
The purpose of this article is to describe and explain the 
dynamics of temporal discrimination. This includes the 
original acquisition of a temporal discrimination, transi-
tions from one temporal interval to another, and asymp-
totic performance on a temporal discrimination.

Although a great deal is known about the asymptotic 
performance on temporal discrimination tasks, knowledge 
about the dynamics of temporal discrimination is limited. 
Some analyses of the acquisition of a temporal discrimi-
nation have focused on the dynamics of initial acquisition 
(Ferster & Skinner, 1957; Kirkpatrick & Church, 2000a; 
Machado & Cevik, 1998). Other analyses have focused on 
transition effects—changes in the performance produced 
by changes in the fixed interval (Higa, 1997; Higa, Thaw, 
& Staddon, 1993; Lejeune, Ferrara, Simons, & Wearden, 
1997; Meck, Komeily-Zadeh, & Church, 1984). The anal-
ysis of initial acquisition has not been integrated with the 
analysis of transition effects. In addition, the analysis of 
temporal discrimination has not been integrated with the 
analysis of stimulus discrimination. In fact, many proce-
dures for temporal performance do not include stimulus 
discrimination (Ferster & Skinner, 1957; Lejeune et al., 
1997; Machado & Cevik, 1998).

In a review of studies of the acquisition of instrumental 
responses, Mackintosh (1974) found that the form of the 
learning curve relating various measures of performance 
to the amount of training depended on the experimental 
procedures and the dependent variable used as a measure 

of learning. He concluded that, without more understand-
ing of these factors, “the quest for a typical or true learn-
ing curve will be of questionable value” (p. 150). These 
concerns are still present, and they apply also to temporal 
learning.

Temporal discrimination is sometimes reported to 
occur relatively slowly—that is, to require many sessions 
of training (Ferster & Skinner, 1957; Schneider, 1969). It 
has also been reported to occur rapidly—that is, to occur 
within a session (Higa, 1997; Higa et al., 1993; Lejeune 
et al., 1997) or even at an optimal rate (Gallistel, Mark, 
King, & Latham, 2001). The speed of learning of a tem-
poral discrimination undoubtedly depends on the timing 
task, previous experience, and the criterion of learning. In 
skilled performance of any sort, there may be evidence of 
learning that occurs almost immediately and of substantial 
further learning with additional training.

For the study of the dynamics of temporal discrimina-
tion, it is desirable to use a procedure that produces rapid 
learning of distinct behavior by individual animals for 
different temporal intervals between stimuli and reinforc-
ers. In the present experiment, a multiple cued interval 
(MCI) procedure was used in which rats were trained on 
three different cued fixed-interval (FI) schedules of re-
inforcement. In this MCI procedure, a cycle consisted of 
an interval of time without a stimulus and an interval of 
time with a stimulus; the first response after the stimulus 
had been on for a fixed number of seconds was followed 
by the delivery of a reinforcer and the termination of the 
stimulus. This cycle was repeated throughout a session 
and for many sessions. With an MCI procedure, there are 
multiple cues and multiple intervals; in the present experi-
ment, there were three cues (white noise, a houselight, and 
a clicker) for three FIs (30, 60, and 120 sec).

In an MCI procedure, changes in different dependent 
variables as a function of training serve as indices of the 
acquisition of a stimulus discrimination (differential re-
sponding during the presence and absence of the stimu-
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lus), within-interval temporal discrimination (differen-
tial responding early and late during the stimulus), and 
 between-interval temporal discrimination (differential 
responding in intervals of different duration).

Many different dependent measures have been used 
to describe temporal discriminations. In some cases, a 
measure has been based on a description of the pattern 
of results observed in a cumulative record (Cumming & 
Schoenfeld, 1958; Ferster & Skinner, 1957; Machado & 
Cevik, 1998; Schneider, 1969). In other cases, a quantita-
tive index has been calculated. These include the postrein-
forcement pause or waiting time (Dukich & Lee, 1973; 
Higa, 1997), the time to the fourth response (Dukich & 
Lee, 1973), the quarter-life (Gollub, 1964), the tempo-
ral discrimination ratio (Kirkpatrick & Church, 2000a, 
2000b), the curvature index (Fry, Kelleher, & Cook, 
1960), the average response rate (Catania & Reynolds, 
1968), the peak time (Catania & Reynolds, 1968; Lejeune 
et al., 1997; Roberts, 1981), and the time of rate change 
(Church, Meck, & Gibbon, 1994; Schneider, 1969). Some 
of the steady state measures of temporal discriminations 
are correlated (Dukich & Lee, 1973; Gollub, 1964), but 
systematic differences in the measures as a function of 
training would indicate that they are not redundant.

During discriminative FI schedules of reinforcement, 
such as the MCI procedure, four qualitative features of 
behavior emerge.

1. Overall response rate changes. The overall response 
rate increases as a function of sessions of training (Spence, 
1956).

2. Stimulus discrimination. The response rate during the 
stimulus is higher than the response rate during the absence 
of the stimulus (Skinner, 1938). A ratio of these response 
rates may be used as a measure of stimulus  discrimination.

3. Within-interval temporal discrimination. The re-
sponse rate is higher at the end than at the beginning of 
the stimulus (Ferster & Skinner, 1957). A ratio of these 
response rates may be used as a measure of the within-
 interval temporal discrimination. On individual cycles, 
the response rate during the stimulus is often character-
ized by a break-run pattern of responding, which is a 
period of low-rate responding followed by a period of 
high-rate responding (Church et al., 1994; Cumming & 
Schoenfeld, 1958; Schneider, 1969). The response rate 
during the stimulus, averaged over many cycles, increases 
as a function of time since stimulus onset, reaching its 
maximum near the end of the FI. These averaged response 
gradients are often ogival in shape.

4. Between-interval temporal discrimination. Some of 
the properties of the break-run gradients of individual cy-
cles and the ogival response gradients averaged over many 
cycles indicate that animals also discriminate different in-
tervals. The time from stimulus onset to the first response 
(initial pause) is positively related to the FI duration (Fer-
ster & Skinner, 1957) and is approximately proportional 
to the interval duration (Catania, 1970; Innis & Staddon, 
1971). The time at which response rate changes from a 
low to a high rate is also related to the interval duration 

(Cumming & Schoenfeld, 1958; Schneider, 1969). After 
extensive training, when individual trials are averaged, 
the maximum response rate and the slope of the response 
gradient are inversely related to interval duration (Catania 
& Reynolds, 1968). The differences between the response 
gradients produced by different intervals may be used as a 
measure of between-interval temporal discrimination.

The Results section will describe an empirical approach 
to temporal discrimination learning in which simple ex-
ponential equations will provide a good description of the 
acquisition of a large number of dependent variables. Be-
cause no simple rules were identified for the differences 
in the best-fitting parameters of the exponential equations 
that fit the different dependent variables, this direct ap-
proach will be considered to be simply curve fitting.

The Discussion section describes a packet theory of 
timing that, with the procedure as an input, predicts the 
time of occurrence of stimuli, responses, and reinforce-
ments. Because the same model with the same parameters 
provides a good description of multiple dependent mea-
sures, this indirect theoretical approach will be considered 
to be an explanation of the behavior.

METHOD

Animals
Twenty-four male Sprague Dawley rats (Taconic Laboratories, 

Germantown, NY) were housed individually in a colony room on a 
12:12-h light:dark cycle (lights off at 8:30 a.m.). Dim red lights pro-
vided illumination in the colony room and the testing room. The rats 
were fed a daily ration that consisted of 45-mg Noyes pellets (Im-
proved Formula A), which were delivered during the experimental 
session, and an additional 15 g of FormuLab 5008 food given in the 
home cage after the daily sessions. Water was available ad lib in both 
the home cages and the experimental chambers. The rats arrived in 
the colony at 35 days of age and were handled daily until the onset of 
the experiment. Training began when they were 67 days old.

