrases in each of these sessions align closely with the policy positions and narrative strategies of the parties, confirming that our measure is indeed picking up partisanship rather than some other dimension that happens to be correlated with it. In this section, we highlight a few illustrative examples.

The 50th session of Congress (1887-88) occurred in a period where the cleavages of the Civil War and Reconstruction Era were still fresh. Republican phrases like “union soldier” and “con-feder soldier” relate to the ongoing debate over provision for veterans, echoing the 1888 Republican platform’s commitment to show “[the] gratitude of the Nation to the defenders of the Union.” The Republican phrase “color men” reflects the ongoing importance of racial issues. Many Democratic phrases from this Congress (“increase duti,” “ad valorem,” “high protect,” “tariff tax,” “high tariff”) reflect a debate over reductions in trade barriers. The 1888 Democratic platform endorses tariff reduction in its first sentence, whereas the Republican platform says Republicans are “un-compromisingly in favor of the American system of protection.”

The 80th session (1947-1948) convened in the wake of the Second World War. Many Republican-leaning phrases relate to the war and national defense (“arm forc,” “air forc,” “coast guard,” “stop communism,” “foreign countri”), whereas “unit nation” is the only foreign-policy-related phrase in the top ten Democratic phrases in the 80th session. The 1948 Democratic Party platform advocates amending the Fair Labor Standards Act to raise the minimum wage from 40 to 75 cents an hour (“labor standard,” “standard act,” “depart labor,” “collect bargain,” “concili servc”). By contrast, the Republican platform of the same year does not mention the Fair Labor Standards Act or the minimum wage.

Language in the 110th session (2007-2008) follows partisan divides familiar to modern readers. Republicans focus on taxes (“tax increas,” “rais tax,” “tax rate”) and immigration (“illeg immigr”), while Democrats focus on the aftermath of the war in Iraq (“war iraq”, “troop iraq”) and social domestic policy (“african american,” “children health,” and “middl class”). With regards to energy policy, Republicans focus on the potential of American energy (“natural gas,” “american energi,” “outer continent,” “continent shelf”), while Democrats focus on the role of oil companies (“oil compani”).

24The Federal Mediation and Conciliation Service was created in 1947 and was “given the mission of preventing or minimizing the impact of labor-management disputes on the free flow of commerce by providing mediation, conciliation and voluntary arbitration” (see https://www.fmcs.gov/aboutus/our-history/ accessed on April 15, 2017).
The phrases from the 114th session (2015-2016) relate to current partisan cleavages and echo themes in the 2016 presidential election. Republicans focus on terrorism, discussing “al qaeda” and using the phrase “radic islam,” which echoes Donald Trump’s use of the phrase “radical Islamic terrorism” during the campaign (Holley 2017). They also refer repeatedly to the “american peopl.” Democrats focus on climate change (“climat chang”), civil rights issues (“african american,” “vote right”), and gun control (“gun violenc”). When discussing public health, Republicans focus on mental health (“mental health”) in correspondence to the Republican-sponsored “Helping Families in Mental Health Crisis Act of 2016,” while Democrats focus on public health more broadly (“public health”), health insurance (“afford care”), and women’s health (“plan parenthood”).

5.3 Partisanship within and between Topics

Our baseline measure of partisanship captures changes both in the topics speakers choose to discuss and in the phrases they use to discuss them. Whether a speech about taxes includes the phrases “tax relief” or “tax breaks” will help an observer to guess the speaker’s party; so, too, will whether the speaker chooses to talk about taxes or about the environment. To separate these, we present a decomposition of partisanship into within- and between-topic components using our 22 manually defined topics.

We define between-topic partisanship to be the expected posterior that a neutral observer expects to assign to a speaker’s true party when the observer knows only the topic a speaker chooses, not the particular phrases chosen within the topic. Partisanship within a specific topic is the expected posterior when the vocabulary consists only of phrases in that topic. The overall within-topic partisanship in a given session is the average of partisanship across all topics, weighting each topic by its frequency of occurrence.

Figure 6 shows that the rise in partisanship is driven mainly by divergence in how the parties talk about a given substantive topic, rather than by divergence in which topics they talk about. According to our estimates, choice of topic encodes much less information about a speaker’s party than does choice of phrases within a topic.

Figure 7 shows estimated partisanship for phrases within each of the 22 topics. Partisanship has increased within many topics in recent years, with the largest increases in the immigration, crime, and religion topics. Other topics with large increases include taxes, environmental policy, and minorities. Not all topics have increased recently however. Alcohol, for example, was fairly partisan in the Prohibition Era but is not especially partisan today. Figure 7 also shows that the
partisanship of a topic is not strongly related in general to the frequency with which the topic is discussed. For example, the world wars are associated with a surge in the frequency of discussion of defense, but not with an increase in the partisanship of that topic.