Apparatus
The 12 chambers (25 � 30 � 30 cm) were located inside venti-

lated, noise-attenuating boxes (74 � 38 � 60 cm). Each chamber 
was equipped with a food cup and a water bottle. Three stimuli, 
referred to as noise, light, and clicker, were generated from modules 
from Med Associates (St. Albans, VT). The noise was a 70-dB white 
noise, with an onset rise time and termination fall time of 10 msec, 
that was generated by an audio amplifier (Model ANL-926). The 
light was a diffused houselight (Model ENV-227M) rated to illu-
minate the entire chamber over 200 Lux at a distance of 3 in. The 
clicker (Model ENV-135M) was a small relay mounted on the out-
side of the chamber that was used to produce an auditory click at a 
rate of one per second. A pellet dispenser (Model ENV-203) deliv-
ered 45-mg Noyes (Improved Formula A) pellets into the food cup 
on the front wall. Each head entry into the food cup was detected by 
an LED photocell. A water bottle was mounted outside the cham-
ber; water was available through a tube that protruded through a 
hole in the back wall of the chamber. Two Gateway Pentium III/500 
computers running the MED-PC for Windows Version 1.15 using 
Medstate Notation Version 2.0 (Tatham & Zurn, 1989) controlled 
experimental events and recorded the time at which events occurred 
with 2-msec resolution.

Procedure
The experimental sessions consisted of 60 cycles or 150 min, 

whichever came first. The animals were trained on the MCI proce-
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dure, in which each cycle consisted of a 20-sec period with discrimi-
native stimuli off, followed by a period with a discriminative stimu-
lus on. Food was primed at the end of an FI. Immediately after the 
next head entry into the food cup, measured as the time of breaking 
a photobeam in the food cup, food was delivered, the discriminative 
stimulus was turned off, and the next cycle began.

Phase 1 (Sessions 1–30) was baseline training with three inter-
vals. During baseline, all the animals were trained for 30 sessions 
under 30-, 60-, and 120-sec FI schedules of reinforcement differen-
tially signaled by noise, a light, or a clicker. For example, a particular 
rat might have a 30-sec interval signaled by noise, a 60-sec interval 
signaled by the light, and a 120-sec interval signaled by the clicker. 
The assignment of stimuli to intervals was counterbalanced.

Twelve rats were randomly assigned to the blocked condition, and 
the other 12 rats were assigned to the simultaneous condition. Train-
ing for the blocked condition consisted of 10 sessions with one in-
terval, then 10 sessions with a second interval, and then 10 sessions 
with the third interval. The six possible orders of the three intervals 
were counterbalanced, with 2 rats randomly assigned to each of the 
six possible orders of the three intervals (30, 60, and 120 sec). Train-
ing in the simultaneous condition consisted of 30 sessions in which 
one of the three possible intervals was presented randomly with 
equal probability on each cycle of each session. After 30 sessions of 
training, the rats from both conditions had received approximately 
600 cycles of each interval.

Phase 2 (Sessions 31–66) was training with daily changes in the 
intermediate interval. During this phase, there were cued intervals 
of 30 and 120 sec (with the same stimuli for each rat as that used in 
Phase 1) and one of nine intervals with the stimulus previously used 
for the 60-sec interval in Phase 1. The nine possible middle inter-
vals were distributed between 30 and 120 sec in an approximately 
logarithmic manner (30.00, 35.68, 42.43, 50.54, 60.00, 71.35, 84.85, 
100.90, and 120.00 sec). As in Phase 1, the three intervals were ran-
domly presented during every session.

The 12 rats in each condition (the blocked and the simultaneous 
conditions) were randomly partitioned into two groups of 6 rats in 
two conditions that differed in the pattern in which the middle inter-
val changed every session. For the ramp condition, the middle inter-
vals changed in a ramped order. The rats started with a 60-sec inter-
val; half continued with an ascending order of intervals, whereas the 
other half continued with a descending order. When the minimum 
interval (30 sec) was reached, this interval was repeated once, and 
the interval increased on successive sessions to the maximum inter-
val (120 sec); when the maximum interval (120 sec) was reached, 
this interval was repeated once, and the intervals decreased on suc-
cessive sessions to the minimum interval (30 sec). For the random 
condition, the middle interval on each of nine sessions consisted of 
a random ordering of the nine possible intervals. This process was 
repeated four times, so that each of the nine intervals was trained for 
a total of four sessions.

RESULTS

Phase 1: Baseline (Sessions 1–30)
Response rate during the stimulus. The mean re-

sponse rate during the stimulus (Figure 1) was approxi-
mately the same for the three intervals in the first block 
of 20 cycles for the simultaneous condition (mean of 11.7 
responses per minute; top panel) and for the blocked con-
dition (mean of 9.5 responses per minute; bottom panel). 
With training, this measure increased exponentially toward 
different asymptotic levels of 45.8, 43.7, and 34.5 responses 
per minute for the simultaneous condition and of 46.5, 40.2, 
and 28.0 responses per minute for the blocked condition, 
for the FI 30-, 60-, and 120-sec intervals, respectively.

The thin lines in Figures 1, 2, and 3 are the best-fitting 
three-parameter exponential equations (Equation 1):

 y c a e abn= −( ) −( ) +−1 ,  (1)

where a is the intercept, b is the scale, and c is the asymp-
tote. The variable n was either session number or cycle 
number (as specified in the text). A nonlinear search algo-
rithm (nlinfit) that minimized the sum of squares was used 
for the estimation of the parameters a, b, and c. The scale 
of the functions (b) was used as a measure of the speed of 
learning. The best-fitting equation of this form was found 
for each rat in each condition and also for the mean across 
rats. The figures show the best-fitting equation to the fit of 
the mean performance. The statistical conclusions shown 
in Table 1 were based on the best-fitting parameters for 
the individual rats. The goodness-of-fit measure (ω2) for 
a particular dependent variable was the ratio of the vari-
ance accounted for by the exponential functions for each 
of the intervals relative to the total variance of the data 
across intervals.

Table 1 provides the estimates of the first 20 cycles, the 
learning rate, and the last 20 cycles for each of the depen-
dent variables. The statistical significance of the effect of 
the fixed interval (30, 60, and 120 sec) on the dependent 
variables is shown by the symbols for both the simultane-
ous and the blocked conditions. Some of the statistically 

Figure 1. Response rate during the stimulus as a function of 
blocks of 20 cycles is shown for the simultaneous condition (top 
panel) and the blocked condition (bottom panel) for the 30-, 60-, 
and 120-sec intervals. The thin lines are the best-fitting exponen-
tial equations.
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significant differences observed during the first 20 cycles 
may have represented learning during these cycles; some of 
the significant differences may have been due to the large 
number (180) of comparisons made; and some may have 
been based on consistent differences that were of small 
magnitude. Most of the statistically significant differences 
are consistent with the large effects evident in the figures.

Stimulus discrimination ratio. The stimulus discrim-
ination ratio provided a comparison of the response rate 
during the middle of a stimulus with the response rate prior 
to the stimulus. The measure of the response rate during 
the stimulus was a 5-sec interval centered at the middle of 
the stimulus (rm); the measure of the response rate prior 
to the stimulus was a 5-sec interval that ended at stimulus 
onset (rp). The stimulus discrimination ratio was defined 
as rm/(rp � rm), with .5 indicating no stimulus discrimina-
tion and 1.0 indicating perfect stimulus discrimination.