To illustrate the underlying variation at the phrase level, Figure 8 shows the evolution of the informativeness of the four most Republican and Democratic phrases in the “tax,” “immigration,” and “labor” topics. The plots show that the most partisan phrases become consistently more informative about a speaker’s party over time. Some phrases, such as “american taxpay,” have been consistently associated with one party since the 1950s. Others, like “tax relief” and “minimum wage,” switch between parties before becoming strongly informative about one party during the 1990s and 2000s. A third group, including “immigr reform” and “job creator,” is partisan only for a short period when it is relevant to congressional debate. The Online Appendix presents similar plots for the other 19 topics.

6 Discussion

What caused the dramatic increase in the partisanship of speech? We cannot provide a definitive answer, but the timing of the change shown in Panel B of Figure 3 suggests two natural hypotheses: innovation in political persuasion coinciding with the 1994 Republican takeover of the House of Representatives, and changes in the media environment including the introduction of live broadcasts of congressional proceedings on the C-SPAN cable network.

The inflection point in the partisanship series occurs in the 104th session (1995-1996), the first following the 1994 midterm election. This election was a watershed event in the history of the US Congress. It brought a Republican majority to the House for the first time in more than forty years, and was the largest net partisan gain since 1948. It “set off a political earthquake that [would] send aftershocks rumbling through national politics for years to come” (Jacobson 1996). The Republicans were led by future Speaker of the House Newt Gingrich, who succeeded in uniting the party around a platform called the Contract with America. It specified the actions Republicans would take upon assuming control, focusing the contest around a set of domestic issues including taxes, crime, and government efficiency.

Innovation in language and persuasion was, by many accounts, at the center of this victory. Assisted by the consultant Frank Luntz—who was hired by Gingrich to help craft the Contract with America—and became famous in significant part because of his role in the 1994 campaign—the
Republicans used focus groups and polling to identify rhetoric that resonated with voters (Bai 2005). Important technological advances included the use of instant feedback “dials” that allowed focus group participants to respond to the content they were hearing in real time. Asked in an interview whether “language can change a paradigm,” Luntz replied:

I don’t believe it—I know it. I’ve seen it with my own eyes.... I watched in 1994 when the group of Republicans got together and said: “We’re going to do this completely differently than it’s ever been done before....” Every politician and every political party issues a platform, but only these people signed a contract (Luntz 2004).

A 2006 memorandum written by Luntz and distributed to Republican congressional candidates provides detailed advice on the language to use on topics including taxes, budgets, social security, and trade (Luntz 2006).

We can use our data to look directly at the importance of the Contract with America in shaping congressional speech. We extract all phrases that appear in the text of the Contract and treat them as a single “topic,” computing both their frequency and their partisanship in each session. Figure 9 reports the results. As expected, the frequency of these phrases spikes in the 104th session (1995-1996). Their partisanship rises sharply in that year and continues to increase even as their frequency declines.

In the years after 1994, Democrats sought to replicate what they perceived to have been a highly successful Republican strategy. George Lakoff, a linguist who advised many Democratic candidates, writes: “Republican framing superiority had played a major role in their takeover of Congress in 1994. I and others had hoped that... a widespread understanding of how framing worked would allow Democrats to reverse the trend” (Lakoff 2014).

The new attention to crafting language coincided with attempts to impose greater party discipline in speech. In the 101st session (1989-1991), the Democrats established the “Democratic Message Board” which would “defin[e] a cohesive national Democratic perspective” (quoted from

25 By his own description, Luntz specializes in “testing language and finding words that will help his clients... turn public opinion on an issue or a candidate” (Luntz 2004). A memo called “Language: A Key Mechanism of Control” circulated in 1994 to Republican candidates under a cover letter from Gingrich stating that the memo contained “tested language from a recent series of focus groups” (GOPAC 1994).

26 Luntz said, “[The dial technology is] like an X-ray that gets inside [the subject’s] head... it picks out every single word, every single phrase [that the subject hears], and you know what works and what doesn’t” (Luntz 2004).

27 According to the metric defined in Table 1, the most Republican phrases in the 104th session (1995-1996) that appear in the Contract are “american peopl,” “tax increas,” “term limit,” “lineitem veto,” “tax relief,” “save ac-
party documents in Harris 2013). The “Republican Theme Team” formed in the 102nd session (1991-1993) sought likewise to “develop ideas and phrases to be used by all Republicans” (Michel 1993 and quoted in Harris 2013).