The stimulus discrimination ratio increased for all con-
ditions from a level indicating little or no stimulus dis-
crimination (.5) to one indicating nearly complete stimu-
lus discrimination (1.0; see the top panels of Figure 2). 
The rats in the simultaneous conditions learned the stimu-
lus discrimination more rapidly than did the rats in the 
blocked conditions when the stimulus discrimination ratio 
was plotted as a function of cycles [F(1,22) � 7.0, p � 
.014], but at about the same rate when it was plotted as a 
function of sessions [F(1,22) � 1.8, n.s.].

Temporal discrimination ratio. The temporal dis-
crimination ratio provided a comparison of the response 
rate at the end of an interval with the response rate at the 
beginning of the interval. The measure of response rate at 
the beginning of an interval (rb) was an interval that was 
two fifteenths of the stimulus duration that began at stimu-
lus onset; the measure of the response rate at the end of 
the stimulus (re) was an interval that was two fifteenths of 
the stimulus duration that ended at the time that food was 
available. The temporal discrimination ratio was defined 
as re/(rb � re), with .5 indicating no temporal discrimina-
tion and 1.0 indicating perfect temporal discrimination.

The temporal discrimination ratio increased for all 
conditions from a level indicating little or no temporal 
discrimination (.5) to one indicating nearly complete tem-

poral discrimination (1.0; see the middle panels of Fig-
ure 2). The rats in the simultaneous conditions learned the 
temporal discrimination more rapidly than did the rats in 
the blocked conditions when the temporal discrimination 
ratio was plotted as a function of cycles [F(1,22) � 44.9, 
p � .001], but at about the same rate when it was plot-
ted as a function of sessions [F(1,22) � 0.3, n.s.]. The 
mean stimulus and temporal discrimination ratios for the 
rats in the six conditions (simultaneous and blocked with 
30-, 60-, and 120-sec intervals) are shown as a function 
of sessions in the bottom panel of Figure 2. The stimulus 
and temporal discrimination ratios were similar, but the 
scale of the stimulus discrimination ratio as a function of 
sessions was more rapid than the scale of the temporal 
discrimination ratio [F(1,23) � 5.7, p � .026]. Although 
the magnitude of the effect was small, the scale of the 
stimulus discrimination ratio was steeper than the scale of 
the temporal discrimination ratio for 22 of the 24 rats.

Time of the median response. The time of the median 
response was defined as the latency from the onset of a 
stimulus to the time of the median response in a cycle. 
It initially differed as a function of interval [F(2,22) � 
587.0, p � .001, and F(2,9) � 116.6, p � .001, for the si-
multaneous and the blocked conditions, respectively; see 
Figure 3, top panel]. The functions gradually increased 
exponentially toward different asymptotic levels [of 25, 
49, and 99 sec for FI 30, FI 60, and FI 120 sec, respec-
tively; F(2,22) � 5,505.1, p � .001, for the simultaneous 
condition, and F(2,9) � 404.3, p � .001, for the blocked 
condition].

Time of the maximum rate change. The time of the 
maximum rate change during a cycle is defined as the 
time (t1) that maximizes the following equation:

 A t r r t r r= −( ) + −( )1 1 2 2 ,  (2)

in which r1 is the response rate prior to t1, r2 is the re-
sponse rate after t1, and r is the mean response rate. Also, 
t1 is the duration prior to t1, and t2 is the duration from t1 
to food delivery. An exhaustive search at the times of each 
response during a cycle determines the value of t1 that 
maximizes the area, A.

Table 1
Estimates of Goodness of Fit of Exponential Functions to the Five Summary Dependent Measures of Temporal Discrimination 

for the Simultaneous (S) and Blocked (B) Conditions

First 20 Cycles Learning Rate Last 20 Cycles Goodness
Dependent Measure  Condition  FI 30  FI 60  FI 120  FI 30  FI 60  FI 120  FI 30  FI 60  FI 120  of Fit (ω2)

Time of median response (sec) S 19.46 33.33 60.24*** 0.13 0.24 0.22* 25.66 49.66 98.18*** .998
B 19.45 31.37 57.92*** 0.05 0.15 0.15† 25.27 49.31 98.42*** .995

Time of response rate change (sec) S 15.32 30.14 47.20*** 0.07 0.05 0.17† 20.67 41.12 76.92*** .996
B 15.94 26.61 52.05*** 0.01 0.05 0.04† 19.86 40.7 81.19*** .989

Time of first response (sec) S 8.81 8.41 8.70† 0.13 0.17 0.15† 18.4 30.36 50.15*** .976
B 7.78 6.18 4.73* 0.03 0.13 0.06† 16.56 26.29 59.71*** .936

Response rate (rpm) S 10.95 18.74 13.91*** 0.95 0.08 0.21*** 51.3 7.85 1.96*** .977
B 2.67 17.04 14.23** 0.31 0.02 0.10† 48.29 6.52 1.25*** .974

Temporal discrimination ratio S 0.52 0.51 0.46† 0.57 0.61 0.56† 0.99 0.98 0.99† .985
B 0.52 0.43 0.37** 0.17 0.26 0.28† 1.00 0.97 0.98† .961

Note—The parameters of the exponential functions were the start (based on the first 20 cycles), the end (based on the last 20 cycles), and the 
learning rate (based on the scale of the best-fitting exponential function; see Equation 3). *p � .05. **p � .01. ***p � .001. †p � .05.
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The values of t1 as a function of blocks of 20 cycles 
is shown in the second panel of Figure 3. In the simul-
taneous condition, the initial t1 was positively related to 
the number of cycles [F(2,22) � 182.2, p � .001]; the as-
ymptotic value of t1 was negatively related to the interval 
[F(2,22) � 1,616.7, p � .001], but the scales were equiva-
lent [F(2,22) � 1.3, n.s.]. The results from the blocked 
condition were similar to those from the simultaneous 
condition.

Time of the first response. The time of the first re-
sponse was defined as the latency from the onset of 
a stimulus to the first response in a cycle. On the first 
block of 20 cycles, it was approximately the same for the 
three intervals on the first block of 20 cycles—a mean of 
11.4 sec (Figure 3, third panel). With training, this mea-
sure increased exponentially toward different asymptotic 
levels (of 18.7, 30.6, and 56.9 sec for FI 30, FI 60, and 
FI 120 sec, respectively). The asymptote of the best-fitting 
exponential functions relating time of the first response 

to cycles were different for the intervals of 30, 60, and 
120 sec [F(2,22) � 98.6, p � .001, and F(2,9) � 20.4, 
p � .001, for the simultaneous and the blocked condi-
tions, respectively]. The measure of the speed of learning 
was similar at all three intervals [F(2,22) � 2.2, n.s., and 
F(2,9) � 1.0, n.s., for the simultaneous and the blocked 
conditions, respectively].