Consistent with this trend towards greater party discipline, Figure [10] shows that the recent increase in partisanship is concentrated in a small minority of highly partisan phrases. The figure plots quantiles of the estimated average value of the partisanship of all individual phrases in each session. The plot shows a marked increase in the partisanship of the highest quantiles, while even the quantiles at 0.9 and 0.99 remain relatively flat.

In a similar vein, Figure [11] shows that a vocabulary consisting of neologisms—which we define to be phrases first spoken in our data after 1980 (the 96th session)—exhibits very high and sharply rising partisanship. The figure also shows that a large increase in partisanship remains even when we exclude neologisms from the choice set.28

Changes in the media environment may also have contributed to the increase in partisanship.29 Prior to the late 1970s, television cameras were only allowed on the floor of Congress for special hearings and events. With the introduction of the C-SPAN cable network to the House in 1979, and the C-SPAN2 cable network to the Senate in 1986, every speech was recorded and broadcast live. While live viewership of these networks has always been limited, they created a video record of speeches that could be used for subsequent press coverage and in candidates’ advertising. This plausibly increased the return to carefully crafted language, both by widening the reach of successful sound bites, and by dialing up the cost of careless mistakes.30 The subsequent introduction of the Fox News cable network and the increasing partisanship of cable news more generally (Martin and Yurukoglu forthcoming) may have further increased this return.

The timing shown in Figure [5] is inconsistent with the C-SPAN networks being the proximate cause of increased partisanship. But it seems likely that they provided an important complement to linguistic innovation in the 1990s. Gingrich particularly encouraged the use of “special order” speeches outside of the usual legislative debate protocol, which allowed congresspeople to speak directly for the benefit of the television cameras. The importance of television in this period is underscored by Frantzich and Sullivan (1996): “When asked whether he would be the Republican leader without C-SPAN, Ginigrich... [replied] ‘No’... C-SPAN provided a group of media-savvy

28 The Online Appendix shows that results are very similar when we instead define a neologism to be a phrase such that at least 99 percent of its occurrences are after 1980 (the 96th session).
29 Our discussion of C-SPAN is based on Frantzich and Sullivan (1996).
30 Mixon et al. (2001) and Mixon et al. (2003) provide evidence that the introduction of C-SPAN changed the nature of legislative debate.
House conservatives in the mid-1980s with a method of... winning a prime-time audience.”

7 Extension: Residential Segregation of Voters

In this section, we apply our method to generate new measures of the segregation of US voters by party. Trends in political segregation have been a major point of contention in the literature, with Bishop (2008) among others arguing that there has been a “big sort” of American voters into politically homogeneous enclaves, while Glaeser and Ward (2006) and Abrams and Fiorina (2012) among others argue that such increasing segregation is a myth. A key stumbling block has been that existing analysis is based on voting patterns, which confound changes in the distribution of voters with changes in the positions of candidates: a pattern of more districts voting exclusively Republican or exclusively Democratic could be produced by either sorting of voters or increasing extremity of candidates. Abrams and Fiorina (2012) argue that the appropriate measure should use individuals’ party identification rather than their votes, and should consider sub-county-level data. To our knowledge, no such analysis has yet been conducted, presumably in part because there is no large-sample data on self-reported party affiliation by small geographies.

Our method allows us to get around this limitation because we can produce valid estimates using smaller samples from survey data. We combine county-level data from the American National Election Studies (ANES 2015) and Pew Research Center (Pew 2016) to examine segregation in party identification between 1956 and 2009, and zipcode-level data on political contributions from the Federal Election Commission (FEC 2015) to examine sub-county segregation in contributions between 1980 and 2015. The Online Appendix provides details on data sources and construction.

To apply our model, we let \(i \) index individuals and \(j \) index locations. We assume that each individual makes a single choice, so that \(m_{it} = 1 \) for all \(i \), and the outcome \(c_{ijt} \) is an indicator equal to one if person \(i \) lives in location \(j \) in year \(t \). Party \(P(i) \in \{R,D\} \) is either \(i \)'s self-described party affiliation or the party to which they contribute. Partisanship is then defined as above, and can be interpreted as the expected posterior a neutral observer would assign to an individual’s true party after observing where they choose to live. We present both the MLE and our preferred penalized estimator. Recall that partisanship in this case is an affine transformation of the isolation index (White 1986; Cutler et al. 1999).

The results are presented in Figure 12. Panel A shows trends in county-level segregation by party identification, and Panel B presents results for zipcode-level segregation by party contribu-
Similar to the results for the main model, we present for each measure a placebo series where the party-affiliation of each respondent is randomized. By construction, $q_t^R = q_t^D$ in the random series and thus we can evaluate the bias of an estimator by the series’s deviation from the “true” value of π_t at $\frac{1}{2}$.

In both applications, we see that the MLE—and thus the standard estimator of the isolation index—is severely biased upward, with considerable variation in the bias over time. Taking the MLE results at face value, one would conclude that segregation by both party affiliation and contributions have generally been declining over time, but that the former has seen a sharp increase in recent years. The random series, however, suggests that both of these results may be spurious, and that the overall degree of segregation may be much lower than the naive estimator would suggest.

Our preferred specification confirms that this is the case. The level of partisanship is meaningfully lower in both cases, and especially so in the party identification application, where the preferred estimate is in the range of 0.52 rather than 0.6. There is no meaningful trend in partisanship in either series, consistent with the arguments of Glaeser and Ward (2006) and Abrams and Fiorina (2012) that the perception of rising segregation is a myth.

8 Conclusion

A consistent theme of much prior literature is that political polarization today—both in Congress and among voters—is not that different from what existed in the past (Glaeser and Ward 2006; Fiorina and Abrams 2008; McCarty et al. 2015). We find that language is a striking exception: Democrats and Republicans now speak different languages to a far greater degree than ever before. The fact that partisan language diffuses widely through media and public discourse (Gentzkow and Shapiro 2010; Greenstein and Zhu 2012; Jensen et al. 2012; Martin and Yurukoglu forthcoming) implies that this could be true not only for congresspeople but for the American electorate more broadly.

Does growing partisanship of language matter? Although measuring the effects of language is beyond the scope of this paper, existing evidence suggests that these effects could be profound. Laboratory experiments show that varying the way political issues are “framed” can have large effects on public opinion across a wide range of domains including free speech (Nelson et al. 1997), immigration (Druckman et al. 2013), climate change (Whitmarsh 2009), and taxation (Birney et al. 2006; Graetz and Shapiro 2006). Politicians routinely hire consultants to help them craft messages...
for election campaigns (Johnson 2015) and policy debates (Lathrop 2003), an investment that only makes sense if language matters. Field studies reveal effects of language on outcomes including marriage (Caminal and Di Paolo 2015), political preferences (Clots-Figueras and Masella 2013), and savings and risk choices (Chen 2013).

Language is also one of the most fundamental cues of group identity, with differences in language or accent producing own-group preferences even in infants and young children (Kinzler et al. 2007). Imposing a common language was a key factor in the creation of a common French identity (Weber 1976), and Catalan-language education has been effective in strengthening a distinct Catalan identity within Spain (Clots-Figueras and Masella 2013). That the two political camps in the US increasingly speak different languages may contribute to the striking increase in inter-party hostility evident in recent years (Iyengar et al. 2012).

Beyond our substantive findings, we introduce a method that can be applied to the many settings in which researchers wish to characterize differences in behavior between groups and the space of possible choices is high-dimensional. We illustrate with an application to residential segregation, providing new evidence against the claim that Americans are sorting geographically by party. Another potential application in the political sphere is media consumption online. Gentzkow and Shapiro (2011) show that Internet news media are only slightly more segregated by political ideology than traditional media. They provide only limited evidence on how segregation online has evolved over time, and their data is at the domain level. Studying trends over time and accounting for sub-domain behavior would almost certainly require confronting the finite-sample issues that we highlight here.

More broadly, measuring trends in group differences, especially racial or gender differences, is a core topic in quantitative social science. Finite-sample issues are pervasive in such measurement problems, which range from studies of racial differences in first names (Fryer and Levitt 2004) to studies of racial and gender segregation in the workplace (Carrington and Troske 1997; Bayard et al. 2003; Hellerstein and Neumark 2008). Analysis of consumer choice in supermarkets or online retail faces similar issues. This paper introduces a new method that is grounded in a choice model and designed to control finite-sample bias through penalization.
References

—. 2014. *The all new don’t think of an elephant!: Know your values and frame the debate*. White River Junction, VT: Chelsea Green.