Response rate at comparable intervals. The re-
sponse rate at comparable intervals was defined as the 
mean response rate during the first 30 sec from stimulus 
onset. Because the FI durations used in the present ex-
periment ranged from 30 to 120 sec, all the animals had 
an equal opportunity to respond in the first 30 sec since 
stimulus onset on every cycle. The mean response rate 
had a pattern of results similar to the time of the first re-
sponse (Figure 3, fourth panel). It was approximately the 
same for the three intervals on the first block of 20 cycles 
(average of 12.5 responses per minute). With training, this 
measure increased or decreased exponentially toward an 

Figure 2. Top panels: Stimulus discrimination ratio (DR) of the simultaneous 
and blocked conditions at three intervals (30, 60, and 120 sec). Middle panels: 
Temporal DR of the simultaneous and blocked conditions at three intervals (30, 
60, and 120 sec). These dependent variables are plotted as a function of blocks 
of 20 cycles (left panels) and as a function of sessions (right panels). Bottom 
panel: A comparison of the stimulus DR and the temporal DR as a function of 
sessions. The thin lines are the best-fitting exponential equations.
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asymptotic level (50.6, 12.2, and 2.1 responses per minute 
for FI 30, FI 60, and FI 120 sec, respectively). The mean 
response rate at comparable intervals was inversely related 
to the interval duration and also was related to the distance 
from the response rate at the beginning of training to the 
asymptotic response rate level. The asymptotes were dif-
ferent for the intervals of 30, 60, and 120 sec [F(2,22) � 
144.7, p � .001, and F(2,9) � 405.5, p � .001, for simul-
taneous and blocked conditions, respectively]. The mean 
scales for the blocked condition were 0.32, 0.32, and .08 
for 30, 60, and 120 sec, respectively, and were not related 
to interval duration [F(2,9) � 0.6, n.s.]. The mean scales 
for the simultaneous condition were 0.93, 0.10, and 0.22 
for 30, 60, and 120 sec, respectively, and were related to 
interval duration [F(2,22) � 21.8, p � .001]. The speed of 
learning for this measure was not affected by the interval 
duration for the blocked condition but was affected for the 
simultaneous condition.

Temporal discrimination ratio. The temporal dis-
crimination ratio as a function of cycles is replotted in the 
fifth panel of Figure 3 so that it can be readily compared 
with the other four measures of temporal discrimination. 
This measure of temporal discrimination began at approx-
imately the same level for each fixed interval and ended at 
approximately the same level for each interval.

Two of the measures of temporal discrimination began 
and ended at different levels for each interval (see Fig-
ure 3, panels 1 and 2); two of the measures began at ap-
proximately the same level and ended at different levels 
for each interval (panels 3 and 4); and one of the measures 
began and ended at approximately the same level for each 
interval (panel 5).

Temporal gradients. The absolute temporal gradients 
were the mean response rates (in responses per minute) as 
a function of time since stimulus onset (in seconds). These 
gradients are shown for the 30-, 60-, and 120-sec FIs for 
the simultaneous and the blocked groups (Figure 4, top 
left and right panels, respectively). The relative temporal 
gradients were the mean response rates as proportions of 
the maximum rates. The ogives that best fit these response 
gradients were calculated on the basis of Equation 3:

 y
c

e x a b
=

+ − −1 ( )/
.  (3)

In all eight ogives shown in Figure 4, the minimum rate 
was set to 0; in the two bottom panels of Figure 4, the 
maximum was set to 1.0. A nonlinear search algorithm that 
minimized the sum of squares was used for the estimation 
of the parameters a, b, and c, which served as measures 
of temporal discrimination. This was done with the nlinfit 
function of MATLAB (The MathWorks, Natick, MA).

1. The parameter a is an estimate of the center (the time 
at which the response rate reached half of the way to its 
estimated maximum response rate).

2. The parameter b is an estimate of the scale of the 
function, a measure of the precision of timing.

3. The parameter c is an estimate of the maximum re-
sponse rate of the function.

The temporal gradients shown in Figure 4 were based 
on the response rate averaged over the last 300 cycles. 
These were the last 15 sessions for the simultaneous condi-
tion and Sessions 6–10, 16–20, and 26–30 for the blocked 
condition. The gradients were related to the duration of 
the fixed interval in both training conditions (Figure 4, 

Figure 3. The change in five measures of timing as a function of blocks of 20 cycles for the simultaneous and blocked conditions at 
three intervals (30, 60, and 120 sec). The thin lines are the best-fitting exponential equations. The measures are the time of median 
response (TMR; first panel), the time of transition (t1; second panel), the time of first response (TFR; third panel), the mean response 
rate in responses per minute (fourth panel), and the temporal discrimination ratio (TDR; fifth panel). (The mean response rate was 
calculated during the first 30 sec of the stimuli under all conditions.)
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top panels). The relative response gradients, expressed as 
a function of the proportion of the interval, were similar 
at all intervals (Figure 4, bottom panels). Such overlap is 
referred to as superposition or timescale invariance. The 
median proportion of variance accounted for was .999, 
with a range from .995 to .999.

The similarity is even greater if a 2.25-sec interval is 
subtracted from each of the times, on the basis of the as-
sumption that there is a latency to begin timing that is the 
same at all intervals. There was no relationship between 
the centers of the ogival functions (Equation 2) and in-
terval duration for the blocked condition [F(2,22) � 0.3, 
n.s.] or for the simultaneous condition [F(2,22) � 0.2, 
n.s.]. There was also no relationship between the scales of 
the ogival functions and the interval duration for either the 
blocked condition [F(2,22) � 1.7, n.s.] or the simultane-
ous condition [F(2,22) � 1.6, n.s.].

The acquisition of the temporal gradients is shown in 
Figure 5 for Sessions 1–6 and for the last six blocks of 20 
cycles. On the first session, the response rate was rela-
tively constant as a function of time since stimulus onset. 
A flat gradient characterized the performance at all the 
intervals (30, 60, and 120 sec) and with both the simulta-

neous and the blocked conditions. The temporal learning 
consisted of an increase in response rate late in the interval 
and a decrease in response rate early in the interval.

On Sessions 16–30 (simultaneous condition) or 6–10 
(blocked condition), the response rate increased as a func-
tion of time since stimulus onset. This asymptotic gradient 
was well characterized as an ogive at all the intervals and 
in both the simultaneous and the blocked conditions (see 
the description in Figure 4).

Phase 2: Transitions Between Temporal Intervals 
(Sessions 31–66)

Figure 6 shows the temporal learning of daily changes 
in the intermediate interval. In this phase, the two extreme 
intervals were maintained at 30 and 120 sec, whereas the 
middle interval was changed daily. The figure shows the 
mean response gradients in the ramp (left panels) and ran-
dom (right panels) conditions for the first five cycles (top 
panels), the next five cycles (middle panels), and the last 
five cycles (bottom panels) of each session. Performance 
on the two extreme intervals was maintained, but there was 
a substantial difference in the performance of the rats in the 
ramp and the random conditions on the middle interval. In 

Figure 4. Response rate as a function of time since stimulus for the three fixed intervals 
(FIs). The left panels show gradients of responding for the simultaneous conditions, and the 
right panels show the gradients for the blocked conditions; the top panels show the gradients 
for the time in seconds, and the bottom panels show the gradients for time as a proportion of 
the interval. The thin lines are the best-fitting ogive functions.
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the ramp condition, the mean performances on the first and 
last five cycles of each session were similar. In contrast, in 
the random condition, the mean performances on the first 
five cycles of each session were similar, but there was sub-
stantial and rapid learning during each session.

DISCUSSION

The MCI procedure provided a way to study the acqui-
sition and the asymptotic performance of stimulus and 
temporal discriminations. It also provided a way to study 
the change in behavior produced by a daily change from 
one temporal interval to another. With the MCI procedure, 
rats readily learned three stimulus discriminations (to the 
light, noise, and clicker) and three temporal discrimina-
tions (of 30, 60, and 120 sec). They learned these discrim-
inations about equally well whether they were all trained 
simultaneously (in the simultaneous condition) or whether 
they were trained successively (in the blocked condition).

Initial Acquisition of a Temporal Discrimination
Initial acquisition was characterized by an increase in 

response rate during the stimulus (Figure 1), in the stimu-
lus discrimination ratio (Figure 2), in the time of the first 
response, in the time of the median response, in the time 
of transition from a low to a high rate, and in the response 
rate at comparable times since stimulus onset (Figure 3). 
The response gradient also changed as a function of ses-
sions (Figure 5). All of these changes occurred in the same 
sessions.

Two features of temporal discrimination were learned 
during initial acquisition: within-interval and between-
 intervals temporal discrimination. Within-interval tempo-
ral discrimination started at approximately .5 (no discrimi-
nation) and reached almost 1.0 (complete discrimination). 
The within-interval temporal discrimination ratio for the 
blocked and simultaneous conditions superposed when 
plotted as a function of sessions, but not when plotted as 
a function of cycles trained. This result suggests that the 
within-interval temporal discrimination (low responding 
in the beginning of the interval and high responding at 
the end of the interval) is a common learned feature that 
occurs independently of the interval being trained. The 
between-intervals temporal discrimination also started at 
a no-discrimination level and reached different levels for 
different intervals. The rate of initial acquisition was simi-
lar for intervals of different duration.

The time of median response described the acquisition 
of both within-interval and between-intervals temporal 
discrimination. The analysis based solely on time of me-
dian response, however, does not provide information 
about the rates of responding prior to and followed by the 
median response. Asymptotic temporal gradients super-
posed when plotted in relative scales supporting the scalar 
model of timing processes (Gibbon, 1977, 1991; Gibbon 
& Church, 1990). Therefore, the centers and scales were 
proportional to interval duration.

The time of response rate change (t1) measure started at 
about half of the interval duration (no discrimination) and 
reached asymptote at about two thirds of the interval dura-
tion. This asymptotic finding is consistent with results of 
Schneider (1969) and Dukich and Lee (1973), who also 
found that the transition between the period of no respond-
ing and the period of responding (break-run pattern) in an 
FI schedule of reinforcement occurred at about two thirds 
of the interval duration after extensive training.

Thus, different summary measures provided evidence 
of the acquisition of within-interval and between- intervals 
temporal discrimination. Some measures (such as the 
stimulus discrimination ratio) did not provide evidence 
of temporal discrimination. Other measures (such as the 
temporal discrimination ratio) provided evidence for 
within-interval temporal responding by comparing the 
response rate at the end of the stimulus with the response 
rate at the beginning of the stimulus. Still other measures 
(such as the response rate during the stimulus, the time of 
the first response, and the response rate during the first 

Figure 5. Mean response rate as a function of stimulus onset 
for the simultaneous condition (left panels) and the blocked con-
dition (right panels) on the 30-, 60-, and 120-sec intervals (top, 
middle, and bottom panels, respectively). The functions are shown 
for the first six blocks of 20 cycles (labeled 1–6) and the last six 
blocks of 20 cycles (thick lines) for the simultaneous and blocked 
conditions.
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30 sec) provided evidence for between-intervals temporal 
discrimination by comparing performance under intervals 
of different durations. Some measures (such as the time 
of the median response, the time of response rate change, 
and the temporal gradient parameters) provided evidence 
both of within-interval and between-intervals temporal 
learning.

Comparison of the Acquisition of Stimulus 
and Temporal Discriminations

In the present data, acquisition of stimulus and within-
interval temporal discrimination developed simultane-
ously, as was observed in Kirkpatrick and Church (2000a), 
rather than showing a pattern in which stimulus discrimi-
nation must precede temporal discrimination (Gallistel & 
Gibbon, 2000, 2002). Although the speed of development 
of the stimulus discrimination ratio was slightly more 
rapid than that of the temporal discrimination ratio, both 
of these measures changed in a similar manner as a func-
tion of sessions. The temporal discrimination certainly did 
not begin after the stimulus discrimination was complete 
(bottom panel of Figure 2).

The speed and asymptote of learning of the stimulus and 
the temporal discrimination ratios were similar for differ-
ent intervals. Although the discrimination ratios (stimulus 
discrimination ratio and temporal discrimination ratio) 
for the simultaneous training condition increased more 
rapidly than did those for the blocked training condition 
when plotted as a function of cycles, the functions were 
approximately the same when plotted as a function of ses-
sions. This suggests that the discrimination ratio for one 
interval was increased by training on the other intervals. 
This is plausible because an initial low rate of responding 
is learned in all the FI conditions.

Direct Predictions of Summary Measures 
of Temporal Discriminations

An empirical approach to the identification of a learning 
curve that applies to many different summary measures of 
temporal discrimination is to identify a function form and 
then adjust the parameters of this function to fit the data. 
Exponential equations provided a good way to summarize 
the learning of each of the dependent measures of tem-
poral discrimination. The dependent measures of perfor-

Figure 6. Response rate as a function of time since stimulus onset for rats in the ramp con-
dition (left panels) and the random condition (right panels). These data are shown for the first 
five cycles (top panels), the next five cycles (middle panels), and the last five cycles (bottom 
panels). One stimulus remained on a fixed-interval schedule of 30 sec (solid circles); another 
stimulus remained on a fixed-interval schedule of 120 sec (solid triangle); the third stimulus 
changed daily among the nine intervals between 30 and 120 sec.
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mance described in this section and listed in Table 1 were 
examined as a function of amount of training.

The functions relating the dependent variables to the 
amount of training were all reasonably well fit by three-
parameter exponential equations. The median ω2 was .98 
(see Table 1). For each dependent variable, the exponential 
equation accounted for a high percentage of the variance 
of 30 data points, and the parameters of the equation were 
systematically related to the conditions of training. This 
suggests that these equations were reliable (i.e., repeatable) 
and that they provided a good description of each of the 
dependent variables (i.e., the residuals from the equation 
were small and, perhaps in some cases, nonsystematic).

The five measures of the acquisition of temporal dis-
crimination had three different patterns. As a function of 
the FI (30, 60, and 120 sec), two of them began and ended 
at different levels (time of median response and time of 
maximum rate change); two of them began at similar lev-
els and ended at different levels (time of first response and 
rate at comparable intervals), and one of them began and 
ended at similar levels (temporal discrimination ratio). Of 
course, there are many additional summary measures that 
could be described. The acquisition of these are also likely 
to be fit by exponential equations, but it is not clear how 
to predict in advance which of the parameters for different 
conditions will be the same and which will be different.

A problem with the description of the dependent vari-
ables with exponential equations for the explanation of 
acquisition is that they are difficult to relate to an underly-
ing learning process. If a single dependent variable were 
used, one might assume that the initial level of the expo-
nential function represented the initial state of knowledge, 
the asymptote of the exponential function represented the 
final state of knowledge, and the rate of approach to the 
asymptote represented the speed of learning. But with the 
use of multiple dependent variables, it is necessary to ex-
plain why there are differences among the initial and final 
states of knowledge and the rates of learning of the dif-
ferent dependent variables. An explanation that requires 
different equations or parameters to fit different summary 
measures of behavior may be regarded as a good descrip-
tion of each dependent variable, but not as an explanation 
of the raw output data that consists of a time series of 
stimuli, responses, and reinforcements.

Of course, the limitation encountered when exponential 
equations are used to account for multiple dependent mea-
sures of learning may also apply when theoretical models 
of the process are used to account for different dependent 
measures. For example, stochastic models of learning 
with parameters for initial value, rate of learning, and as-
ymptotic level could be used, but the basis for the use 
of different parameters for different dependent measures 
is unclear (Bush & Mosteller, 1955). The value of such 
models is demonstrated when the same parameter values 
that account for the acquisition function also account for 
other dependent variables, as Bush and Mosteller have 
done in their analysis of an avoidance learning experiment 
by using the same parameter values to account for acqui-

sition, mean number of trials before the first avoidance, 
and mean number of shocks (Table 11.8, p. 257). These 
problems may be avoided by assuming that there is only 
an ordinal relationship between predicted and summary 
measures of behaviors, but at the cost of a reduction in the 
precision of prediction (Rescorla & Wagner, 1972).