Table 1: Most Partisan Phrases by Session

<table>
<thead>
<tr>
<th>Session 50 (1887-1888)</th>
<th>Republican</th>
<th>#</th>
<th>Democratic</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>sixth street</td>
<td>22</td>
<td>0</td>
<td>cutleri compani</td>
<td>0</td>
</tr>
<tr>
<td>color men</td>
<td>27</td>
<td>10</td>
<td>increas duti</td>
<td>11</td>
</tr>
<tr>
<td>railroad compani</td>
<td>85</td>
<td>70</td>
<td>cent ad</td>
<td>35</td>
</tr>
<tr>
<td>confeder soldier</td>
<td>18</td>
<td>4</td>
<td>ad valorem</td>
<td>61</td>
</tr>
<tr>
<td>other citizen</td>
<td>13</td>
<td>0</td>
<td>feder court</td>
<td>11</td>
</tr>
<tr>
<td>much get</td>
<td>12</td>
<td>1</td>
<td>high protect</td>
<td>6</td>
</tr>
<tr>
<td>paper claim</td>
<td>9</td>
<td>0</td>
<td>tariff tax</td>
<td>11</td>
</tr>
<tr>
<td>sugar trust</td>
<td>16</td>
<td>7</td>
<td>high tariff</td>
<td>6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Session 60 (1907-1908)</th>
<th>Republican</th>
<th>#</th>
<th>Democratic</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>postal save</td>
<td>39</td>
<td>3</td>
<td>canal zone</td>
<td>18</td>
</tr>
<tr>
<td>census offic</td>
<td>31</td>
<td>2</td>
<td>also petit</td>
<td>0</td>
</tr>
<tr>
<td>reserv balanc</td>
<td>36</td>
<td>12</td>
<td>standard oil</td>
<td>4</td>
</tr>
<tr>
<td>war depart</td>
<td>62</td>
<td>39</td>
<td>indirect contempt</td>
<td>0</td>
</tr>
<tr>
<td>secretari navi</td>
<td>62</td>
<td>36</td>
<td>bureucr</td>
<td>5</td>
</tr>
<tr>
<td>secretari agriculture</td>
<td>58</td>
<td>36</td>
<td>panama canal</td>
<td>23</td>
</tr>
<tr>
<td>pay pension</td>
<td>20</td>
<td>2</td>
<td>nation govern</td>
<td>12</td>
</tr>
<tr>
<td>boat compani</td>
<td>24</td>
<td>8</td>
<td>coal mine</td>
<td>9</td>
</tr>
<tr>
<td>twelfth census</td>
<td>14</td>
<td>0</td>
<td>revis tariff</td>
<td>8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Session 70 (1927-1928)</th>
<th>Republican</th>
<th>#</th>
<th>Democratic</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>war depart</td>
<td>97</td>
<td>63</td>
<td>pension also</td>
<td>0</td>
</tr>
<tr>
<td>foreign countri</td>
<td>84</td>
<td>28</td>
<td>radio commiss</td>
<td>8</td>
</tr>
<tr>
<td>muscl shoal</td>
<td>97</td>
<td>71</td>
<td>spoken drama</td>
<td>0</td>
</tr>
<tr>
<td>steam plant</td>
<td>25</td>
<td>3</td>
<td>civil war</td>
<td>27</td>
</tr>
<tr>
<td>nation guard</td>
<td>39</td>
<td>18</td>
<td>trade commiss</td>
<td>19</td>
</tr>
<tr>
<td>air corp</td>
<td>32</td>
<td>12</td>
<td>feder trade</td>
<td>19</td>
</tr>
<tr>
<td>creek dam</td>
<td>25</td>
<td>6</td>
<td>wave length</td>
<td>6</td>
</tr>
<tr>
<td>american ship</td>
<td>29</td>
<td>12</td>
<td>flowag right</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Session 80 (1947-1948)</th>
<th>Republican</th>
<th>#</th>
<th>Democratic</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>depart agricultur</td>
<td>67</td>
<td>31</td>
<td>unit nation</td>
<td>119</td>
</tr>
<tr>
<td>foreign countri</td>
<td>49</td>
<td>22</td>
<td>calumet region</td>
<td>0</td>
</tr>
<tr>
<td>steam plant</td>
<td>34</td>
<td>7</td>
<td>concili servic</td>
<td>3</td>
</tr>
<tr>
<td>coast guard</td>
<td>34</td>
<td>9</td>
<td>labor standard</td>
<td>16</td>
</tr>
<tr>
<td>state depart</td>
<td>117</td>
<td>93</td>
<td>depart labor</td>
<td>24</td>
</tr>
<tr>
<td>air force</td>
<td>88</td>
<td>69</td>
<td>collect bargain</td>
<td>15</td>
</tr>
<tr>
<td>stop communism</td>
<td>22</td>
<td>3</td>
<td>standard act</td>
<td>11</td>
</tr>
<tr>
<td>nation debt</td>
<td>43</td>
<td>25</td>
<td>polish peopl</td>
<td>4</td>
</tr>
<tr>
<td>arm forc</td>
<td>63</td>
<td>47</td>
<td>employ servic</td>
<td>25</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Session 90 (1967-1968)</th>
<th>Republican</th>
<th>#</th>
<th>Democratic</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>job corp</td>
<td>35</td>
<td>20</td>
<td>human right</td>
<td>7</td>
</tr>
<tr>
<td>trust fund</td>
<td>26</td>
<td>14</td>
<td>unit nation</td>
<td>49</td>
</tr>
<tr>
<td>antelope island</td>
<td>11</td>
<td>0</td>
<td>men women</td>
<td>20</td>
</tr>
<tr>
<td>treasuri depart</td>
<td>23</td>
<td>12</td>
<td>world war</td>
<td>57</td>
</tr>
<tr>
<td>federalaid highway</td>
<td>13</td>
<td>2</td>
<td>feder reserv</td>
<td>26</td>
</tr>
<tr>
<td>tax credit</td>
<td>21</td>
<td>11</td>
<td>million american</td>
<td>15</td>
</tr>
<tr>
<td>state depart</td>
<td>45</td>
<td>35</td>
<td>arm forc</td>
<td>25</td>
</tr>
<tr>
<td>oblig author</td>
<td>14</td>
<td>4</td>
<td>high school</td>
<td>19</td>
</tr>
<tr>
<td>highway program</td>
<td>14</td>
<td>4</td>
<td>gun control</td>
<td>10</td>
</tr>
<tr>
<td>invest act</td>
<td>11</td>
<td>1</td>
<td>air pollut</td>
<td>18</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Session 100 (1987-1988)</th>
<th>Republican</th>
<th>#</th>
<th>Democratic</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>judg bork</td>
<td>226</td>
<td>14</td>
<td>persian gulf</td>
<td>30</td>
</tr>
<tr>
<td>freedom fighter</td>
<td>36</td>
<td>8</td>
<td>contra aid</td>
<td>12</td>
</tr>
<tr>
<td>human right</td>
<td>101</td>
<td>78</td>
<td>central american</td>
<td>17</td>
</tr>
<tr>
<td>minimum wage</td>
<td>37</td>
<td>19</td>
<td>aid contr</td>
<td>17</td>
</tr>
<tr>
<td>demand second</td>
<td>13</td>
<td>1</td>
<td>american peopl</td>
<td>97</td>
</tr>
<tr>
<td>tax increas</td>
<td>20</td>
<td>10</td>
<td>interest rate</td>
<td>24</td>
</tr>
<tr>
<td>pay rais</td>
<td>21</td>
<td>11</td>
<td>presid budget</td>
<td>11</td>
</tr>
<tr>
<td>plant close</td>
<td>37</td>
<td>28</td>
<td>feder reserv</td>
<td>12</td>
</tr>
</tbody>
</table>