Acquisition of the Response Pattern
The temporal gradients produced by many quantitative 

theories of timing may be approximated by ogival func-
tions (see the top panels in Figure 4). These functions 
may superpose when plotted in relative scales: Relative 
time refers to the ratio of time since stimulus onset to the 
time from stimulus onset to food availability, and rela-
tive response rate refers to the ratio of response rate since 
stimulus onset to the maximum response rate (see the bot-
tom panels in Figure 4). This superposition result has been 
used extensively for the development of scalar timing the-
ory (Gallistel & Gibbon, 2000; Gibbon, 1977, 1991; Gib-
bon & Church, 1990; Gibbon, Church, & Meck, 1984).

The relative response rate as a function of relative time 
since stimulus may be approximated by an ogive. The 
equation for an ogive with y between 0 and 1 is

 y e t c s= + ( )⎡
⎣

⎤
⎦

− −1 1/ ,( )/  (4)

where c is a measure of the center and s is a measure of the 
scale. The equation was fit to the mean relative response 
rate for the blocked condition as a function of time since 
relative stimulus onset (t) with a nonlinear search algo-
rithm. This is the fitted line in the lower right panel of 
Figure 4. The center (c) was close to 0.67, the scale (s) was 
close to 0.125, and the proportion of variance accounted 
for (ω2) was .995. The same function provided a good ap-
proximation to the response rate gradients at all intervals 
(Equation 4). This is known as the superposition result 
(see the bottom right panel in Figure 4).

This same fitted line, an ogive, is shown in the top panel 
of Figure 7 and is labeled as λ. The flat line labeled κ is an 
operant level; in this example, it was set at 0.2.

The acquisition of the function that defines the pattern 
of responding on each cycle is given by the linear operator 
model in Equation 5B. In this equation, p is the observed 
pattern (a vector) of responding during a session, n is the 
cycle number, λ is the observed asymptotic pattern (a vec-
tor), and α is a constant, normally between 0 and 1:

 p0 = κ ,   (5A)

and

 p p p nn n n= + −( ) >− −1 1 0α λ , .where  (5B)

This is the standard equation for a linear operator model 
in which α is usually considered to be a learning rate. The 
pattern on cycle n is equal to the performance on the pre-
vious cycle plus a proportion of the difference between 
the asymptotic pattern (λ) and the pattern on the previous 
cycle ( pn). The terms in Equation 5B can be rewritten to 
the form shown in Equation 5C. In this form, the pattern 
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on cycle n is recognized to be a weighted average of the 
pattern on the previous cycle and the asymptotic pattern:

 p p nn n= + − >−α α λ1 1 0( ) , .where  (5C)

Thus, on the initial cycle, the pattern, p0, will be a con-
stant and, on subsequent cycles (n), will approach the 
asymptotic values of the relative ogive (λ). The rate of 
approach will be determined by the learning rate param-
eter, α. The arrows indicate that beyond a fixed time, the 
relative response rate increases as a function of cycles and 
that, before that time, it decreases.

Because the same events occur on every cycle, the re-
cursive form of Equations 5A and 5B can be rewritten as a 
linear equation (Bush & Mosteller, 1955, pp. 58–61):

 pn
n n= + −( )α κ α λ1 .  (5D)

The relative operant level line, κ, and the relative ogive 
function, λ, were combined by this weighted averaging 
rule to produce the expected value of the pattern on any 
cycle. This linear form is particularly convenient because 
it makes it possible to generate the response pattern vec-
tor on each cycle directly from the values of α, n, κ, and 
λ and it does not require the prior calculation of pn�1. The 

pattern changed with training: It equaled κ initially and 
approached λ with extensive training. Given a description 
of the initial behavior of κ and λ, this general acquisition 
model requires only a single parameter, α, to estimate the 
expected response pattern at any cycle n.

Any timing or conditioning theory that produces an ap-
proximately flat initial response gradient and an approxi-
mately ogival response gradient at asymptote may provide 
a quantitative account of the acquisition of the response 
pattern with the use of Equation 5D. For the prediction of 
the time of occurrence of responses, pn may be used as a 
probability of responding in some short interval of time (a 
response rate). The prediction of the response gradients, 
however, does not necessarily lead to a correct prediction 
of the response bouts or the various dependent measures 
shown in Figure 3.

A Packet Theory of the Dynamics 
of Temporal Discrimination

A packet theory of timing has been used to account for 
asymptotic performance of the response rate and many 
other dependent measures of performance in many differ-
ent procedures (Kirkpatrick, 2002; Kirkpatrick & Church, 
2003). A slightly modified version of packet theory, re-
ferred to as Version 2, was applied to the asymptotic 
results of additional procedures (Church & Guilhardi, 
2005; Guilhardi, Keen, MacInnis, & Church, 2005). The 
packet theory of the dynamics of temporal discrimination 
described here produces the same asymptotic results as 
Version 2 of packet theory, except that it has two modifi-
cations, which will be described later, that allow it to make 
reasonable predictions about the dynamics of temporal 
discrimination.

This process created simulated data that could be ana-
lyzed in the same way as the actual data.

The four parts of the model, labeled perception, mem-
ory, decision, and responses, are shown in Figure 8.

Perception. The perception was determined by the pro-
cedure, so there were no free parameters. At any given 
time between stimulus onset and reinforcement, a time to 
food may be calculated on the basis of the last stimulus-
to-food interval (d ) and the time elapsed from the onset of 
the last stimulus (t). This is called the perception:

 s t d t t d( ) , .= − ≤  (6)

Memory. Memory is a weighted sum of the perceived 
time to food and the remembered time to food. The 
weighted sum is described by the following standard lin-
ear equation:

 E t s t E tn n+ = + −1 1( ) ( ) ( ) ( ),α α  (7)

where s(t) is the current perceived time to food, En(t) is the 
current remembered time to food, α is the learning param-
eter, and n is the current number of reinforcements. This 
linear equation was used by Bush and Mosteller (1955) to 
describe learning of the probability of a response, and it 
is used here to describe the learning of expected durations 
to reinforcement (a vector) as a function of physical time. 

Figure 7. Acquisition of the response pattern. Top panel: An 
operant process consists of a mean level of responding that is 
constant throughout the interval (κ) and a timing process that 
consists of an ogive that increases during the interval (λ). Bot-
tom panel: With training, the relative contribution of the timing 
process increases. The arrows show the directions of change with 
increased training.
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Memory was determined by a learning rate parameter 
(α � 0.0125 per cycle). The multiplication was the prod-
uct of a scalar and a vector, and the addition was a sum 
of corresponding elements of two vectors (array calcula-
tions). The starting expected values of memory were de-
termined by a normal distribution with a mean of 400 sec 
and a standard deviation of 280 sec. The value of memory 
at time zero, E(0), was used as the estimate of the mean re-
membered time of reinforcement at stimulus onset. (It was 
set to the mean of 400 sec if the sample was below 0.)

Decision. In packet theory, packets are initiated by a 
transformation of memory via a threshold and by a con-
stant operant rate; these packets generate responses. The 
horizontal line in the memory panel of Figure 8 repre-
sents a sample of a threshold. The threshold transforms 
the continuous pattern in memory into a pattern with two 
states: a high state with rate (r) of initiating packets of 
responses and a low state with no initiation of new packets 
of responses. In every cycle, a single random sample (b) is 
taken from a normal distribution (η), with a mean between 
zero and one (μb), and some coefficient of variation (γb), 
as described in Equation 8:

 b b b b= ( ) ≤ ≤( )η μ γ μ, .0 1  (8)

If the sample is below zero, b is resampled, and if it is 
above one, it is set to one. Thus, b is a proportion between 
zero and one. The threshold B is defined in Equation 9:

 B P E t t Eb= ⎡⎣ ⎤⎦ ≤ ≤⎡⎣ ⎤⎦( ) ( ) ,0 0  (9)

where Pb is the bth percentile of the memory function E(t) 
when t is between zero and E(0). The threshold B is a time 
such that, when memory is above B, the decision function 
is in the low state, and when memory is below B, the deci-
sion function is in the high state (r).