Notes: Calculations are based on our preferred specification in Panel A of Figure 3. The table shows the Republican and Democratic phrases with the greatest magnitude of estimated partisanship ζ_{jt}, as defined in Section 5.2, alongside the predicted number of occurrences of each phrase per 100,000 phrases spoken by Republicans or Democrats. Phrases with positive values of ζ_{jt} are listed as Republican and those with negative values are listed as Democratic.
Notes: Panel A plots the average partisanship series from the maximum likelihood estimator $\hat{\pi}_{t}^{MLE}$ defined in Section 4.1. “Real” series is from actual data; “random” series is from hypothetical data in which each speaker’s party is randomly assigned with the probability that the speaker is Republican equal to the average share of speakers who are Republican in the sessions in which the speaker is active. The shaded region around each series represents a pointwise confidence interval obtained by subsampling (Politis et al. 1999). Specifically, we randomly partition the set of speakers into 10 equal-sized subsamples (up to integer restrictions) and, for each subsample k, we compute the MLE estimate $\hat{\pi}_{k,t}$. Define $Q_{t}^{k} = \sqrt{\tau_{k}} \left(\log(\hat{\pi}_{t}^{MLE} - \frac{1}{2}) - \log\left(\frac{1}{10} \sum_{l=1}^{10} \hat{\pi}_{l,t} - \frac{1}{2} \right) \right)$ where τ_{k} is the number of speakers in the kth subsample. Our confidence interval is $\left\{ \frac{1}{2} + \exp\left[\log(\hat{\pi}_{t}^{MLE} - \frac{1}{2}) - (Q_{t}^{k})_{(9)} / \sqrt{\tau_{k}} \right], \exp\left[\log(\hat{\pi}_{t}^{MLE} - \frac{1}{2}) - (Q_{t}^{k})_{(2)} / \sqrt{\tau_{k}} \right] \right\}$ where $\tau = |R_{t} \cup D_{t}|$ is the number of speakers in the full sample and $(Q_{t}^{k})_{(b)}$ is the bth order statistic of Q_{t}^{k}. Panel B plots the standardized measure of polarization from Jensen et al. (2012). Polarization in session t is defined as $\sum_{j} m_{jt} |\rho_{jt}| / \sum m_{jt}$ where $\rho_{jt} = corr(c_{i,j,t}, I_{i, R})$; the series is standardized by subtracting its mean and dividing by its standard deviation. “Real” series reproduces the polarization series in Figure 3B of Jensen et al. (2012) using the replication data for that paper; “random” series uses the same data but randomly assigns each speaker’s party with the probability that the speaker is Republican equal to the average share of speakers who are Republican in the sessions in which the speaker is active.
Figure 2: Average Partisanship of Speech, Leave-out Estimate ($\hat{\pi}_t^{LO}$)