In addition, at all times, packets are generated at some 
operant rate (op). The total rate of anticipatory packet gen-
eration is r � op. In the present simulation, the decision 
to initiate a packet of responses was determined by the 
normally distributed threshold distribution with a mean 
(μb) of .333 and a coefficient of variation (γb) of 0.5, by an 
operant rate (op) of 0.6 packets per minute, and by a func-
tion that related rate of packet initiation (r) to the mean re-

membered reinforcement interval at stimulus onset, E(0), 
as described in Equation 10:

 r E= − +. log ( ) . ,30 0 9210  (10)

where E(0) is the mean remembered reinforcement inter-
val at stimulus onset in seconds and r is the number of 
packet initiations per minute. A new estimate was calcu-
lated after each delivery of food. Therefore, memory (at 
time 0) is the expected time to the next food that deter-
mines the mean response rate based on the linear relation-
ship between rate and log(interval).

The two modifications of Version 2 of packet theory 
were related to the acquisition process: (1) The starting 
remembered expectation was as determined by a random 
sample, rather than being set at 0, and (2) the estimated 
response rate of packet initiation (r) was a function of 
the mean remembered time since stimulus onset on each 
cycle, rather than a constant function at all cycles.

Responses. The observed pattern of responding is 
often characterized by bouts of responses that occur with 
short interresponse times and that are separated by longer 
interbout intervals (Tolkamp & Kyriazakis, 1999). One 
example is the head entry response of a rat in an appe-
titive classical or operant procedure (Kirkpatrick, 2002; 
Kirkpatrick & Church, 2003). The term bout will be used 
for characteristics of an observed series of responses. For 
example, a bout may be described as a series of responses 
with no interresponse intervals greater than some crite-
rion; the characteristics of bouts then may be described by 
the frequency distribution of interresponse intervals in a 
bout, the number of responses in a bout, and the duration 
of a bout (Kirkpatrick & Church, 2003).

If a packet is initiated, the mean number of responses 
is determined by a Poisson distribution with a mean of 
5, and the interresponse times are determined by a Wald 
distribution with a location (μ) of 0.75 msec and a scale 
(λ) of 0.73 msec.

The term packet will be used as a theoretical term to 
refer to the characteristics of the response units generated 
by the model. A packet consists of a variable number of 
responses with variable interresponse times. The number 
of responses per packet was assumed to be a Poisson dis-

Figure 8. Packet theory: perceived time to food (Perception), remembered time to food (Memory), rate of packet initia-
tion (Decision), and probability density of interresponse times (IRTs; Responses). See the text for details.



DYNAMICS OF TEMPORAL DISCRIMINATION    411

tribution with a mean of five responses per packet; the in-
terresponse times within a packet were positive values dis-
tributed as a Wald (inverse Gaussian) distribution, shown 
in the last panel of Figure 8 and described in Equation 11:

 f t
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where μ is the center parameter, λ is the scale parameter, 
and t is the interresponse time in seconds.

The simulations were based on the same procedures as 
those used in the experiment and on the same number of 
cycles as in the data. This process created simulated data 
that were analyzed in the same way as the actual data.

The simulated data made it possible to estimate the re-
sponse gradients as a function of time since stimulus onset, 
as is shown in Figure 9. The gradients are shown for the 
30-, 60-, and 120-sec FI procedures for the first six ses-
sions of training and for the last five sessions (top three 
panels). The bottom panel of the figure shows the asymp-
totic data (solid line) and the model estimates (thin lines).

The same simulated data as those used for estimation 
of the response gradients were also used for estimation 
of the dependent measures of performance on the tempo-
ral discrimination task. The same parameter values were 
used for all the panels in Figures 9 and 10. The dependent 
measures were the response gradient, the time of median 
response, the time of transition from the low to the high re-
sponse rate, the time of first response, the response rate at 
comparable times, and the temporal discrimination ratio. 
As was noted previously, the functions relating the depen-
dent variables to amount of training varied considerably. 
They were measured in different units (response time, re-
sponse, and proportion). As can be observed in the data, 
some measures began and ended at different levels; some 
measures began at the same level and ended at different 
levels, and some measures began and ended at the same 
level. Despite the differences in units and the parameters 
needed for exponential fits, the process model generated 
data that were similar to the observed patterns. The ω2 
measure is given for each dependent variable in the panels 
in Figures 9 and 10.

The same parameters as those used to simulate the ini-
tial acquisition were also used for the simulations of the 
daily transitions of the middle interval in both the ramp 
and the random conditions (except for the rate of learning, 
as will be described later in this section). In these simu-
lations, the performance on each session began with the 
final performance on the previous session.

The simulated gradients (Figure 11) were similar to 
the observed gradients (Figure 6) in both the ramp and 
the random conditions. The variance accounted for, ω2, 
was .896. Although the gradients of responding with the 
ramp and random conditions were quite different in the 
first five cycles, this was due to the conditions of training 
on the previous session. (Note that in the ramp condition, 
the intermediate interval on the previous session was only 

slightly shorter or longer than the intermediate interval on 
the current session.)

The same value of the learning rate (α) was used for the 
simulations of the ramp and random conditions shown in 
Figure 11. Because the same learning rate could be used 
for both conditions, the difference in observed response 
gradients was based on the treatment in the previous ses-
sion, rather than on any differential speed of learning.

Although value of the learning rate (α) has only a negligi-
ble effect on asymptotic performance, it profoundly affects 
the development of the performance. The effect of varia-
tions in α on the temporal gradients is shown in Figure 12 
for the three FI conditions (FI 30, FI 60, and FI 120 sec) as 

Figure 9. Simulation of response rate as a function of time since 
stimulus onset. The top three panels show the first six blocks of 20 
cycles (labeled 1–6) and the last 15 blocks of 20 cycles (thick lines) 
for the blocked conditions with 30-, 60-, and 120-sec intervals, 
respectively. The bottom panel shows the response rate during the 
stimulus as a function of time since stimulus onset for the three 
intervals (solid points) and the simulated values (thin lines).
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Figure 10. Simulation of five measures of the acquisition of temporal discriminations based on a model of temporal learning. The 
thin lines are based on the model of temporal learning with the same parameters as those used for the fitting of the gradients in 
Figure 9. The measures are the time of median response (TMR; first panel), the time of transition (t1; second panel), the time of first 
response (TFR; third panel), the mean response rate in responses per minute (fourth panel), and the temporal discrimination ratio 
(TDR; fifth panel).

Figure 11. Predictions of the model of temporal learning for the adjustment of response rate 
to daily changes in the duration of the middle interval in the ramp condition (left panels) and the 
random condition (right panels). The first five cycles, the next five cycles, and the last five cycles of 
a session are shown in top, middle, and bottom panels, respectively.
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a function of blocks of 20 cycles. With α � 0.001, the 
gradients are relatively flat and constant as a function of 
training (top row of panels); with α � 0.300, the gradients 
are close to asymptotic after the first block of 20 cycles 
(bottom row of panels); with α � 0.012 (third row of pan-
els), the gradients approach the asymptotic level at about 
the same rate as that in the data (Figure 5). The effects of 
learning rates intermediate between the optimal value and 
a value that is clearly too high or low are shown in the 
second and fourth rows of panels. A comparison between 
the development of the temporal gradients produced by 
the rats and the model can be calculated for any value of 
the learning rate. The percentage of variance accounted 
for (ω2) was used as the measure of goodness of fit.

The relationship between the proportion of variance 
accounted for in goodness of fit and different values of 
the learning rate is shown in Figure 13. The top panel is 
based on the first 15 sessions of baseline training (Phase 1) 

for the simultaneous condition; the bottom panel is based 
upon the first 15 sessions of the conditioning with the daily 
changes in interval (Phase 2). Note that the scale of learn-
ing rates in the bottom panel is 10 times the scale in the top 
panel. The best estimate of the learning rates are α � 0.012 
for the top panel and α � 0.101 for the bottom panel. In 
the original learning, the function relating the goodness of 
fit to the learning rate has a clear maximum slightly above 
0.01; with the daily transitions, the maximum of the func-
tion is clearly much higher than 0.01, but it can only be 
roughly identified at about 0.10. In the ramp condition, one 
cannot rule out learning rates that are substantially higher, 
but the simplest assumption is that they were the same in 
both conditions but that it was not possible to obtain reli-
able measures of the speed of learning for a procedure in 
which there were only small daily changes in the FI.

The substantially faster learning shown in the bottom 
panel may have been a result of the procedure or of the 

Figure 12. Mean simulated response rate as a function of stimulus onset. The col-
umns display the results for the 30-, 60-, and 120-sec intervals; the rows display the 
different learning rates (α).
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additional temporal discrimination training. Estimates of 
learning rate become more unstable as a function of train-
ing, but no systematic increase in the learning rate was ob-
served within either phase. The first acquisition of stable 
temporal discriminations may be fundamentally differ-
ent from the acquisition of daily changes in a temporal 
interval. Although the results of both procedures appear 
to be due to the same processes, further analysis will be 
required to understand why the learning rate is 10 times 
faster under one procedure than under the other.

Direct Empirical and Theoretical Approaches
In the direct approach, the goal is to describe and/or 

explain the behavioral dependent variables individually.
A direct empirical approach. With a direct approach, 

(1) the conditions of a procedure are selected, (2) one or 

more summary dependent variables are selected, (3) func-
tional relationships are established between the conditions 
of the procedure and the values of the dependent variables, 
(4) the functional relationships are described quantita-
tively, and (5) the functional relationships are categorized 
into principles. For example, in the study of temporal 
discrimination, (1) an FI schedule of reinforcement may 
be selected as the procedure, (2) the dependent variable 
may be the mean response rate as a function of time since 
the last reinforcement, (3) this dependent variable may 
increase as a function of time since the last reinforcement, 
(4) the increase may be characterized by a simple equa-
tion, and (5) the similarities of the equations for different 
intervals may lead to a general principle.

This is a standard empirical approach. With this ap-
proach, Dews (1970) found that the function relating the 
rate of the keypecking response of pigeons (expressed as 
a proportion of the maximum response rate) to the time 
since last reinforcement (expressed as a proportion of the 
time between reinforcements) was the same at very dif-
ferent intervals (30, 300, and 3,000 sec). This observed 
superposition of functions is now referred to as timescale 
invariance.

If a quantitative fit of a model to experimental data is 
provided, it is usually applied only to a single summary 
statistic in any particular experiment; this makes it unclear 
whether or not the theory applies to other summary mea-
sures (Church & Kirkpatrick, 2001). Some of the princi-
ples of timing, such as proportionality, the scalar principle, 
Weber’s law, and timescale invariance, may apply to some 
dependent measures but not to others (Zeiler & Powell, 
1994). Unless the equations for different dependent vari-
ables can be derived from each other or from some more 
general formulation, the analysis must be regarded as de-
scriptive curve fitting and not as explanatory modeling.

A direct theoretical approach. With a direct theoreti-
cal approach, (1) a model of the process that transforms 
the procedure into the behavior is proposed, (2) the con-
ditions of one or more procedures are selected, (3) one 
or more summary dependent variables are selected, and 
(4) the values of the dependent variables generated by the 
animal are compared with the values of the dependent 
variables generated by the model.

This is a standard theoretical approach used in quanti-
tative theories of timing and conditioning, such as scalar 
timing theory (Gibbon et al., 1984), the learning-to-time 
model (Machado, 1997), the multiple time scale model 
(Staddon & Higa, 1999), and the temporal difference 
model (Sutton & Barto, 1990). (See Church & Kirkpat-
rick, 2001, for the application of these and other models to 
two dependent variables in a single procedure.) Although 
the standard theoretical approach may be used for explain-
ing results, the generalizability of its predictions to dif-
ferent dependent measures and procedures is often not 
explicitly demonstrated.

An Indirect Theoretical Approach
In the indirect theoretical approach, the goal is to de-

velop a process model that predicts time of occurrence of 

Figure 13. The mean goodness of fit (ω2) as a function of learning 
rate (α). The top panel displays the goodness of fit of the model to 
the data of the first half of baseline training (Phase 1). The bottom 
panel displays the goodness of fit of the model to the data for all 
36 sessions of the daily changed intervals (Phase 2). Note that the 
learning rate scale and the best estimate of the learning rate are 
about 10 times higher in the bottom panel than in the top panel.
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responses from which any behavioral dependent variable 
can be calculated. With this approach, (1) a model of the 
process that transforms the procedure into the behavior is 
proposed, (2) the conditions of one or more procedures are 
selected, (3) the time of occurrence of stimuli, responses, 
and reinforcers are simulated on the basis of the procedure 
and the model, (4) many dependent variables are defined, 
and (5) the values of the dependent variables generated by 
the animal are compared with the values of the dependent 
variables generated by the model.

With this approach, Kirkpatrick and Church (2003) 
found that many different measures of response rate and 
response pattern of head entry responses into a food cup 
by rats in fixed and random schedules of reinforcement 
could be simulated with a simple model of the process 
that was referred to as packet theory. An essential feature 
of this indirect approach is that, given a procedure within 
its domain, the model predicts the time of occurrence of 
responses. A good model of the process (combined with 
the procedure) will predict any summary dependent vari-
able based on the raw data (times of occurrence of stimuli, 
responses, and reinforcers). Unlike the standard direct 
theoretical approach, in which a model of the process 
predicts some selected behavioral dependent variables, 
an indirect theoretical approach is a model of that pro-
cess that predicts the times of occurrence of all responses. 
From this predicted raw data, any dependent measure of 
performance can be compared with the same dependent 
measured based on the observed raw data.

Conclusions
A direct approach to the description and explanation of 

the acquisition of a temporal discrimination is to identify 
one or more measures of temporal discrimination. Expo-
nential equations provided a good description of the ac-
quisition of five measures of temporal discrimination, but 
this was not an explanation of the behavior, because the 
parameters of these equations did not generalize across 
measures (dependent variables) or procedures.

An indirect approach to the description and explana-
tion of the acquisition of a temporal discrimination is to 
identify the process of acquisition of a temporal discrimi-
nation. This makes it possible to generate simulated data 
sets that may be used for simulated measures of temporal 
dependent measures that can be compared with the ob-
served data. A packet theory of FI responding provided 
a good description of the five measures of temporal dis-
crimination, and the same model generalized across mea-
sures (dependent variables) and procedures.

Acquisition of temporal discriminations may involve 
several general processes: the perception of a time inter-
val, memory of reinforced time intervals, decision about 
responding, and emission of packets of responses. The 
same general processes that account for asymptotic tem-
poral discriminations may also account for the acquisition 
of temporal discriminations if a learning rule is added. A 
standard linear operator model provides an excellent ap-
proximation to this learning rule.
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