Notes: Figure shows the average partisanship series from the leave-out estimator $\hat{\pi}_t^{LO}$ defined in Section 4.1. “Real” series is from actual data; “random” series is from hypothetical data in which each speaker’s party is randomly assigned with the probability that the speaker is Republican equal to the average share of speakers who are Republican in the sessions in which the speaker is active. The shaded region around each series represents a pointwise confidence interval obtained by subsampling (Politis et al. 1999). Specifically, we randomly partition the set of speakers into 10 equal-sized subsamples (up to integer restrictions) and, for each subsample k, we compute the leave-out estimate $\hat{\pi}_t^k$. Define $Q_t^k = \sqrt{\tau_k} \left(\hat{\pi}_t^k - \frac{1}{10} \sum_{k=1}^{10} \hat{\pi}_t^k \right)$ where τ_k is the number of speakers in the kth subsample. Our confidence interval is $(\hat{\pi}_t^{LO} - (Q_t^k)_{(9)}/\sqrt{\tau}, \hat{\pi}_t^{LO} - (Q_t^k)_{(2)}/\sqrt{\tau})$ where $\tau = |R_t \cup D_t|$ is the number of speakers in the full sample and $(Q_t^k)_{(b)}$ is the bth order statistic of Q_t^k.

36
Figure 3: Average Partisanship of Speech, Penalized Estimates

Panel A: Preferred Specification

Panel B: Post-1976 with Key Events

Notes: Panel A shows the results from our preferred penalized estimator defined in Section 4.2. “Real” series is from actual data; “random” series is from hypothetical data in which each speaker’s party is randomly assigned with the probability that the speaker is Republican equal to the average share of speakers who are Republican in the sessions in which the speaker is active. The shaded region around each series represents a pointwise confidence interval obtained by subsampling (Politis et al. 1999). Specifically, we randomly partition the set of speakers into 10 equal-sized subsamples (up to integer restrictions) and, for each subsample \(k \), we compute the penalized estimate \(\hat{\pi}_t^k \). Define \(Q_t^k = \sqrt{\tau_k} (\log(\hat{\pi}_t^k - \frac{1}{2}) - \log((\sum_{l=1}^{10} \hat{\pi}_l^k - \frac{1}{2})) \) where \(\tau_k \) is the number of speakers in the \(k \)th subsample. Our confidence interval is \(\frac{1}{2} + (\exp[\log(\hat{\pi}_t - \frac{1}{2}) - (Q_t^k)_0]/\sqrt{\tau}), \exp[\log(\hat{\pi}_t - \frac{1}{2}) - (Q_t^k)_2]/\sqrt{\tau}] \) where \(\tau = |R_i \cup D_i| \) is the number of speakers in the full sample and \((Q_t^k)_b\) is the \(b \)th order statistic of \(Q_t^k \). Panel B zooms in on average partisanship from the “real” series in Panel A and includes party-coded shading for presidential terms and line markers for select events.
Notes: For each speaker i and session t we calculate, given characteristics x_{it}, the expected posterior that an observer with a neutral prior would place on a speaker’s true party after hearing a given number of phrases drawn according to the estimates in our preferred specification in Panel A of Figure 3. We perform this calculation by Monte Carlo simulation and plot the average across speakers for each given session and length of speech. The vertical line shows the average number of phrases in one minute of speech. We calculate this by sampling 95 morning-hour debate speeches across the 2nd session of the 111th Congress and the 1st session of the 114th Congress. We use https://www.c-span.org/ to calculate the time-length of each speech and to obtain the text of the Congressional Record associated with each speech, from which we obtain the count of phrases in our main vocabulary following the procedure outlined in Section 2. The vertical line shows the average ratio, across speeches, of the phrase count to the number of minutes of speech.
Notes: Panel A shows our preferred estimate of average partisanship from Panel A of Figure 3 and the difference between the average Republican and the average Democrat in the first dimension of the Common Space DW-NOMINATE score from McCarty et al. (2015). Panel B plots a speaker’s posterior probability $\hat{\rho}_i$ of being Republican based on speech against the first dimension of the Common Space DW-NOMINATE score (McCarty et al. 2015). We drop observations for which we cannot match a DW-NOMINATE score to the speaker. To compute $\hat{\rho}_i$, we first define $\hat{\rho}_{it} = q_{it} \cdot \hat{\rho}_i^*(x_{it})$, where we recall that $q_{it} = c_{it}/m_{it}$ are the empirical phrase frequencies for speaker i in session t and where we define $\hat{\rho}_i^*(x_{it})$ as the estimated value of $\rho_i(x_{it})$ from our baseline penalized estimates. We then let $\hat{\rho}_i = \frac{1}{|T_i|} \sum_{t \in T_i} \hat{\rho}_{it}$ where T_i is the set of all sessions in which speaker i appears. Nine outliers are excluded from the plot. The solid black line denotes the linear best fit among the points plotted.
Figure 6: Partisanship within and between Topics

Notes: “Overall” average partisanship is our preferred estimate from Panel A of Figure 3. The other two series are based on the same parameter estimates and use the vocabulary of phrases contained in one of our manually defined topics. Between-topic average partisanship is defined as the expected posterior that an observer with a neutral prior would assign to a speaker’s true party after learning which of our manually-defined topics a speaker’s chosen phrase belongs to. Average partisanship within a topic is defined as average partisanship if a speaker is required to use phrases in that topic. Within-topic average partisanship is then the mean of average partisanship across topics, weighting each topic by its total frequency of occurrence across all sessions.
Notes: Calculations are based on our preferred estimates from Panel A of Figure 3. In each panel, the top (line) plot shows estimated average partisanship for a given topic, and the bottom (bar) plot shows the share of all phrase utterances that are accounted for by members of that topic in a given session. Average partisanship within a topic is defined as average partisanship if a speaker is required to use phrases in that topic. “All topics” includes all phrases classified into any of our substantive topics; “other” includes all phrases not classified into any of our substantive topics.
Figure 8: Partisanship over Time for Phrases within Topics

Panel A: Tax

Panel B: Immigration

Panel C: Labor

Notes: Calculations are based on our preferred estimates from Panel A of Figure 3. Panel A shows 1,000 times the estimated value of phrase partisanship ζ_{jt}, as defined in Section 5.2, for the four Republican (Democratic) phrases in the “tax” topic that have the highest (lowest) average phrase partisanship across all sessions. The legend lists phrases in descending order of the magnitude of average phrase partisanship across all sessions. Panels B and C show the same for the “immigration” and “labor” topics.
Figure 9: Partisanship and the *Contract with America*

Notes: Calculations are based on our preferred estimates from Panel A of Figure [3]. The top (line) plot shows estimated average partisanship if a speaker is required to use phrases contained in the *Contract with America* (1994). The bottom (bar) plot shows the share of all phrase utterances that are accounted for by phrases in the *Contract* in a given session.
Figure 10: Distribution of Phrase Partisanship

Notes: Calculations are based on our preferred estimates from Panel A of Figure 3. The solid lines denote the Qth quantile of 1,000 times the absolute estimated value of phrase partisanship in a session ζ_{jt}, as defined in Section 5.2.
Figure 11: Evidence on the Role of Neologisms

Notes: The “baseline” series is our preferred estimate of average partisanship from Panel A of Figure 3. The other two series are based on the same parameter estimates. The “pre-1980 vocabulary” series recomputes average partisanship exclusively on phrases spoken at least once during or prior to 1980 (the 96th session), while the “post-1980 vocabulary” does so for phrases only spoken after 1980.
Figure 12: Residential Segregation of Voters

Panel A: By Party Identification

Panel B: By Party Campaign Contributions

Notes: Plots in Panel A show the average residential partisanship series using ANES and Pew party identification data with j indexing counties. Plots in Panel B show the average residential partisanship using FEC party contribution data with j indexing zipcodes. For each panel, the plot on the left shows results from the maximum likelihood estimator defined in 4.1. The plot on the right shows the results from our preferred penalized estimator without covariates and with settings $\psi = 10^{-6}$ and $t = 10^{-5}$. “Real” series is from actual data; “random” series is from hypothetical data in which each respondent/contributor is randomly assigned a party with the probability that the respondent/contributor is Republican equal to the national share of respondents/contributors who are Republican in that year.